亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

當前軍事推演中合成角色的行為能力是有限的,因為它們通常是由基于規則和反應性計算模型生成的,具有最低限度的智能。這種計算模型不能適應反映角色的經驗,導致即使是通過昂貴和勞動密集型過程設計的最有效的行為模型也很脆弱。利用機器學習和合成實體的經驗并結合適當的先驗知識的、具備自適應能力的、基于觀察的行為模型,可以解決現有計算行為模型中的問題,從而在軍事訓練模擬中創造更好的訓練體驗。

南加州大學創新技術研究所介紹了一個框架,旨在創建自主的合成角色,這些角色能夠執行可信行為的連貫序列,同時在訓練模擬中了解人類受訓者及其需求。該框架匯集了三個相互補充的組成部分。第一個組件是基于Unity的仿真環境——快速集成和開發環境(RIDE)——支持One World Terraing(OWT)模型,能夠運行和支持機器學習實驗。第二個是Shiva,這是一個新穎的多智能體強化和模仿學習框架,可以與各種模擬環境接口,并且可以額外利用各種學習算法。最后一個組件是Sigma認知架構,它將通過符號和概率推理能力來增強行為模型。已經成功地創建了概念驗證行為模型,在現實中利用這一框架,作為將機器學習引入軍事模擬的重要一步。

論文全文:

//www.zhuanzhi.ai/paper/2902032e89eae24167b560a5e2e0de47

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

摘要

目前越來越多的趨勢是從實況空中訓練轉向明顯更便宜的模擬任務訓練。然而,節省成本并不是唯一的原因;特定任務根本無法在真實環境中得到有效和安全的訓練。模擬似乎是通用的解決方案。

但戰斗機飛行員僅在飛行模擬中無法達到所需的戰備水平。因此,現場訓練和綜合訓練相結合可能是理想的答案。

北約MSG活動128和165通過分布式模擬探索了北約任務訓練的操作和技術要求,并提出了聯合和聯合空中作戰的通用參考架構。盡管他們的主要重點是虛擬和建設性模擬,但實時訓練方面一直被考慮在未來擴展到LVC培訓網絡。

本次講座強調了混合現場和綜合訓練的好處,并適當考慮了在多域和跨國網絡中連接多個資產的困難。目前正在開發和建立諸如LVC網關、多級安全(MLS)架構、跨域解決方案(CDS)、特殊人機界面(HMI)等技術解決方案,以使這一切成為可能。

剩下的主要限制是什么?解決方法是什么?

付費5元查看完整內容

摘要

任務規劃對于建立成功執行任務所需的形勢意識至關重要。全面的計劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是團隊的努力,需要收集、分析相關信息并將其整合到一個全面的計劃中。由于第5代平臺、傳感器和數據庫生成的大量信息,這些過程面臨壓力。

本文描述了初始直升機任務規劃環境的創建,在該環境中,來自不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理傳入的數據,為計劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。

集成系統和算法是未來智能協作任務規劃的重要組成部分,因為它們可以有效處理與第5代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享SA。

付費5元查看完整內容

摘要

現代多領域沖突日益復雜,使得對其戰術和戰略的理解以及確定適當行動方案具有挑戰性。作為概念開發和實驗 (CD&E) 的一部分的建模和仿真提供了新的見解,以更快的速度和更低的成本比物理機動更易實現。其中,通過計算機游戲進行的人機協作提供了一種在各種抽象級別模擬防御場景的強大方法。然而,傳統的人機交互非常耗時,并且僅限于預先設計的場景,例如,在預先編程的條件計算機動作。如果游戲的某一方面可以由人工智能來處理,這將增加探索行動過程的多樣性,從而導致更強大和更全面的分析。如果AI同時扮演兩個角色,這將允許采用數據農場方法,從而創建和分析大量已玩游戲的數據庫。為此,我們采用了強化學習和搜索算法相結合的方法,這些算法在各種復雜的規劃問題中都表現出了超人的表現。這種人工智能系統通過在大量現實場景中通過自我優化來學習戰術和策略,從而避免對人類經驗和預測的依賴。在這篇文章中,我們介紹了將基于神經網絡的蒙特卡羅樹搜索算法應用于防空場景和虛擬戰爭游戲中的戰略規劃和訓練的好處和挑戰,這些系統目前或未來可能用于瑞士武裝部隊。

付費5元查看完整內容

摘要

任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。

本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作

集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。

圖1: 增強協同技術下的智能任務規劃(IMPACT)

IMPACT系統由三層組成(見圖2):

  • 人機交互應用層
  • 傳輸層
  • 支持服務層

圖2:從功能角度看IMPACT架構。

付費5元查看完整內容

?

對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解

作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 態勢感知SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。

作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。

作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動的方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。

一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。

在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。

作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。

付費5元查看完整內容

美國加州大學與美國航空太空公司聯合從系統的視角提出了支持復雜空間系統、博弈和決策支持系統(DSS)的高級建模、仿真和分析(MS&A)方法。MS&A 方法還涉及支持美國國防采辦生命周期的基于能力的方法,重點放在授前采辦階段,并結合博弈論和兵棋推演來采購復雜的國防空間系統。作者概述了在復雜的防御系統系統環境中設計、分析和開發政府參考系統架構解決方案,相應采購策略的現有模型和工具。雖然提出的 MS&A 方法側重于國防空間系統,但這些方法靈活且穩健,可以擴展到任何民用和商業應用。?

基于需求和基于能力的方法的描述

支持美國國防部國防采辦生命周期的 MS&A 框架

SOSE CONOPS 評估的 MS&A 方法

付費5元查看完整內容

美國參謀長聯席會議(JCS)定義的交互評估流程

【摘 要】

模擬戰斗需要了解友軍和敵軍部隊相對于既定的友軍目標和敵軍目標的進展情況。在美國國防部(DoD),這些目標的結構是分級的,從國家戰略級別到戰術級別。

軍事評估試圖回答兩個主要問題:

1)我們是否在創造我們想要的效果?

2)我們完成的任務是否達標?

對模擬作戰的評估方法進行的研究很少。一些主要的評估應用領域是教育和游戲,它們為模擬中的軍事戰斗評估提供了有用的經驗。這項工作通過從美國國防部政策和這些研究領域收集的模擬戰斗評估方法的幾個理想特征進行。在從這些特征發展出價值層次之后,本文提供并評估了在戰斗模擬中使用的幾種候選方法——貝葉斯企業分析模型(BEAM)、貝葉斯網絡、價值導向思維、和線性規劃。每一種方案的評估都是通過其在小型戰斗模擬中的應用得到的。然后,從以價值為中心的思維和線性規劃的替代方案中創建了一個比其他四個更好的評估方案。論文最后對線性規劃問題進行了總結,并對今后的研究提出了一些想法。

付費5元查看完整內容

?標題
 On games and simulators as a platform for development of artificial intelligence for command and control

期刊
Journal of Defense Modeling and Simulation (JDMS)
美國國防建模與仿真學報

作者 Vinicius G. Goecks, Nicholas Waytowich, Derrik E. Asher, Song Jun Park, Mark Mittrick, John Richardson, Manuel Vindiola, Anne Logie, Mark Dennison, Theron Trout, Priya Narayanan, Alexander Kott

機構
美國陸軍研究實驗室

摘要
游戲和模擬器可以成為一個有價值的平臺,可以執行復雜的多智能體、多人、不完善的信息場景,與軍事應用有很大的相似之處:多個參與者管理資源并做出指揮資產的決策,以保護地圖的特定區域或中和敵方部隊。這些特征通過支持開發具有復雜基準的算法和快速迭代新想法的能力,而吸引了人工智能 (AI) 團體。人工智能算法在《星際爭霸II》等即時戰略游戲中的成功也引起了軍事研究界的關注,旨在探索類似技術在軍事對應場景中的應用。
本文旨在架起游戲與軍事應用之間的橋梁,討論了過去和當前游戲和模擬器以及人工智能算法如何適應模擬軍事任務,以及它們如何影響未來戰場方面所做的努力。
本文還研究了虛擬現實和視覺增強系統的進步如何在與游戲平臺及其軍事相似之處的人機界面中開辟新的可能性。

關鍵詞
人工智能、強化學習、兵棋推演、指揮控制、人機交互、未來戰場

論文 //www.zhuanzhi.ai/paper/71654e42b8904571dd62407e18db2827

付費5元查看完整內容

今天介紹的是美國蘭德公司、耶魯大學聯合發表于The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology(國防建模與仿真學報:應用、方法、技術)期刊的論文“Artificial intelligence for wargaming and modeling”。

摘要:

在本文中,討論了如何將人工智能 (AI) 用于與擁有大規模殺傷性武器和其他涉及太空、網絡空間和遠程精確度的高端能力的國家發生沖突的政治軍事建模、模擬和兵棋推演武器。人工智能應該幫助兵棋推演的參與者和模擬中的代理人了解在不確定性和錯誤印象下作戰的對手的可能觀點、看法和計算。人工智能的內容應該認識到升級的風險,導致沒有贏家的災難,但也有可能產生有意義的贏家和輸家的結果。我們討論了對設計和發展的影響使用多種類型的 AI 功能的模型、模擬和兵棋推演。我們還討論了使用模擬、歷史和早期兵棋推演的理論和探索性工作為兵棋推演決策輔助工具,無論有無人工智能。

關鍵詞:

人工智能,兵棋推演,建模與仿真,認知建模,決策,深度不確定性下的決策,海量場景生成,探索性分析與建模

付費5元查看完整內容

美國國防部(DOD)報告稱,人工智能(AI)是一項革命性的技術,有望改變未來的戰場和美國面臨的威脅的速度。人工智能能力將使機器能夠執行通常需要人類智能的任務,如得出結論和做出預測此外,人工智能機器可以以人類操作員無法企及的速度操縱和改變戰術。由于AI具有廣泛用途的潛力,國防部將其指定為頂級現代化領域,并投入大量精力和資金開發和獲取AI工具和能力,以支持作戰人員。在2022財年,國防部為科學和技術項目申請了147億美元,以及8.74億美元用于直接支持其人工智能努力。根據國防部2018年的人工智能戰略,未能將人工智能能力納入武器系統可能會阻礙戰士保護我們的國家抵御近同行對手的能力其他國家正在這一領域進行大量投資,這可能會削弱美國的軍事技術和作戰優勢。

美國國防部(DOD)正在積極追求人工智能(AI)能力。人工智能指的是旨在復制一系列人類功能,并不斷在分配的任務上做得更好的計算機系統。GAO之前確定了三種AI類型,如下圖所示

國防部認識到開發和使用人工智能不同于傳統軟件。傳統軟件的編程是根據靜態指令執行任務,而人工智能的編程則是學習如何改進給定的任務。這需要大量的數據集、計算能力和持續監控,以確保功能按預期執行。支持國防部作戰任務的大部分人工智能能力仍在開發中。這些能力主要集中在分析情報,增強武器系統平臺,如不需要人工操作的飛機和艦船,并在戰場上提供建議(如將部隊轉移到哪里)。

當獲取依賴于復雜軟件的新能力時,國防部一直面臨著挑戰,例如長時間的獲取過程和熟練工人的短缺。GAO發現,它繼續面臨這些挑戰,同時還面臨人工智能特有的其他挑戰,包括有可用的數據來訓練人工智能。例如,人工智能探測對手的潛艇需要收集各種潛艇的圖像,并標記它們,這樣人工智能就可以學會自己識別。國防部還面臨著將訓練有素的人工智能集成到非為其設計的現有武器系統中的困難,以及在其人員中建立對人工智能的信任。國防部發起了一系列努力,如為人工智能和人工智能特定培訓建立一個跨服務的數字平臺,以應對這些挑戰,并支持其對人工智能的追求,但現在評估有效性還為時過早

付費5元查看完整內容
北京阿比特科技有限公司