美國參謀長聯席會議(JCS)定義的交互評估流程
【摘 要】
模擬戰斗需要了解友軍和敵軍部隊相對于既定的友軍目標和敵軍目標的進展情況。在美國國防部(DoD),這些目標的結構是分級的,從國家戰略級別到戰術級別。
軍事評估試圖回答兩個主要問題:
1)我們是否在創造我們想要的效果?
2)我們完成的任務是否達標?
對模擬作戰的評估方法進行的研究很少。一些主要的評估應用領域是教育和游戲,它們為模擬中的軍事戰斗評估提供了有用的經驗。這項工作通過從美國國防部政策和這些研究領域收集的模擬戰斗評估方法的幾個理想特征進行。在從這些特征發展出價值層次之后,本文提供并評估了在戰斗模擬中使用的幾種候選方法——貝葉斯企業分析模型(BEAM)、貝葉斯網絡、價值導向思維、和線性規劃。每一種方案的評估都是通過其在小型戰斗模擬中的應用得到的。然后,從以價值為中心的思維和線性規劃的替代方案中創建了一個比其他四個更好的評估方案。論文最后對線性規劃問題進行了總結,并對今后的研究提出了一些想法。
如今,隨著技術飛速發展和威脅環境變得更加復雜,在信息爆炸的局面下,作戰人員面臨著具有挑戰性的決策空間。人工智能(AI)和機器學習(ML)可以減輕作戰人員負荷。人工智能系統具有深遠的好處——提高態勢感知能力,檢測威脅,理解對手的能力和意圖;確定和評估可能的戰術行動方針;并提供方法來預測行動決策的結果和影響。人工智能系統是理解和解決高度復雜的戰術情況的關鍵。
人工智能系統為作戰人員提供了優勢,但前提是這些系統被正確設計和實施,并且以減輕作戰人員的認知負荷的方式。為國防應用實施人工智能系統帶來了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。本文通過國防采辦和系統工程計劃,為解決這些獨特的挑戰提供了解決方案。
Bonnie Johnson——在海軍工程研發方面擁有超過 25 年的領導和系統工程經驗。她曾是 SAIC 和諾斯羅普·格魯曼公司的高級系統工程師,研究用于海戰系統和導彈防御能力的自動決策輔助。她于 2011 年加入美國海軍研究生院 (NPS) 系統工程系。她擁有 NPS 系統工程博士學位、約翰霍普金斯大學系統工程碩士學位和弗吉尼亞理工大學物理學學士學位。
人工智能是一個包含許多不同方法的領域,其目標是創造具有智能的機器(Mitchell,2019)。圖 1 顯示了一個簡單的維恩圖,其中機器學習 (ML) 作為 AI 的子集,而 AI 作為更廣泛的自動化類別的子集。自動化系統以最少的人工輸入運行,并且經常根據命令和規則執行重復性任務。人工智能系統執行模仿人類智能的功能。他們將從過去的經驗中學到的知識與收到的新信息結合起來,以做出決策并得出結論。
圖 1. 自動化、人工智能和機器學習的維恩圖
如圖 2 所示,有兩種主要類型的 AI 系統。第一種類型是明確編程的,也稱為手工知識系統。 Allen (2020) 將手工知識系統描述為“使用傳統的、基于規則的軟件,將人類專家的主題知識編碼為一長串編程的‘如果給定 x 輸入,則提供 y 輸出’規則的人工智能”(第3頁)。這些系統使用傳統的或普通的編程語言。第二種類型是從大量數據集訓練而來的機器學習系統。 ML 系統從訓練過的數據集中“學習”,然后在操作上使用“訓練過的”系統在給定新的操作數據的情況下產生預測結果。
圖 2. 兩種類型的人工智能:顯式編程和學習系統
自動化、人工智能和機器學習系統,包括手工知識系統和學習系統,為美國國防部 (DoD) 提供了巨大的潛力,在大多數任務領域具有多種應用。這些智能系統可以擴展國防部理解復雜和不確定情況、制定和權衡選項、預測行動成功和評估后果的能力。它們提供了在戰略、規劃和戰術領域支持國防部的潛力。人工智能系統可以減輕作戰人員的負擔,但前提是這些系統的設計和實施正確,并且以減輕作戰人員認知負擔的方式。這為國防應用實施人工智能系統提出了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。
第一個為國防應用實施人工智能系統的獨特挑戰是戰術戰爭呈現高度復雜的情況。戰術復雜性可能涉及信息超載、需要處理的多個并發任務、具有可怕后果的時間關鍵決策、態勢感知的未知/不準確/不完整,以及因各種分布式戰爭能力所需的互操作性而產生的工程挑戰。將人工智能系統添加到這個已經很復雜的環境中是一項必要但極具挑戰性的工作。
第二個獨特的挑戰是人工智能系統需要大量數據來訓練。所開發的人工智能系統的質量很大程度上取決于訓練數據集的質量和數量。軍事領域的數據尤其難以獲得。軍事數據可能涉及分類問題、網絡漏洞、數據驗證挑戰,并且根據艦隊演習和兵棋推演的需要,收集起來可能非常昂貴且耗時。
第三個獨特的挑戰是人工智能系統為系統工程提出了一個新的前沿。在傳統系統中,行為是固定的,因此是可預測的:給定輸入和條件,系統將產生可預測的輸出。一些人工智能解決方案可能涉及本身就很復雜的系統——適應和學習——因此會產生無法預料的輸出和行為。事實上,一些人工智能系統的目的就是為了做到這一點——與人類決策者合作,承擔一些認知負荷并產生智能建議。需要系統工程方法來設計智能系統,并確保它們對人類操作員來說是可解釋的、可信賴的和安全的。
第四個獨特的挑戰是,對于國防應用,總是需要考慮潛在的對手。在人工智能系統方面,采購界必須注意同行競爭對手國家,他們在人工智能進步方面取得了自己的進步。美國國防系統也必須在這場人工智能競賽中取得進步。網絡攻擊在防御系統中總是有可能發生的。隨著防御能力增加對自動化和人工智能系統的依賴,這可能會造成更多的網絡漏洞。最后,技術正在迅速發展,對抗性威脅空間正在發生變化。國防采購和系統工程界必須確保人工智能系統不斷發展和適應,以應對威脅環境的變化,并以可信賴和安全的方式做到這一點。
第一個獨特的挑戰是許多防御領域呈現出復雜的決策空間。因此,設計和實施適當的人工智能系統來解決這種復雜性將是極具挑戰性的。圖 3 突出顯示了導致戰術領域決策復雜性的許多因素。例如,海軍打擊部隊的行動可以迅速從和平狀態轉變為一種巨大的危險——需要對威脅保持警惕并采取適當的反應行動——所有這些都在高度壓縮的決策時間線上。戰術威脅可能來自水下、水面、空中、陸地、太空,甚至是虛擬的,因此需要處理多個時間緊迫的任務。在船舶、潛艇、飛機、陸地和太空中擁有海軍和國防資產;戰術決策空間必須解決這些分散和多樣化資源的最佳協作使用問題。制定有效的戰術行動方案也必須發生在高度動態的作戰環境中,只有部分和不確定的態勢知識。決策空間還必須考慮指揮權、交戰規則和戰術條令施加的限制。人類作為戰術決策者的角色增加了決策空間的復雜性——面臨信息過載、操作員錯誤、人工智能信任以及人工智能模糊性和可解釋性問題等挑戰。最后,戰術決策及其可能后果的風險可能非常高。
圖 3. 導致戰術決策空間復雜性的因素
解決高度復雜的決策空間是美國國防部面臨的挑戰。人工智能提供了解決這種復雜性的潛在解決方案——通過處理大量數據、處理不確定性、理解復雜情況、開發和評估決策替代方案以及了解風險水平和決策后果。人工智能解決方案可以應用于國防部的戰略、規劃和戰術層面。海軍研究生院 (NPS) 開發了一種工程框架和理論,用于解決高度復雜的問題空間,這些問題空間需要使用智能和分布式 AI 系統來獲得態勢感知并做出適應動態情況的協作行動決策(Johnson, 2019)。模擬了一個復雜的戰術場景,以演示使用 AI 來驗證該方法(Johnson,2020a)。 NPS 已經開發了一種預測分析能力的概念設計,該設計將被實施為一個自動化的實時戰爭游戲系統,該系統探索不同的可能戰術行動方案及其預測效果和紅軍反應(Johnson,2020b)。 NPS 研究已經確定了在戰術行動中描述復雜性水平的必要性,并實施自適應人機協作安排以做出戰術決策,其中自動化水平根據情境復雜性水平進行調整。正在進行的 NPS 研究正在研究這些概念工程方法在各種防御用例應用中的應用,包括防空和導彈防御、超視距打擊、船舶自衛、無人機操作和激光武器系統。
復雜的決策空間為 AI 系統嘗試和解決創造了具有挑戰性的問題。表 1 根據決策空間的復雜性比較了不同的 AI 應用領域。該表包含 10 個表征決策空間復雜性的因素:認知不確定性(對情境知識的不確定性數量)、情境動態、決策時間線(做出決策的時間量)、決策的復雜性決策過程中的人機交互、資源復雜性(數量、類型、它們之間的距離以及它們的動態程度)、是否涉及多個任務、對手(競爭對手、黑客或打算摧毀的徹底敵人)的存在,允許誤差的幅度(多少決策錯誤是可以接受的),以及決策后果的嚴重性。
表 1. 不同 AI 應用的決策復雜度比較
人工智能應用程序涉及的決策空間用于廣告(根據特定用戶的購買習慣或互聯網搜索確定將哪些廣告流式傳輸)、貸款批準(根據貸款金額和信用評分確定貸款資格)和醫療(根據診斷確定關于患者癥狀)相對簡單。存在大量訓練數據,決策過程中的計算和人為交互簡單,情況相對穩定。不良廣告的后果是微乎其微的。可以審計不良貸款批準決定。糟糕的醫學診斷可能會產生更嚴重的后果,但通常有足夠的時間在治療前尋求更多的評估和意見。為自動駕駛汽車確定最佳運輸路線和工程 AI 系統是更復雜的工作。這些應用程序是動態變化的,需要更短的時間來做出決策。運輸路線在可能路線的數量上會很復雜——這可能會導致許多可能的選擇。但是,存在運輸錯誤的空間,并且后果通常不會太嚴重。對于自動駕駛汽車來說,決策錯誤的余地非常小。此應用程序中的錯誤決定可能導致嚴重事故。
然而,軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識/意識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴和困難- 獲取訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。
第二個獨特的挑戰是 AI/ML 系統需要大量相關且高質量的數據用于訓練和開發,而這些數據在軍事領域可能很難獲得。明確編程的手工知識系統在開發過程中需要數據進行評估和驗證。 ML 系統在開發過程中對數據的依賴性更大。如圖 4 所示,ML 系統從代表操作條件和事件的數據集中“學習”。 ML系統學習的過程也稱為被訓練,開發階段使用的數據稱為訓練數據集。有幾種類型的 ML 學習或訓練——它們是有監督的、無監督的和強化的。所有三種類型的 ML 學習都需要訓練數據集。 ML 系統在部署后或運營階段繼續需要數據。圖 4 顯示,在運營期間,ML 系統或“模型”接收運營實時數據,并通過使用其“訓練過的”算法處理運營數據來確定預測或決策結果。因此,在整個系統工程和采集生命周期中,ML 系統與數據密切相關。 ML 系統從訓練數據集的學習過程中“出現”。機器學習系統是數據質量、充分性和代表性的產物。他們完全依賴于他們的訓練數據集。
圖 4. 開發和實施機器學習系統
隨著許多領域(戰爭、供應鏈、安全、物流等)的更多 AI 開發人員正在了解 AI 解決方案的潛在優勢并開始著手 AI 系統開發,DoD 開始認識到對這些數據集的需求。在某些情況下,數據存在并準備好支持 AI 系統開發。在其他情況下,數據存在但不保存和存儲。最后,在其他情況下,數據不存在,需要模擬或在艦隊演習或戰爭游戲中收集。圖 5 說明了收集、獲取和在某些情況下開發用于開發和訓練 AI 和 ML 系統的數據時需要考慮的過程。
圖 5. 人工智能和機器學習系統訓練數據集的開發
軍事領域對開發訓練數據集提出了一些獨特的挑戰——數據可能被分類,數據可能存在網絡漏洞(它可能被攻擊并被對手故意破壞),如果數據不存在,它可能需要從軍事/艦隊演習或兵棋推演中獲得。數據驗證也是一項具有挑戰性的工作。
NPS 正在為海軍的數據管理系統執行需求分析和概念設計,該系統將收集數據并向海軍內部許多正在開發 AI/ML 系統的不同組織提供數據(French 等人,2021 年)。圖 6 是海軍中央人工智能庫 (CAIL) 的上下文圖,它被設想為一個數據管理系統和流程,用于識別數據集并提供索引、驗證、審計和對 AI 可以使用的數據的安全訪問。從事海軍應用的機器學習開發人員。 CAIL 將不是一個數據存儲庫或數據庫,而是一個中央組織,使 AI/ML 開發人員能夠訪問經過驗證和保護的海軍數據——以幫助識別數據集的存在,啟用授權訪問,并幫助支持開發人員所需的數據尚不存在,需要獲得——可能通過艦隊演習或兵棋推演。
圖 6. 概念性中央人工智能庫
第三個獨特的挑戰是開發人工智能系統為系統工程提出了一個新的前沿。系統工程方法已被開發用于設計可能非常復雜但也具有確定性的傳統系統(Calvano & John,2004)。傳統系統具有可預測的行為:對于給定的輸入和條件,它們將產生可預測的輸出。圖 7 說明了對傳統 SE 方法(如 SE Vee 過程)進行更改的必要性,以便設計復雜且不確定的 AI 系統。特別是,需要新的方法來定義隨時間適應的學習系統的要求,并且系統驗證過程可能需要在操作過程中不斷發展和繼續,以確保安全和期望的行為。對于具有高風險后果的軍事系統,幾乎沒有出錯的余地,因此需要實施一個可以確保 AI 系統安全和預期操作的系統工程流程。
圖7. 人工智能:系統工程的新前沿
國際系統工程師理事會 (INCOSE) 最近的一項倡議已經開始探索需要對系統工程方法進行哪些改變才能有效地開發人工智能系統。圖 8 是作為該計劃的一部分創建的,旨在強調在 SE 過程中需要考慮的 AI 系統的五個方面。除了不確定性和不斷發展的行為之外,人工智能系統可能會出現新類型的故障模式,這些故障模式可能會突然發生,并且可能難以辨別其根本原因。穩健的設計——或確保人工智能系統能夠處理和適應未來的場景——是另一個系統工程設計考慮因素。最后,對于涉及更多人機交互的 AI 系統,必須特別注意設計系統,使其值得信賴、可解釋并最終對人類決策者有用。
圖 8. 人工智能系統工程中的挑戰
NPS 正在研究可以支持復雜、自適應和智能 AI 系統的設計和開發的系統工程方法。已經開發了一個系統工程框架和方法來設計系統解決方案的復雜自適應系統(Johnson,2019)。該方法支持系統系統的開發,通過使用人工智能,可以協作以產生所需的緊急行為。當前的一個研究項目正在研究可以在設計過程中設計到 AI 系統中的安全措施,以確保操作期間的安全(Cruz 等人,2021 年)。 NPS 正在研究一種稱為元認知的設計解決方案,作為 AI 系統識別內部錯誤的一種方法(Johnson,2021 年)。當前的另一個 NPS 論文項目正在研究如何將“信任”設計到 AI 系統中,以確保有效的人機協作安排(Hui,2021)。幾個 NPS 項目研究使用稱為協同設計的 SE 設計方法,來確定人類操作員與 AI 系統之間的相互依賴關系(Blickley 等人,2021;Sanchez,2021)。
第四個獨特的挑戰是對手在防御應用中的存在和作用。國防部必須與對手競爭以提升人工智能能力,人工智能系統必須免受網絡攻擊,人工智能系統必須適應不斷變化的威脅環境演變。圖 9 突出顯示了對手的存在給國防部正在開發的 AI 系統帶來的一系列獨特挑戰。
圖9. 敵手的挑戰
競爭對手國家之間開發人工智能能力的競賽最終是為了進入對手的決策周期,以比對手更快的速度做出決定和采取行動(Rosenberg,2010 年)。人工智能系統提供了提高決策質量和速度的潛力,因此對于獲得決策優勢至關重要。隨著國防部探索人工智能解決方案,同行競爭對手國家也在做同樣的事情。最終,實現將 AI 用于 DoD 的目標不僅僅取決于 AI 研究。它需要適當的數據收集和管理、有效的系統工程和采集方法,以及仔細考慮人類與人工智能系統的交互。國防部必須確保它能夠應對實施人工智能系統所涉及的所有挑戰,才能贏得比賽。NPS 研究計劃正在研究如何應用 AI 和博弈論來進入對手的戰術決策周期(Johnson,2020b)。該項目正在開發一個概念,用于創建戰術態勢模型、對手的位置和能力,以及預測對手對形勢的了解。然后,概念系統將進行實時“兵棋推演”,根據預測的對抗反應和二階和三階效應分析戰術決策選項。這是一個研究未來戰術戰爭可能是什么樣子的一個例子,它為藍軍和紅軍提供了增強的知識和決策輔助。為 AI 競賽準備國防部的其他 NPS 舉措包括研究新的 SE 方法和獲取實踐以開發 AI 能力、研究海軍和國防部的數據管理需求(French 等人,2021 年)以及研究 AI 系統安全風險開發確保安全 AI 能力的工程實踐(Cruz 等人,2021 年;Johnson,2021 年)。
賽博戰是國防部必須成功參與的另一場競賽,以保持領先于黑客攻擊的持續攻擊。隨著國防部實施更多的自動化,它自然會導致更多的網絡漏洞。使用本質上依賴于訓練數據和操作數據的人工智能系統,為黑客在開發階段和操作階段用損壞的數據毒害系統提供了機會。如果對手控制了一個可操作的人工智能系統,他們可能造成的傷害將取決于應用程序領域。對于支持武器控制決策的自動化,后果可能是致命的。在最近一項關于汽車網絡安全的研究中,一家汽車公司在網上發布了一個假汽車電子控制單元,在不到 3 天的時間里,進行了 25,000 次違規嘗試(Taub,2021 年)。國防部必須注意人工智能系統開發過程中出現的特定網絡漏洞。必須為每個新的人工智能系統實施仔細的網絡風險分析和網絡防御策略。 NPS 正在研究數據安全要求,以確保 ML 訓練數據集不受黑客攻擊,并且需要安全授權才能訪問(French 等人,2021 年)。 NPS 正在研究使用元認知作為 AI 系統執行自我評估的一種方法,以識別網絡入侵、篡改或任何異常行為(Johnson,2020b)。 NPS 還在研究使用 ML 來識別惡意欺騙和篡改全球定位系統 (GPS; Kennedy, 2020)。
威脅環境的演變是國防部在開發人工智能系統時的第三次對抗性競賽。由于對抗性威脅空間隨著時間的推移而不斷變化,擁有更快、更致命的武器、更多的自主權、更大的監視資產、更先進的對抗措施和更多的隱身性,這對國防部能夠預測和識別新威脅并進行應對提出了挑戰戰場上的未知數。 NPS 研究的重點是在作戰過程中不斷適應和學習的工程系統,以檢測和識別戰場中的未知未知,并通過創新的行動方案快速響應新威脅(Grooms,2019;Jones 等人,2020;Wood,2019 )。 NPS 正在研究通過研究特定區域隨時間變化的數據來識別異常變化的機器學習方法(Zhao et al., 2016)。一個例子是研究商用飛機飛行模式并根據異常飛行模式識別可疑飛機。隨著時間的推移,可以監視地面行動,以識別可能意味著軍事行動的新的和不尋常的建設項目。
人工智能系統為國防部在實現和保持知識和決策優勢方面提供了重大進展。然而,為國防應用實施人工智能系統提出了獨特的挑戰。軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴且難以獲得訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。 AI 系統,尤其是 ML 系統,需要有代表性、足夠、安全和經過驗證的數據集來進行開發。為國防應用收集合適的數據具有處理分類數據集和確保數據安全和免受網絡攻擊的額外挑戰;這也將是收集代表戰術行動的真實數據的一項重大努力。將需要新的系統工程方法來有效地指定、設計和評估人工智能系統,這些系統通過其不確定性、新型人機協作挑戰以及難以預測和預防的新安全故障模式而呈現出新的復雜性.最后,軍事領域中對手的存在呈現出三種形式的 AI 競賽:與對手一樣快地開發 AI 系統的競賽、保持領先于可能的網絡攻擊的競賽以及訓練能夠應對的 AI/ML 系統的競賽隨著不斷發展的對抗性威脅空間。
NPS 正在通過一系列正在進行的研究計劃來解決四個獨特的挑戰領域。 NPS 研究人員正在研究人工智能系統在海軍戰術作戰領域的實施,對軍事數據集進行需求分析和需求開發,研究開發復雜人工智能系統的系統工程方法,以及開發安全、可信賴的人工智能系統工程方法,并注意潛在對手的作用。 NPS 正在為軍官和平民學生提供人工智能研究和教育機會。 NPS 歡迎與國防部和海軍組織合作,繼續研究用于國防應用的人工智能系統,并繼續探索解決方案戰略和方法,以克服開發和實施人工智能能力的挑戰。
任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。
本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。
集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。
圖1: 增強協同技術下的智能任務規劃(IMPACT)
IMPACT系統由三層組成(見圖2):
圖2:從功能角度看IMPACT架構。
?
對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解。
作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 態勢感知SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。
作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。
作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動的方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。
一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。
在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。
作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。
Wargaming in Professional Military Education: Challenges and Solutions
職業軍事教育中的兵棋推演:挑戰與解決方案
美國海軍陸戰隊埃里克·沃爾特斯(Eric M. Walters)上校(退役)
鑒于強調在專業軍事教育中使用兵棋推演,學校、作戰部隊和支持機構的教官——尤其是那些本身沒有經驗的兵棋推演者——如何去做呢?本文解釋了在經驗豐富專家的幫助下,為選定、修改或內部設計的嚴格兵棋式推演制定理想的學習成果的必要性。總結了最近的相關學術成果,它提供了促進協作對話的基本術語和概念,并就這種動態和沉浸式教學方法的常見但可避免的陷阱提供了建議。
對于那些認為兵棋推演不僅僅是一種娛樂消遣的人來說,商業兵棋推演曾經是——而且可以說仍然是——一種小眾愛好。在 20 世紀和 21 世紀初的歷史中,只有相對較小比例的軍人和學者經常進行所謂的嚴格式兵棋推演。過去,這一想法受到制度性的抵制,在職業軍事教育(PME)中使用一些人認為是兒童游戲的東西;雖然最近這種恥辱感有所減輕,但對于外行來說,兵棋推演的學習障礙仍然很高。兵棋推演可能很難學習,甚至更難戰勝有能力的對手。然而,我們已經到了 2021 年,軍事兵棋推演似乎正在 PME 學校、作戰部隊甚至支持機構中復活。海軍陸戰隊司令大衛 H. 伯杰將軍在他的指揮官規劃指南中,強調了在 PME 中練習軍事決策的必要性,這是教育兵棋推演的主要目的。但一個事實仍然存在。對于那些有興趣使用和設計兵棋推演來教授軍事判斷力的人來說,這種教學方法似乎很難有效實施。學術界的成功案例涉及作戰部隊中已經是兵棋推演者的教授、教官和海軍陸戰隊領導人。不是兵棋推演者但教軍事決策的人如何弄清楚要使用什么兵棋推演?如何使用它?各種可用游戲的優點和局限性是什么?整合兵棋推演和課程有哪些挑戰,如何克服這些挑戰?本文旨在幫助那些不熟悉兵棋推演的人定位,并就在教授決策中的軍事判斷時使用它們的經過驗證的最佳實踐提供建議。
1 教育者如何使用游戲來教學生?
1.1 了解戰術、作戰和戰略中力量、空間和時間之間的關系
?1.2 在兵棋推演中模擬現實“決策環境”以解決決策困境
?1.3 在兵棋推演環境中體驗摩擦、不確定性、流動性、無序和復雜性的交互動力學
1.4 鍛煉創造性和批判性思維:準備、參與和分析兵棋推演活動
2 哪種類型的兵棋推演最適合學習目標?
?2.1 角色扮演游戲 (RPG)
? ?2.2 研討會矩陣游戲
2.3 系統游戲
?2.4 紙牌游戲
3 哪種情況最適合使用——歷史情景還是假設情景?
4 兵棋推演教學——挑戰與解決方案
?4.1 克服設計偏見
?4.2 時間和復雜性的挑戰
?4.3 對教師要求的考慮
?4.4 兵棋推演支持單位教育和凝聚力
人工智能 (AI) 在規劃和支持軍事行動方面發揮著越來越大的作用,并成為情報和分析敵人情報的關鍵工具。人工智能的另一個應用領域是自主武器系統和車輛的應用領域。預計人工智能的使用將對人機界面的軍事功能(機器學習、人機協作)產生更大的影響。人工智能有望克服大數據的“3V挑戰”(數量、多樣性和速度),也有望降低其他“2V”(準確性、價值)的風險,并使數據處理處于可控水平基于人工智能知識的決策。本文的目的是概述人工智能在軍事中的應用潛力,并強調需要確定和定義可衡量的指標,以評估有望改進的最先進技術和解決方案,評估的質量和性能側重于態勢感知和決策支持以及后勤和運營規劃以及建模和模擬 (M&S) 等關鍵領域。
?美國軍方對全球定位系統 (GPS) 的依賴以及存在的漏洞強調了對替代導航技術的需求。替代導航方法不僅必須接近 GPS 的準確性,而且必須接近全球范圍內的可用性。提供絕對定位估計的視覺輔助導航系統已經展示了接近 GPS 精度水平的令人鼓舞的結果。然而,它們僅限于海洋和其他地形特征較少的區域。使用地球磁異常場的磁導航已被證明是一種很有前途的替代方案,可以為導航系統提供全球范圍的覆蓋。
這項研究展示了磁性和視覺輔助導航系統的結合,使用擴展卡爾曼濾波器 (EKF) 來輔助飛機的慣性導航系統 (INS)。使用合成磁場測量和飛行測試計算機視覺數據表明,在計算機視覺數據長時間中斷期間,磁導航可以將導航解決方案綁定到粗略的位置估計。一旦計算機視覺數據可用,視覺輔助導航系統就能夠使用粗略的位置估計進行初始化,然后提供接近 GPS 水平精度的 10 米以下精度解決方案。此外,這項研究還展示了 F-16 飛行試驗數據上的有限磁補償方法和磁導航。有限的補償能夠將 F-16 的 10,000 納特斯拉 (nT) 干擾場降低到大約 15nT。然后,補償數據成功地用于磁導航。獲得了一種有界導航解決方案,在導航級 INS 的情況下實現了大約 100 米的精度,在戰術級 INS 的情況下實現了大約 1,000 米的精度。
摘 要
這篇文章主要側重于人工智能技術在智能武器裝備中的研究與應用。描述了人工智能的定義,人工智能技術的發展以及美國對人工智能的重視。探討了人工智能在智能武器裝備中的關鍵技術,包括目標定位與識別技術、自主攻擊技術、分布式作戰或蜂群作戰技術、作戰機器人技術等,并進一步闡述了在關鍵技術中應該突破的技術性問題。列舉了人工智能技術在智能武器裝備中的應用實例,對人工智能技術的發展作了總結與展望。
【摘 要】 高效的多機器人團隊需要能夠在復雜環境中實現目標,以應對搜索和救援等現實世界的應用。多機器人團隊應該能夠以完全分散的方式運作,單個機器人團隊成員能夠在沒有鄰居之間明確溝通的情況下采取行動。
美國陸軍研究實驗室Brian Reily等人提出了一種新穎的博弈論模型,該模型可以實現去中心化和無通信導航到目標位置。每個機器人都通過估計其本地隊友的行為來實施自己的分布式博弈,以識別使他們朝著目標方向移動的行為,同時避開障礙物并保持團隊凝聚力而不發生碰撞。從理論上證明了生成的動作接近納什均衡,這也對應于為每個機器人確定的最佳策略。實驗表明該方法可以通過多機器人系統實現分散式和無通信導航到目標位置,并且能夠避免障礙物和碰撞、保持連接性并對傳感器噪聲做出穩健響應。
該方法可以實現分布式和無通信導航。以藍色突出顯示的機器人在考慮其鄰居的預期策略及其策略對它們的影響后選擇其策略,而沒有實際交流。這樣,藍色機器人就可以避免碰撞,保持團隊凝聚力,避開障礙物,朝著目標位置前進,無需直接溝通。
當前軍事推演中合成角色的行為能力是有限的,因為它們通常是由基于規則和反應性計算模型生成的,具有最低限度的智能。這種計算模型不能適應反映角色的經驗,導致即使是通過昂貴和勞動密集型過程設計的最有效的行為模型也很脆弱。利用機器學習和合成實體的經驗并結合適當的先驗知識的、具備自適應能力的、基于觀察的行為模型,可以解決現有計算行為模型中的問題,從而在軍事訓練模擬中創造更好的訓練體驗。
南加州大學創新技術研究所介紹了一個框架,旨在創建自主的合成角色,這些角色能夠執行可信行為的連貫序列,同時在訓練模擬中了解人類受訓者及其需求。該框架匯集了三個相互補充的組成部分。第一個組件是基于Unity的仿真環境——快速集成和開發環境(RIDE)——支持One World Terraing(OWT)模型,能夠運行和支持機器學習實驗。第二個是Shiva,這是一個新穎的多智能體強化和模仿學習框架,可以與各種模擬環境接口,并且可以額外利用各種學習算法。最后一個組件是Sigma認知架構,它將通過符號和概率推理能力來增強行為模型。已經成功地創建了概念驗證行為模型,在現實中利用這一框架,作為將機器學習引入軍事模擬的重要一步。
論文全文:
文本數據間語義相似度的估計是自然語言處理領域的一個具有挑戰性和開放性的研究課題。由于自然語言的通用性,很難定義基于規則的方法來確定語義相似性度量。為了解決這一問題,多年來人們提出了各種語義相似方法。這篇調查文章追溯了這些方法的發展,根據它們的基本原則將它們分類為基于知識的、基于語料庫的、基于深度神經網絡的方法和混合方法。通過討論每種方法的優缺點,本調查提供了現有系統的全面視圖,以便新研究人員進行試驗和開發創新思想來解決語義相似的問題。