亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要: 隨著安防需求的日益增長,人群異常行為檢測已經成為計算機視覺的研究熱點。人群異常行為檢測旨在對監控視頻中行人的行為進行建模和分析,區分出人群中的正常行為和異常行為,及時發現災難和意外事件。文中對基于深度學習的人群異常行為檢測算法進行了梳理總結。首先,針對人群異常行為檢測任務及其現狀進行介紹;其次,重點探討卷積神經網絡、自編碼網絡和生成對抗網絡在人群異常行為檢測任務中的研究進展;然后,列舉該領域常用的數據集,并比較和分析了深度學習方法在UCSD行人數據集上的性能;最后,總結人群異常行為檢測的任務難點,并對該領域的未來發展趨勢進行了展望。

//www.jsjkx.com/CN/10.11896/jsjkx.201100015

付費5元查看完整內容

相關內容

醫學影像分割是計算機輔助診斷中的一項基礎且關鍵的任務,目的在于從像素級別準確識別出目標器官、組織或病變區域。不同于自然場景下的圖像,醫學影像往往紋理復雜,同時受限于成像技術和成像設備,醫學影像噪聲大,邊界模糊而不易判斷。除此之外,對醫學影像進行標注極大依賴于醫療專家的認知和經驗,因此可用于訓練中的標注數據少且存在標注誤差。由于上述的醫學影像邊緣模糊不清、訓練數據較少和標注誤差較大等特點,基于傳統圖像分割算法搭建的輔助診斷系統難以滿足臨床應用的要求。近年來隨著卷積神經網絡(CNN)在計算機視覺和自然語言處理領域的廣泛應用,基于深度學習的醫學影像分割算法取得了極大的成功。首先概述了近幾年基于深度學習的醫學影像分割的研究進展,包括這些醫學影像分割算法的基本結構、目標函數和優化方法。隨后針對醫學影像標注數據有限的問題,對目前半監督條件下醫學影像分割的主流工作進行了整理歸納和分析。此外,還介紹了針對標注誤差進行不確定度分析的相關工作。最后,總結分析了深度學習醫學影像分割的特點并展望了未來的研究趨勢。

//www.joca.cn/CN/abstract/abstract24596.shtml

付費5元查看完整內容

新聞推薦(NR)可以有效緩解新聞信息過載,是當今人們獲取新聞資訊的重要方式,而深度學習(DL)成為近年來促進新聞推薦發展的主流技術,使新聞推薦的效果得到顯著提升,受到研究者們的廣泛關注。主要對基于深度學習的新聞推薦方法研究現狀進行分類梳理和分析歸納。根據對新聞推薦的核心對象——用戶和新聞的建模思路不同,將基于深度學習的新聞推薦方法分為“兩段式”方法、“融合式”方法和“協同式”方法三類。在每類方法中,根據建模過程中的具體子任務或基于的數據組織結構進行更進一步細分,對代表性模型進行分析介紹,評價其優點和局限性等,并詳細總結每類方法的特點和優缺點。另外還介紹了新聞推薦中常用數據集、基線算法和性能評價指標,最后分析展望了該領域未來可能的研究方向及發展趨勢。

//fcst.ceaj.org/CN/abstract/abstract2715.shtml

付費5元查看完整內容

精準地預判網絡流量變化趨勢可以幫助運營商準確預估網絡的使用情況,合理分配并高效利用網絡資源,以滿足日益增長且多樣化的用戶需求。以深度學習算法在網絡流量預測領域的進展為線索,闡述了網絡流量預測的評價指標和目前公開的網絡流量數據集及應用,具體分析了網絡流量預測中常用的深度信念網絡、卷積神經網絡、循環神經網絡和長短時記憶網絡共四種深度學習方法,并重點介紹了近年來針對不同問題所提出的改進神經網絡模型,總結了各模型特點及應用場景。最后對網絡流量預測未來發展進行了展望。

//cea.ceaj.org/CN/abstract/abstract39601.shtml

付費5元查看完整內容

因果關系抽取是自然語言處理(NLP)中的一種關系抽取任務,它通過構造事件圖來挖掘文本中具有因果關系的事件對,已經在金融、安全、生物等領域的應用中發揮重要作用。首先,介紹了事件抽取和因果關系等概念,并介紹了因果關系抽取主流方法的演變和常用數據集;然后,列舉了當前主流的因果關系抽取模型,并且在分別對基于流水線的模型和聯合抽取模型進行詳細分析的基礎上,對比了各種方法和模型的優缺點;此外,對各模型的實驗性能及相關實驗數據進行了歸納分析;最后,給出了當前的因果關系抽取的研究難點和未來的重點研究方向。

//www.joca.cn/CN/abstract/abstract24491.shtml

付費5元查看完整內容

小目標檢測一直是目標檢測領域中的熱點和難點,其主要挑戰是小目標像素少,難以提取有效的特征信息.近年來,隨著深度學習理論和技術的快速發展,基于深度學習的小目標檢測取得了較大進展,研究者從網絡結構、訓練策略、數據處理等方面入手,提出了一系列用于提高小目標檢測性能的方法.該文對基于深度學習的小目標檢測方法進行詳細綜述,按照方法原理將現有的小目標檢測方法分為基于多尺度預測、基于數據增強技術、基于提高特征分辨率、基于上下文信息,以及基于新的主干網絡和訓練策略等5類方法,全面分析總結基于深度學習的小目標檢測方法的研究現狀和最新進展,對比分析這些方法的特點和性能,并介紹常用的小目標檢測數據集.在總體梳理小目標檢測方法的研究進展的基礎上,對未來的研究方向進行展望.

//journal.bjut.edu.cn/article/2021/0254-0037/20210310.html

付費5元查看完整內容

行人檢測技術在智能交通系統,智能安防監控等領域表現出了極高的應用價值,已經成為計算機視覺領域的重要研究方向之一。得益于深度學習的飛速發展,基于深度卷積神經網絡的通用目標檢測模型被不斷擴展應用到行人檢測領域,并取得了良好的性能。但是由于行人目標內在的特殊性、復雜性,特別是考慮到復雜場景下的行人遮擋、尺度變化等問題,深度學習方法也面臨著嚴峻的挑戰。本文針對上述問題,以基于深度學習的行人檢測技術為研究對象,在充分調研文獻的基礎上,分別從基于錨點框、基于無錨點框以及通用技術改進(例如損失函數,非極大值抑制等)三個角度,對各類行人檢測算法進行細分,并選取具有代表性的方法進行詳細介紹和對比分析。此外,本文對行人檢測的通用數據集進行了詳細的介紹,對該領域先進算法的性能進行了對比分析,對行人檢測中待解決的問題與未來的研究方向做出預測和展望。

//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2020&journal_id=jig

付費5元查看完整內容

單幅圖像超分辨率重建是計算機視覺領域上的一個重要問題, 在安防視頻監控、飛機航拍以及衛星遙感等方面具有重要的研究意義和應用價值. 近年來, 深度學習在圖像分類、檢測、識別等諸多領域中取得了突破性進展, 也推動著圖像超分辨率重建技術的發展. 本文首先介紹單幅圖像超分辨率重建的常用公共圖像數據集; 然后重點闡述基于深度學習的單幅圖像超分辨率重建方向的創新與進展; 最后討論了單幅圖像超分辨率重建方向上存在的困難和挑戰, 并對未來的發展趨勢進行了思考與展望.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190859

付費5元查看完整內容

摘要: 圖像補全是圖像處理的一個研究領域,為有物體遮擋以及圖像關鍵部分缺失狀況下的圖像識別提供了解決方案,應用領域非常廣泛,受到了人們的關注。經深度學習方法補全的圖像具有更高的圖像分辨率和可靠性,逐漸成為圖像補全的主流方法之一。文中針對圖像補全領域的主要問題,介紹了相關深度學習方法的基本原理和經典算法,系統而漸進地剖析了2010年以來有代表性的圖像補全方法,探討了基于深度學習的圖像補全在不同領域的具體應用,并列舉了該研究領域目前面臨的幾個問題。

//www.jsjkx.com/CN/10.11896/jsjkx.200600009

付費5元查看完整內容

近年來,隨著web2.0的普及,使用圖挖掘技術進行異常檢測受到人們越來越多的關注.圖異常檢測在欺詐檢測、入侵檢測、虛假投票、僵尸粉絲分析等領域發揮著重要作用.本文在廣泛調研國內外大量文獻以及最新科研成果的基礎上,按照數據表示形式將面向圖的異常檢測劃分成靜態圖上的異常檢測與動態圖上的異常檢測兩大類,進一步按照異常類型將靜態圖上的異常分為孤立個體異常和群組異常檢測兩種類別,動態圖上的異常分為孤立個體異常、群體異常以及事件異常三種類型.對每一類異常檢測方法當前的研究進展加以介紹,對每種異常檢測算法的基本思想、優缺點進行分析、對比,總結面向圖的異常檢測的關鍵技術、常用框架、應用領域、常用數據集以及性能評估方法,并對未來可能的發展趨勢進行展望.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6100&flag=1

付費5元查看完整內容

摘要:近年來,基于深度學習的表面缺陷檢測技術廣泛應用在各種工業場景中.本文對近年來基于深度學習的表面缺陷檢測方法進行了梳理,根據數據標簽的不同將其分為全監督學習模型方法、無監督學習模型方法和其他方法三大類,并對各種典型方法進一步細分歸類和對比分析,總結了每種方法的優缺點和應用場景.本文探討了表面缺陷檢測中三個關鍵問題,介紹了工業表面缺陷常用數據集.最后,對表面缺陷檢測的未來發展趨勢進行了展望.

付費5元查看完整內容
北京阿比特科技有限公司