主題: Deep Learning for Community Detection: Progress, Challenges and Opportunities
摘要: 由于社區代表著相似的觀點,相似的功能,相似的目的等,因此社區檢測對于科學查詢和數據分析而言都是重要且極為有用的工具。 但是,隨著深度學習技術顯示出以令人印象深刻的性能處理高維圖形數據的能力日益增強,諸如頻譜聚類和統計推斷之類的經典社區檢測方法正在逐漸被淘汰。 因此,及時對通過深度學習進行社區檢測的進展進行調查。 該領域分為該領域的三個廣泛的研究流-深度神經網絡,深度圖嵌入和圖神經網絡,總結了每個流中各種框架,模型和算法的貢獻以及當前尚未解決的挑戰和 未來的研究機會尚待探索。
主題: Video Super Resolution Based on Deep Learning: A comprehensive survey
摘要: 近年來,深度學習在圖像識別,視頻分析,自然語言處理和語音識別(包括視頻超分辨率任務)領域取得了長足的進步。在這項調查中,我們全面研究了基于深度學習的28種最先進的視頻超分辨率方法。眾所周知,視頻幀內信息的杠桿作用對于視頻超分辨率很重要。因此,我們提出了一種分類法,并根據利用幀間信息的方法將這些方法分為六個子類別。此外,詳細描述了所有方法的體系結構和實現細節(包括輸入和輸出,損失函數和學習率)。最后,我們總結并比較了它們在不同放大率下在一些基準數據集上的性能。我們還討論了一些挑戰,視頻超分辨率社區的研究人員需要進一步解決這些挑戰。因此,這項工作有望為視頻超分辨率研究的未來發展做出貢獻,并減輕現有和未來技術的可理解性和可移植性。
主題: Deep Learning for Community Detection: Progress, Challenges and Opportunities
摘要: 由于社區代表著相似的觀點,相似的功能,相似的目的等,因此社區檢測在科學查詢和數據分析中都是重要且極其有用的工具。 但是,隨著深度學習技術展示出以令人印象深刻的性能處理高維圖數據的能力日益增強,諸如頻譜聚類和統計推斷之類的經典社區檢測方法正在逐漸被淘汰。 因此,對通過深度學習進行社區發現的當前進展進行調查是及時的。 本文分為三個領域,分別是深度神經網絡,深度圖嵌入和圖神經網絡,本文總結了各個框架中各種框架,模型和算法的貢獻以及當前尚未解決的挑戰以及 未來的研究機會有待探索。
主題: Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
摘要: 如今,深度神經網絡已廣泛應用于對醫療至關重要的任務關鍵型系統,例如醫療保健,自動駕駛汽車和軍事領域,這些系統對人類生活產生直接影響。然而,深層神經網絡的黑匣子性質挑戰了其在使用中的關鍵任務應用,引發了引起信任不足的道德和司法問題。可解釋的人工智能(XAI)是人工智能(AI)的一個領域,它促進了一系列工具,技術和算法的產生,這些工具,技術和算法可以生成對AI決策的高質量,可解釋,直觀,人類可理解的解釋。除了提供有關深度學習當前XAI格局的整體視圖之外,本文還提供了開創性工作的數學總結。我們首先提出分類法,然后根據它們的解釋范圍,算法背后的方法,解釋級別或用法對XAI技術進行分類,這有助于建立可信賴,可解釋且自解釋的深度學習模型。然后,我們描述了XAI研究中使用的主要原理,并介紹了2007年至2020年XAI界標研究的歷史時間表。在詳細解釋了每種算法和方法之后,我們評估了八種XAI算法對圖像數據生成的解釋圖,討論了其局限性方法,并提供潛在的未來方向來改進XAI評估。
主題: Explainable Reinforcement Learning: A Survey
摘要: 可解釋的人工智能(XAI),即更透明和可解釋的AI模型的開發在過去幾年中獲得了越來越多的關注。這是由于這樣一個事實,即AI模型隨著其發展為功能強大且無處不在的工具而表現出一個有害的特征:性能與透明度之間的權衡。這說明了一個事實,即模型的內部工作越復雜,就越難以實現其預測或決策。但是,特別是考慮到系統像機器學習(ML)這樣的方法(強化學習(RL))在系統自動學習的情況下,顯然有必要了解其決策的根本原因。由于據我們所知,目前尚無人提供可解釋性強化學習(XRL)方法的概述的工作,因此本調查試圖解決這一差距。我們對問題進行了簡短的總結,重要術語的定義以及提議當前XRL方法的分類和評估。我們發現a)大多數XRL方法通過模仿和簡化一個復雜的模型而不是設計本質上簡單的模型來起作用,并且b)XRL(和XAI)方法通常忽略了方程的人為方面,而不考慮相關領域的研究像心理學或哲學。因此,需要跨學科的努力來使所生成的解釋適應(非專家)人類用戶,以便有效地在XRL和XAI領域中取得進步。
隨著深度學習在視覺、推薦系統、自然語言處理等諸多領域的不斷發展,深度神經網絡(DNNs)在生產系統中得到了廣泛的應用。大數據集的可用性和高計算能力是這些進步的主要因素。這些數據集通常是眾包的,可能包含敏感信息。這造成了嚴重的隱私問題,因為這些數據可能被濫用或通過各種漏洞泄露。即使云提供商和通信鏈路是可信的,仍然存在推理攻擊的威脅,攻擊者可以推測用于訓練的數據的屬性,或者找到底層的模型架構和參數。在這次調查中,我們回顧了深度學習帶來的隱私問題,以及為解決這些問題而引入的緩解技術。我們還指出,在測試時間推斷隱私方面的文獻存在空白,并提出未來可能的研究方向。
主題: A Review on Deep Learning Techniques for Video Prediction
摘要: 預測,預期和推理未來結果的能力是智能決策系統的關鍵組成部分。鑒于深度學習在計算機視覺中的成功,基于深度學習的視頻預測已成為有前途的研究方向。視頻預測被定義為一種自我監督的學習任務,它代表了一個表示學習的合適框架,因為它展示了提取自然視頻中潛在模式的有意義的表示的潛在能力。視頻序列預測的深度學習方法。我們首先定義視頻預測的基礎知識,以及強制性的背景概念和最常用的數據集。接下來,我們會仔細分析根據擬議的分類法組織的現有視頻預測模型,突出顯示它們的貢獻及其在該領域的意義。數據集和方法的摘要均附有實驗結果,有助于在定量基礎上評估現有技術。通過得出一些一般性結論,確定開放研究挑戰并指出未來的研究方向來對本文進行總結。
題目: Image Segmentation Using Deep Learning: A Survey
摘要:
圖像分割是圖像處理和計算機視覺領域的一個重要課題,其應用領域包括場景理解、醫學圖像分析、機器人感知、視頻監控、增強現實和圖像壓縮等。文獻中已經發展了各種圖像分割算法。最近,由于深度學習模型在廣泛的視覺應用中取得了成功,已經有大量的工作致力于開發使用深度學習模型的圖像分割方法。在本次調查中,我們對撰寫本文時的文獻進行了全面的回顧,涵蓋了語義和實例級分割的廣泛的開創性著作,包括全卷積像素標記網絡,編碼器-解碼器架構,多尺度和基于金字塔的方法,遞歸網絡,視覺注意力模型,以及在對抗性環境下的生成模型。我們調查了這些深度學習模型的相似性、優勢和挑戰,研究了最廣泛使用的數據集,報告了性能,并討論了該領域未來的研究方向。
主題: Deep Learning on Knowledge Graph for Recommender System: A Survey
摘要: 最近的研究表明,知識圖譜(KG)在提供有價值的外部知識以改進推薦系統(RS)方面是有效的。知識圖譜能夠編碼連接兩個對象和一個或多個相關屬性的高階關系。借助于新興的GNN,可以從KG中提取對象特征和關系,這是成功推薦的一個重要因素。本文對基于GNN的知識感知深度推薦系統進行了綜述。具體來說,我們討論了最新的框架,重點是它們的核心組件,即圖嵌入模塊,以及它們如何解決實際的推薦問題,如可伸縮性、冷啟動等。我們進一步總結了常用的基準數據集、評估指標以及開源代碼。最后,我們對調查結果進行了總結,并提出了這一快速發展領域的潛在研究方向。
簡介: 人們在閱讀文章時,可以識別關鍵思想,作出總結,并建立文章中的聯系以及對其他需要理解的內容等方面都做得很出色。深度學習的最新進展使計算機系統可以實現類似的功能。用于自然語言處理的深度學習可教您將深度學習方法應用于自然語言處理(NLP),以有效地解釋和使用文章。在這本書中,NLP專家Stephan Raaijmakers提煉了他對這個快速發展的領域中最新技術發展的研究。通過詳細的說明和豐富的代碼示例,您將探索最具挑戰性的NLP問題,并學習如何通過深度學習解決它們!
自然語言處理是教計算機解釋和處理人類語言的科學。最近,隨著深度學習的應用,NLP技術已躍升至令人興奮的新水平。這些突破包括模式識別,從上下文中進行推斷以及確定情感語調,從根本上改善了現代日常便利性,例如網絡搜索,以及與語音助手的交互。他們也在改變商業世界!
目錄:
1深度NLP學習
2 深度學習和語言:基礎知識
3文字嵌入
4文字相似度
5序列NLP和記憶
6NLP的6種情景記憶
7注意力機制
8多任務學習
附錄
附錄A:NLP
附錄B:矩陣代數
附錄C:超參數估計和分類器性能評估
論文主題: Recent Advances in Deep Learning for Object Detection
論文摘要: 目標檢測是計算機視覺中的基本視覺識別問題,并且在過去的幾十年中已得到廣泛研究。目標檢測指的是在給定圖像中找到具有精確定位的特定目標,并為每個目標分配一個對應的類標簽。由于基于深度學習的圖像分類取得了巨大的成功,因此近年來已經積極研究了使用深度學習的對象檢測技術。在本文中,我們對深度學習中視覺對象檢測的最新進展進行了全面的調查。通過復習文獻中最近的大量相關工作,我們系統地分析了現有的目標檢測框架并將調查分為三個主要部分:(i)檢測組件,(ii)學習策略(iii)應用程序和基準。在調查中,我們詳細介紹了影響檢測性能的各種因素,例如檢測器體系結構,功能學習,建議生成,采樣策略等。最后,我們討論了一些未來的方向,以促進和刺激未來的視覺對象檢測研究。與深度學習。