亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。

本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作

集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。

圖1: 增強協同技術下的智能任務規劃(IMPACT)

IMPACT系統由三層組成(見圖2):

  • 人機交互應用層
  • 傳輸層
  • 支持服務層

圖2:從功能角度看IMPACT架構。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

NATO Data Exploitation Programme

北約數據開發計劃旨在有效利用數據,開發保持北約軍事和技術優勢所需的技能、人力、敏捷流程、工具、服務和技術。

目標

  • 實現認知優勢(以及信息優勢和數據支持決策)
  • 在 IT 和熟練勞動力的支持下保持軍事和技術優勢
  • 單一邏輯 CIS 環境,促進聯盟范圍內的數據管理方法
  • 可信信息共享文化、數據治理、企業范圍的數據可用性
  • 積極利用數據基礎設施和資源來支持各級決策
  • 數據素養和批判性思維被認為是整個聯盟的核心要求
  • 越來越多的數據專業人員擁有有效利用的手段數據

實施計劃

  • 數據開發計劃實施規劃將于 2022 年初到期
  • 與數據利用框架戰略計劃(2022 年)密切相關
  • 聯盟范圍內的參與、協調與協作(北約企業和國家)
  • 有效交付需要立即實施行動

付費5元查看完整內容

摘要

建模與仿真(M&S)是作戰分析人員用來支持決策者的一種關鍵方法,因為它有能力對復雜的問題提供清晰的見解。鑒于其好處,許多北約國家和北約內部的組織擁有大量的M&S專業知識,并將其應用于廣泛的問題。然而,這些模擬,特別是那些具有高度復雜性的模擬,可能是昂貴的,開發和驗證需要時間,并且需要專業知識和資源來使用。雖然在整個北約共享這些專業知識和這些模擬可能會導致更有效的決策支持,但它充滿了障礙,包括與項目時間表有關的時間壓力、知識產權,有時還需要共享機密材料。克服這些障礙將有助于北約從整個聯盟的M&S投資和專業知識中獲得應有的決策優勢。然而,為了克服這些障礙,需要有切實可行的解決方案。

在本文中,我們概述了MSG-SAS-178的工作,其目的是開發一種方法來減少這些障礙。我們討論了該小組的兩個主要貢獻。首先,該小組對北約內部共享M&S軟件、資源和模擬本身的常見障礙進行了識別和分類。其次,我們提出了一個障礙交換框架,在考慮數據、軟件、供應商和決策者等多個方面的障礙時,它可以作為決策支持工具。該框架提供了一種可操作的方式,通過仔細考慮模型和數據交換的要求以及交換帶來的障礙來塑造合作。這使得整個聯盟的M&S共享得到加強。

引言

幾十年來,建模與仿真(M&S)已被成功地用于支持北約的決策,是一種關鍵的分析能力。應用的領域包括先進的作戰計劃、基于能力的計劃、能力和/或概念開發,以及支持實驗和戰爭游戲。M&S有多種形式,從設計多年的大型復雜戰役模擬,到為單一目的快速建立的模擬。大型復雜模型的開發和維護成本很高,而且許多模型需要專家的專業知識,而這些專業知識是供不應求的。成本和所需的專業知識使M&S成為北約集體能力和合作意愿的一個領域,應使聯盟比其對手更有優勢。

通常情況下,有四個來源可以提供模擬服務。(1)北約實體,(2)國家政府,(3)工業,和(4)學術界。這四個方面都有專業知識、工具和數據。專業知識和工具的開發和維護可能是昂貴和費時的,特別是在專業或利基領域。對于數據來說,國防中使用的分類級別可能是一個問題,限制了工業界和學術界,并影響了國家和北約層面的共享。

北約實體和國家政府已經成為北約仿真服務的首選。在北約內部簽訂服務合同相對容易,但經驗表明,與國家政府或其他實體簽訂合同則充滿了困難。在整個北約提供模擬服務方面存在障礙,導致爐灶和低效率。在北約的科學和技術組織(STO)下,2019年啟動了一個聯合建模與仿真小組(MSG)和系統分析與研究(SAS)活動(MSG-SAS-178)。該活動的目的是考慮如何克服障礙,使北約及其所有成員受益。本文討論了該小組的兩個主要貢獻。首先,該小組對在北約內部共享M&S軟件、資源和模擬本身的共同障礙進行了識別和分類。第二,一個障礙交換框架,在考慮數據、軟件、供應商和決策者等多個方面的障礙時,可作為決策支持工具。該框架提供了一種可操作的方式,通過仔細考慮模型和數據交換的要求以及交換帶來的障礙,來塑造合作并為成功創造條件。這使得整個聯盟的M&S共享得到加強。

本文的其余部分組織如下。第2節概述了本研究中使用的方法。接下來,第3節討論了共享的障礙:首先是通過對知識共享文獻的回顧而發現的障礙,其次是通過MSG-SAS-178活動而發現的與北約內部和國家之間共享模擬有關的障礙。第4節介紹了一種引導模型和數據交換的方法,這也許是國防領域最重要的一組障礙。從MSG-SAS-178更詳細的案例研究庫中,我們介紹了數據和模型交換框架如何在現實世界的場景中使用。第5節提供了結論意見。

付費5元查看完整內容

摘要

目前越來越多的趨勢是從實況空中訓練轉向明顯更便宜的模擬任務訓練。然而,節省成本并不是唯一的原因;特定任務根本無法在真實環境中得到有效和安全的訓練。模擬似乎是通用的解決方案。

但戰斗機飛行員僅在飛行模擬中無法達到所需的戰備水平。因此,現場訓練和綜合訓練相結合可能是理想的答案。

北約MSG活動128和165通過分布式模擬探索了北約任務訓練的操作和技術要求,并提出了聯合和聯合空中作戰的通用參考架構。盡管他們的主要重點是虛擬和建設性模擬,但實時訓練方面一直被考慮在未來擴展到LVC培訓網絡。

本次講座強調了混合現場和綜合訓練的好處,并適當考慮了在多域和跨國網絡中連接多個資產的困難。目前正在開發和建立諸如LVC網關、多級安全(MLS)架構、跨域解決方案(CDS)、特殊人機界面(HMI)等技術解決方案,以使這一切成為可能。

剩下的主要限制是什么?解決方法是什么?

付費5元查看完整內容

摘要

任務規劃對于建立成功執行任務所需的形勢意識至關重要。全面的計劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是團隊的努力,需要收集、分析相關信息并將其整合到一個全面的計劃中。由于第5代平臺、傳感器和數據庫生成的大量信息,這些過程面臨壓力。

本文描述了初始直升機任務規劃環境的創建,在該環境中,來自不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理傳入的數據,為計劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。

集成系統和算法是未來智能協作任務規劃的重要組成部分,因為它們可以有效處理與第5代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享SA。

付費5元查看完整內容

摘要

成功完成地下作業需要高度專業化的能力和由最新工具輔助的準確規劃。奧地利軍事學院的NIKE研究小組旨在為這些非常特殊的作戰環境提供決策、規劃和培訓。3D模型、平面圖、地圖或激光掃描等異構數據源的快速數據集成和可視化,以及從地下結構內部的傳感器和攝像頭收集的操作員信息,提供了虛擬進入通常看不見的裝置的可能性。BORIS(基于瀏覽器的空間定向)初始HTML模型、地下作業任務工具 (SOMT) 或快速隧道建模工具 (FTMT) 等專用工具通過創建虛擬的地下任務區域來提高快速可視化。在擴展現實 (XR) 應用程序中,改進的空間理解顯著改善了決策,并支持同步任務規劃和執行。由于地下服務結構的運營商和行動部隊之間的密切合作和信息交流是成功的先決條件,所有相關因素和行動者的整合將大大增加全面合作。該項目通過在真正全面的通用作戰圖中顯示相關信息來增強通用視角,從而實現更準確和精確的行動,減少自身損失和附帶損害。

付費5元查看完整內容

摘要

自主系統的開發者需要通過測試來訓練和驗證他們的算法。最終用戶在決定如何有效利用系統時也可以使用這些數據。模擬是在真實環境中進行實驗的另一種選擇,它更安全,成本更低,并允許執行可重復和可控的實驗。傳統上,機器人專家使用的模擬器專注于與系統相關的細節,同時簡化了與環境、通信和資產間關系相關的方面。作為替代方案,CMRE提出了一個海事仿真框架(MSF),可與機器人中間件(即MOOS和ROS)互操作,采用了一種硬件和軟件循環仿真方法,允許模擬通常被簡化的重要外部因素。這些擴展元素包含內容可以發現自主系統的開發人員可能不知道的交互,從而提高開發中的系統的健壯性。這項工作的目的是建立一個可配置和可擴展的仿真框架,以訓練和測試海事系統的自主行為,以協助系統開發者和支持最終用戶的操作決策。

該框架由高級體系結構(HLA)中的專用模擬器、聯邦成員模擬環境、平臺動態、傳感仿真、通信和直觀的可視化組成。提出的框架提供了一種模擬情況,包括復雜的海上操作的挑戰,以水下領域為重點,提供了比傳統方法更全面和現實的能力。到目前為止,MSF已經被用于支持地雷對抗(MCM)和反潛戰(ASW)任務中自主系統算法的發展,具有單個或多個車輛配置。

付費5元查看完整內容

?

對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解

作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 態勢感知SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。

作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。

作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動的方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。

一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。

在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。

作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。

付費5元查看完整內容

人工智能 (AI) 在規劃和支持軍事行動方面發揮著越來越大的作用,并成為情報和分析敵人情報的關鍵工具。人工智能的另一個應用領域是自主武器系統和車輛的應用領域。預計人工智能的使用將對人機界面的軍事功能(機器學習、人機協作)產生更大的影響。人工智能有望克服大數據的“3V挑戰”(數量、多樣性和速度),也有望降低其他“2V”(準確性、價值)的風險,并使數據處理處于可控水平基于人工智能知識的決策。本文的目的是概述人工智能在軍事中的應用潛力,并強調需要確定和定義可衡量的指標,以評估有望改進的最先進技術和解決方案,評估的質量和性能側重于態勢感知和決策支持以及后勤和運營規劃以及建模和模擬 (M&S) 等關鍵領域

付費5元查看完整內容

當前的流程和網絡限制迫使軍隊員工在物理上聚集在一起進行操作。Metaverse 提供了一種潛在的解決方案,可以在通過分發操作使指揮所更易于生存的同時啟用操作

共同的操作畫面

“我需要理解”也許是任務指揮技術背后的主要驅動力。制定和維護共同作戰圖的基本概念是增強態勢感知,實現態勢理解并促進所有梯隊的共同理解。通過連接數字系統以在 2D 和 3D 地圖上顯示信息或通過在紙質地圖上手動跟蹤友軍和敵方信息的復雜應用程序編程接口執行,該過程在過去 30 年中沒有太大發展。這項工作需要大型、繁瑣的指揮所,配備集中的人員和技術,以執行作戰過程并最終生成通用的作戰畫面,指揮官和參謀人員可以利用該畫面做出最及時、最準確的決策。 不幸的是,隨著運營變得越來越復雜,數據越來越多,各單位一直在努力有效地進行信息和知識管理。指揮所的規模和范圍已經擴大以滿足需要。人員數量的增加和對網絡的依賴使今天的指揮所容易受到敵人的攻擊,沒有足夠的機動性和生存能力。元宇宙提供了一種潛在的解決方案,可以使操作過程成為可能,同時通過分布操作固有地使指揮所更具生存能力,以及減少物理和電磁足跡。

在 元宇宙中與我會面:在未來,士兵們可以“進入”虛擬環境,在執行任務之前進行任務規劃。盡管“軍事虛擬世界”仍然只是一個概念,但整個美國陸軍的研究人員和科學家正在探索潛在的應用

什么是元宇宙?

由尼爾斯蒂芬森在他 1992 年的小說“Snow Crash” 中創造為了描述用戶在虛擬空間中交互的在線世界,元宇宙已經通過大型多人在線游戲和虛擬世界(如 Second Life、Roblox 或 Minecraft)變得熟悉。正如移動設備在過去 10 年中改變了互聯網的消費方式一樣,新一代技術——在這種情況下是虛擬和增強現實耳機——正在為我們如何消費內容提供新的視角。這些頭顯不再受平面屏幕的限制,讓用戶能夠感知在物理世界之上或代替物理世界呈現的 3D 對象和媒體并與之交互。隨著大流行驅動的遠程工作加速,這一概念變得更加流行。Facebook 甚至將其未來寄托在這一轉變上。

風險基金合伙人和受人尊敬的商業作家馬修·鮑爾( Matthew Ball )將元宇宙最徹底的探索之一寫成了一個由九部分組成的博客系列。Ball 的入門書著重于元宇宙的八個方面:

硬件:用于訪問、交互或開發元宇宙的物理技術和設備的銷售和支持。這包括但不限于面向消費者的硬件(例如 VR 耳機、手機和觸覺手套)以及企業硬件(例如用于操作或創建虛擬或基于 AR 的環境的硬件,例如工業相機、投影和跟蹤系統以及掃描傳感器)。此類別不包括特定于計算的硬件,例如 GPU 芯片和服務器,以及特定于網絡的硬件,例如光纖電纜或無線芯片組。

網絡:由骨干提供商、網絡、交換中心和在它們之間路由的服務以及管理“最后一英里”數據給消費者的服務提供持久、實時的連接、高帶寬和分散的數據傳輸。

計算:支持元宇宙的計算能力的啟用和供應,支持物理計算、渲染、數據協調和同步、人工智能、投影、動作捕捉和翻譯等多樣化和高要求的功能。

虛擬平臺:沉浸式數字和通常是 3D 模擬、環境和世界的開發和運營,用戶和企業可以在其中探索、創造、社交和參與各種體驗(例如賽車、繪畫、上課,聽音樂),從事經濟活動。這些業務與傳統在線體驗和多人視頻游戲的區別在于,存在一個由開發人員和內容創建者組成的大型生態系統,這些生態系統在底層平臺上生成大部分內容和/或收集大部分收入。

交換工具和標準:工具、協議、格式、服務和引擎,它們充當互操作性的實際或事實上的標準,并支持元宇宙的創建、操作和持續改進。這些標準支持渲染、物理和 AI 等活動,以及資產格式及其從體驗到體驗的導入/導出、前向兼容性管理和更新、工具和創作活動以及信息管理。

支付:支持數字支付流程、平臺和運營,包括法定入口(一種數字貨幣兌換形式)到純數字貨幣和金融服務,包括比特幣和以太幣等加密貨幣以及其他區塊鏈技術。

元宇宙內容、服務和資產:與用戶數據和身份相關的數字資產(例如虛擬商品和貨幣)的設計/創建、銷售、轉售、存儲、安全保護和財務管理。這包含所有“建立在”元宇宙之上和/或“服務于”元宇宙的所有業務和服務,并且沒有被平臺所有者垂直整合到虛擬平臺中,包括專門為元宇宙構建的、獨立于虛擬界的內容平臺。

用戶行為:消費者和商業行為(包括花費和投資、時間和注意力、決策和能力)的可觀察變化,這些變化要么與元宇宙直接相關,要么以其他方式促成或反映其原則和理念。這些行為在最初出現時幾乎總是看起來像“趨勢”(或者,更貶義地,“時尚”),但后來顯示出持久的全球社會意義。

他討論了每個領域的進展,以及充分啟用和采用元宇宙作為移動互聯網繼任者的方法。

從虛擬到現實:隨著大型指揮所分解其物理足跡并依賴數字環境,諸如元宇宙之類的概念可以幫助參謀人員對現實世界的行動進行規劃

聯網

帶寬是當今戰場上的稀缺資源,需要技術突破才能完全啟用虛擬世界。然而,許多戰術場景可以受益于不是特別密集的信息,因此需要較少的帶寬來傳輸,例如地理空間位置、單位狀態摘要、當前目標等。此外,更密集的信息,例如用于訓練輔助目標識別算法的作戰區域3D 地形模型或未知敵方車輛的視頻,無需通過網絡實時發送。這將要求陸軍利用云服務,云服務不僅能高效地移動和處理信息,而且由情報部門控制,這些情報部門了解客戶請求或可能請求的數據和服務的信息價值。

關乎生死的一個關鍵問題是信息延遲。友方單位位置的潛在變化可能會導致整個元宇宙的決策瀑布式變化,并改變任務狀態的視角。為了做出更好的決策,陸軍必須創建一個超高效的網絡,只傳輸正確的相關信息。這種實時信息更新的概念是在虛擬世界中沉浸式硬件的關鍵組成部分,因為“數字孿生”士兵的表示和動作必須在連接到其共享空間的所有其他設備上同步。與商業世界不同,元宇宙戰場涉及戰斗人員試圖摧毀對手的網絡。

微軟飛行模擬器

流行的 Microsoft Flight Simulator 視頻游戲系列包括地球的“數字孿生”,結合地圖和衛星圖像,可以對天氣和空中交通、建筑物甚至樹木實時渲染。這是一個巨大的模型,對于戰術邊緣的受限帶寬來說是不切實際的,但是這個模型和其他類似的模型可以允許在更高的、云連接的梯隊或在本站上對車輛和武器效果進行超現實建模。NVIDIA 的 Omniverse等世界構建工具包有助于渲染新對象,其中包括材質、紋理和運動構建塊。甚至這些基于世界的模型的低分辨率版本也可用于概念演練或任務演練,無論單位是否位于同一地點。

想象一下:今天使用的沉浸式硬件幾乎完全掩蓋了用戶對現實世界的看法;最終,顯示器將需要在現實之上渲染內容或用合成內容替換所有內容之間進行動態調整。(由任務指揮戰斗實驗室提供)

虛擬平臺

整合軍用數字訓練、戰斗和企業級系統的精簡平臺不足以實現元宇宙。元宇宙要求士兵的數字存在超越不同的訓練平臺,并無縫集成到其他作戰工具中。這些工具還必須使用戶能夠從不同的角度與戰場數據進行交互,無論是在傳統的 2D 顯示器上還是從沉浸式共享虛擬空間。這將需要能夠使來自現實世界或模擬的數據在各種顯示媒體上無縫呈現的架構,無論它們是如何部署的。商業游戲世界一直在適應這一挑戰,支持在不同類型的硬件(如 PC 和游戲機)之間交叉玩同一游戲。

雖然化身的出現對我們的士兵來說可能不是那么優先,但數字資產可以以其他方式使用,這可能是有用的--例如,包括在一個人的身份系統偏好或自定義語言模型中,即使在用戶登錄一個新系統時也可以幫助人機合作。此外,一些游戲使一部分用戶能夠戴著虛擬現實設備從神一樣的俯視角度進行游戲,而其他玩家則化身為化身,從地面上以第一人稱觀看世界。像這樣的游戲概念似乎很適合在不同的梯隊中使用這種能力,在那里不同類型的數據和互動是必要的。

從戰術的角度來看,陸軍必須建立具有共同視野和感受的系統,無論系統是的佩戴方式或交互方式如何。士兵應該能夠以相同的配置文件使用他們的頭戴式顯示器、他們的手持系統和他們的桌面系統,并在這些系統間能夠以相同的角色輕松地切換。

硬件

Android Tactical Assault Kit (ATAK)等系統是一款裝在堅固外殼中的手持平板電腦或手機,可為作戰人員提供其作戰環境的數字化視角。ATAK 可以可視化 2D 和 3D 地圖,以及一系列圖形控制措施來表示友軍和敵軍的位置。雖然不像民用領域的消費類智能手機那樣無處不在,但這些設備代表了將物理和數字領域融合到一個手持套件中的首次嘗試之一。

然而,增強現實系統中的當前硬件限制了全息內容的視野質量。虛擬現實頭戴式顯示器提供高質量的視覺效果,但代價是幾乎完全遮擋了用戶對自然世界的看法。雖然陸軍開始評估在指揮所等不太致命的環境中使用虛擬現實,但沉浸式硬件的未來最終將融合到一個頭戴式顯示器中,該顯示器可以在現實之上的渲染內容或替換所有內容之間動態調整合成內容。這對于在未來的戰場環境中完全實現元宇宙是必要的。

結論

盡管推動了未來的發展,但我們也必須承認目前的技術仍然面臨著局限性--例如,訪問問題、延遲。這些問題不會因為升級到元宇宙而得到解決,必須隨著元宇宙的發展而得到解決。在規劃、準備、執行和評估行動方面轉向元宇宙模式,將使分散的工作人員能夠在一個協作的虛擬節點內更有效地同步作戰功能,這將與現有的實體指揮所相媲美。臨時會議可以超越簡單的電話和視頻會議,允許用戶占據一個包含所有相關數據的虛擬規劃空間來做出決定:一個顯示友軍和敵軍位置、情報產品、相對戰斗力、維持估計等的交互式三維共同作戰圖。

與人工智能一樣,元宇宙技術為解決戰場上的問題帶來了一套新的工具,包括當前和預期的問題。也像人工智能一樣,如果沒有標準和基礎設施來啟用這些工具,其結果將是零碎的和令人沮喪的。重要的是,陸軍要向前傾斜并認識到新技術的潛力,不僅因為它們在物資方面帶來了什么,而且還因為它們對我們未來的戰斗方式的影響。

付費5元查看完整內容

當前軍事推演中合成角色的行為能力是有限的,因為它們通常是由基于規則和反應性計算模型生成的,具有最低限度的智能。這種計算模型不能適應反映角色的經驗,導致即使是通過昂貴和勞動密集型過程設計的最有效的行為模型也很脆弱。利用機器學習和合成實體的經驗并結合適當的先驗知識的、具備自適應能力的、基于觀察的行為模型,可以解決現有計算行為模型中的問題,從而在軍事訓練模擬中創造更好的訓練體驗。

南加州大學創新技術研究所介紹了一個框架,旨在創建自主的合成角色,這些角色能夠執行可信行為的連貫序列,同時在訓練模擬中了解人類受訓者及其需求。該框架匯集了三個相互補充的組成部分。第一個組件是基于Unity的仿真環境——快速集成和開發環境(RIDE)——支持One World Terraing(OWT)模型,能夠運行和支持機器學習實驗。第二個是Shiva,這是一個新穎的多智能體強化和模仿學習框架,可以與各種模擬環境接口,并且可以額外利用各種學習算法。最后一個組件是Sigma認知架構,它將通過符號和概率推理能力來增強行為模型。已經成功地創建了概念驗證行為模型,在現實中利用這一框架,作為將機器學習引入軍事模擬的重要一步。

論文全文:

//www.zhuanzhi.ai/paper/2902032e89eae24167b560a5e2e0de47

付費5元查看完整內容
北京阿比特科技有限公司