亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

解決冷啟動問題對于為新用戶和新項目提供有意義的推薦結果是必不可少的。在稀疏觀察數據下,未觀察到的用戶物品對也是提取潛在用戶信息需求的重要來源。目前的研究大多利用未觀察到的樣本來提取負信號。然而,這種優化策略可能會導致對已經受歡迎的項目的偏見結果,因為它會頻繁地將新項目作為負面實例處理。在本研究中,我們通過適當利用未觀察到的樣本來解決新用戶/物品的冷啟動問題。我們提出了一種基于圖神經網絡的知識圖譜感知推薦器,該推薦器通過偽標注來增加標注樣本。我們的方法積極地使用未觀察到的樣本作為積極的實例。為了避免對所有可能的用戶和項目進行詳盡的標簽分配,我們利用KG為每個用戶選擇可能為正的項目。我們還采用了改進的負抽樣策略,從而抑制受歡迎偏見的加劇。通過實驗,我們證明了在各種場景下,我們的方法比最先進的KG感知推薦器都有改進; 特別是,我們的方法成功地改善了冷啟動用戶/項目的推薦性能。

付費5元查看完整內容

相關內容

推薦系統,是指根據用戶的習慣、偏好或興趣,從不斷到來的大規模信息中識別滿足用戶興趣的信息的過程。推薦推薦任務中的信息往往稱為物品(Item)。根據具體應用背景的不同,這些物品可以是新聞、電影、音樂、廣告、商品等各種對象。推薦系統利用電子商務網站向客戶提供商品信息和建議,幫助用戶決定應該購買什么產品,模擬銷售人員幫助客戶完成購買過程。個性化推薦是根據用戶的興趣特點和購買行為,向用戶推薦用戶感興趣的信息和商品。隨著電子商務規模的不斷擴大,商品個數和種類快速增長,顧客需要花費大量的時間才能找到自己想買的商品。這種瀏覽大量無關的信息和產品過程無疑會使淹沒在信息過載問題中的消費者不斷流失。為了解決這些問題,個性化推薦系統應運而生。個性化推薦系統是建立在海量數據挖掘基礎上的一種高級商務智能平臺,以幫助電子商務網站為其顧客購物提供完全個性化的決策支持和信息服務。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

數據稀疏和冷啟動是當前推薦系統面臨的兩大挑戰. 以知識圖譜為表現形式的附加信息能夠在某種程度上緩解數據稀疏和冷啟動帶來的負面影響, 進而提高推薦的準確度. 本文綜述了最近提出的應用知識圖譜的推薦方法和系統, 并依據知識圖譜來源與構建方法、推薦系統利用知識圖譜的方式, 提出了應用知識圖譜的推薦方法和系統的分類框架, 進一步分析了本領域的研究難點. 本文還給出了文獻中常用的數據集. 最后討論了未來有價值的研究方向.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c200128

推薦系統推薦系統是一種向目標用戶建議可能感興趣物品的軟件工具. 隨著網絡與現實信息的爆炸式增長, 越來越多的在線服務商為用戶提供商品、音樂、電影等(以下統稱為物品)的推薦服務. 推薦系統能夠滿足用戶的個性化需求, 為在線服務商帶來巨大商業價值. 同時, 推薦方法與系統的研究促進了偏好挖掘、大數據處理、決策支持等領域的相關理論和實踐的飛速發展, 其學術價值也引起了廣泛的關注.

推薦系統面臨的重要挑戰主要是數據稀疏性問題和冷啟動問題. 數據稀疏問題指的是相對于數量龐大的用戶和物品, 僅有少量的物品獲得了用戶的評價或者購買, 難以據此獲得相似的用戶或相似的物品, 使得傳統推薦方法失效了. 冷啟動問題指的是系統由于并不知道新加入用戶的歷史行為, 無法給他們推薦物品, 同樣新加入的物品也由于沒有被用戶評價或購買過而無法被針對性的推薦.

推薦系統中通常利用附加信息來解決上述問題, 以提高性能. 附加信息(一般也稱上下文信息)分為顯式信息和隱式信息[1]. 顯式信息是通過諸如物理設備感知、用戶問詢、用戶主動設定等方式獲取的與用戶、物品相關聯的上下文信息. 隱式信息即利用已有數據或周圍環境間接獲取的一些上下文信息, 例如可根據用戶與系統的交互日志獲取時間上下文信息.

近年來, 利用以知識圖譜為表示形式的附加信息的推薦方法受到了學者們的關注. 知識圖譜最初用于提升搜索系統的性能[2], 刻畫了海量實體之間的多種關系, 具有網狀結構, 能夠用于推薦系統中來增強用戶、物品之間聯系的認知與解釋, 從而提高推薦準確度. 本文綜述了2015年~2019年發表在DLRS、RecSys、KDD、CIKM、NIPS、TIST、UMAP、SIGIR等會議和期刊中的利用知識圖譜的推薦方法的文獻, 共23篇. 在利用知識圖譜的推薦系統中, 通常首先將收集到的用戶信息、物品信息、在利用知識圖譜的推薦系統中, 通常首先將收集到的用戶信息、物品信息、用戶歷史行為等數據或者一些相關的外部數據表示成知識圖譜的形式. 然后, 設計推薦算法, 利用知識圖譜生成推薦. 此類推薦系統通常包含知識圖譜構建和利用知識圖譜產生推薦兩個環節. 本文根據這兩個環節中構建知識圖譜數據的不同來源, 以及推薦方法中利用知識圖譜信息的不同形式提出了分類框架, 并據此對相關文獻進行了分類綜述, 詳情請參看本文第三章. 與本文最為相關是文獻[3]. 該文獻綜述了2009年~2017年16篇利用知識圖譜的推薦方法的文獻. 本文在綜述的文章數量上超過了文獻[3]. 此外, 本文提出文獻分類框架能夠更好地覆蓋新提出的方法.

本文第一章介紹了利用知識圖譜的推薦方法的相關背景知識; 第二章對利用知識圖譜的推薦方法文獻進行分類與綜述; 第三章整理了目前常用的推薦系統數據集和知識圖譜數據集; 第四章、第五章分別討論了應用知識圖譜的推薦系統的研究難點與發展前景; 最后, 在第六章中對全文進行了總結.

付費5元查看完整內容

由于層次主題結構在海量文本語料庫中普遍存在,將文檔分類到給定的標簽層次結構直觀上很有吸引力。雖然相關研究在全監督層次文檔分類方面取得了令人滿意的效果,但通常需要大量的人工標注訓練數據,且只利用文本信息。但在很多領域,(1)標注代價很高,可以獲取的訓練樣本很少;(2)文檔伴隨元數據信息。因此,本文研究弱監管下如何整合標簽層次結構、元數據和文本信號進行文檔分類。我們開發了HiMeCat,一個基于嵌入的生成框架用于我們的任務。具體地說,我們提出了一種新的聯合表示學習模塊,它允許對類別相關性、元數據信息和文本語義進行同步建模,我們的實驗證明了HiMeCat在Baseline上的持續改進,并驗證了我們的表示學習和數據增強模塊的貢獻。

//www.zhuanzhi.ai/paper/78629167dfc41e4a21cb8484c0b86e0a

付費5元查看完整內容

近年來,許多在線平臺(如亞馬遜和淘寶網)都取得了巨大成功。在線平臺上的用戶行為是動態變化的,且會隨著時間而發展。序列推薦的主要目標就是從用戶歷史行為中捕捉關鍵的信息,并基于此準確表征用戶興趣進而提供高質量的推薦[1,2,3]。已有研究人員基于深度學習提出很多序列推薦的模型,此外還有研究人員結合豐富的上下文信息(如商品屬性)一起進行用戶興趣建模,實驗表明,上下文信息對于提高推薦效果很重要。

盡管現有方法在一定程度上已被證明有效,但它們有兩個可能會影響推薦效果的缺陷。首先,他們主要依靠“下一個物品推薦”(Next Item Prediction)損失函數來學習整個模型。在使用上下文信息時,也仍然只使用這一個優化目標。已有研究表明,這種優化方法很容易受到數據稀疏性等問題的影響。此外,它們過分強調最終的推薦性能,而上下文數據和序列數據之間的關聯或融合卻沒有在數據表示中被很好地捕獲。多個領域的實驗結果表明[4,5,6],更有效的數據表示方法(例如,預先訓練的上下文信息嵌入)已成為改善現有模型或體系結構性能的關鍵因素。因此,有必要重新考慮學習范式并開發更有效的序列推薦系統。

為了解決上述問題,我們借鑒了自監督學習的思想來改進序列推薦的方法。自監督學習是一個新興的學習范式,旨在讓模型從原始數據的內在結構中學習。自監督學習的一般框架是首先從原始數據中構建新的監督信號,然后通過這些額外設計的優化目標來對模型進行預訓練。如之前討論的,有限的監督信號和低效的數據表示是現有的神經序列推薦方法的兩個主要問題。幸運的是,自監督學習似乎為解決這兩個問題提供了解決方案:它通過內在數據相關性來設計輔助訓練目標以提供豐富的自監督信號,并通過預訓練的方法增強數據表示。對于序列推薦,上下文信息以不同的形式存在,包括物品,屬性,子序列和序列。開發統一表征這種數據相關性的方法并不容易。對于這個問題,我們借鑒最近提出的互信息最大化(Mutual Information Maximization, MIM)方法,其已被證明可以有效捕獲原始輸入的不同視圖(或部分)之間的相關性。

基于以上,我們提出了一種基于自監督學習方法的序列推薦模型(Self-Supervised Learning Sequential Recommendation, S3-Rec)。基于自注意力機制的體系結構[3],我們首先使用設計的自監督訓練目標對模型進行預訓練,然后根據推薦任務對模型進行微調。此工作的主要新穎之處在預訓練階段,我們基于MIM的統一形式精心設計了四個自監督的優化目標,分別用于捕獲物品-屬性間,序列-物品間,序列-屬性間和序列-子序列間的相關性。因此,S3-Rec能夠以統一的方式來表征不同粒度級別或不同形式數據之間的相關性,并且也可以靈活地適應新的數據類型或關聯模式。通過這樣的預訓練方法,我們可以有效地融合各種上下文數據,并學習屬性感知的上下文化的數據表示。最后,將學習到的表示輸入推薦模型,并根據推薦任務對其進行優化。

為了驗證S3-Rec的有效性,我們在6個不同領域的真實數據集上進行了充分的實驗。實驗結果表明,S3-Rec超過了目前的SOTA,并且在訓練數據非常有限的情況表現得尤為明顯。另外S3-Rec還可以有效得適應其他類別的神經體系結構,例如GRU[1]和CNN[2]。我們的主要貢獻概括如下:(1)據我們所知,這是首次采用MIM進行自監督學習來改善序列推薦任務的工作;(2)我們提出了4個自監督優化目標來最大化不同形式或粒度的上下文信息的互信息;(3)在6個數據集上的充分實驗證明了我們方法的有效性。

付費5元查看完整內容

在各種在線應用中,推薦系統在解決信息爆炸問題、增強用戶體驗方面顯示出了巨大的潛力。為了解決推薦系統中的數據稀疏性和冷啟動問題,研究人員提出了基于知識圖譜的推薦,利用有價值的外部知識作為輔助信息。然而,這些研究大多忽略了多模態知識圖譜(MMKGs)中數據類型的多樣性(如文本和圖像)。為了更好地利用多模態知識,提出了一種多模態知識圖譜注意力網絡(MKGAT)。具體地說,我們提出了一種多模態圖注意力技術,在MMKGs上進行信息傳播,然后使用所得到的聚合嵌入表示進行推薦。據我們所知,這是第一個將多模態知識圖譜引入推薦系統的工作。我們在來自不同領域的兩個真實數據集上進行了大量的實驗,實驗結果表明我們的模型MKGAT能夠成功地應用MMKGs來提高推薦系統的質量。

付費5元查看完整內容

知識圖譜被廣泛用于提高推薦準確度。知識圖譜上的多跳用戶-物品連接還提供了關于為什么推薦某個項的推理。然而,路徑推理是一個復雜的組合優化問題。傳統的推薦方法通常采用蠻力方法來尋找可行路徑,這導致了與可解釋性和收斂性相關的問題。在本文中,我們通過更好地監督尋路過程來解決這些問題。關鍵思想是用最小的標記努力提取不完美的路徑演示,并有效地利用這些演示來指導尋路。特別地,我們設計了一個基于演示的知識圖推理框架用于可解釋推薦。我們還提出了一個反面的actor批評家(ADAC)模型用于演示導向的尋路。在三個真實基準上的實驗表明,我們的方法比最先進的基準更快地收斂,并且具有更好的推薦精度和可解釋性。

付費5元查看完整內容

知識圖譜補全(KGC)任務的目的是自動推斷知識圖譜(KG)中缺失的事實信息。在本文中,我們采用了一個新的視角,旨在利用豐富的用戶-項目交互數據(簡稱用戶交互數據)來改進KGC任務。我們的工作靈感來自于許多KG實體對應于應用程序系統中的在線項目的觀察。然而,這兩種數據源具有非常不同的內在特性,使用簡單的融合策略可能會影響原始的性能。

為了解決這一挑戰,我們提出了一種利用KGC任務的用戶交互數據的新穎的對抗性學習方法。我們的生成器是與用戶交互數據隔離的,用于提高鑒別器的性能。鑒別器將從用戶交互數據中學習到的有用信息作為輸入,逐步增強評價能力,以識別生成器生成的虛假樣本。為了發現用戶的隱式實體偏好,我們設計了一種基于圖神經網絡的協同學習算法,該算法將與鑒別器共同優化。這種方法可以有效地緩解KGC任務的數據異構性和語義復雜性問題。在三個真實數據集上的大量實驗證明了我們的方法在KGC任務上的有效性。

付費5元查看完整內容

【導讀】近來,知識圖譜用于推薦系統是關注的焦點,能夠提升推薦系統的準確性與可解釋性。如何將知識圖譜融入到推薦系統呢? 最近中科院計算所百度微軟等學者最新綜述論文《A Survey on Knowledge Graph-Based Recommender Systems》,闡述對基于知識圖譜的推薦系統進行了系統的研究。

地址://www.zhuanzhi.ai/paper/90d0d696560bc88ea93f629b478a2128

為了解決各種在線應用中的信息爆炸問題,提高用戶體驗,推薦系統被提出來進行用戶偏好建模。盡管人們已經做出了許多努力來實現更加個性化的推薦,但是推薦系統仍然面臨著一些挑戰,比如數據稀疏性和冷啟動。近年來,以知識圖譜作為邊信息生成推薦引起了人們的極大興趣。這種方法不僅可以緩解上述問題,提供更準確的推薦,而且可以對推薦的項目進行解釋。本文對基于知識圖譜的推薦系統進行了系統的研究。我們收集了這一領域最近發表的論文,并從兩個角度進行了總結。一方面,我們通過研究論文如何利用知識圖譜進行準確和可解釋的推薦來研究所提出的算法。另一方面,我們介紹了這些工作中使用的數據集。最后,我們提出了幾個可能的研究方向。

概述

隨著互聯網的快速發展,數據量呈指數級增長。由于信息量過大,用戶在眾多的選擇中很難找到自己感興趣的。為了提高用戶體驗,推薦系統已被應用于音樂推薦[1]、電影推薦[2]、網上購物[3]等場景。

推薦算法是推薦系統的核心要素,主要分為基于協同過濾(CF)的推薦系統、基于內容的推薦系統和混合推薦系統[4]。基于CF的推薦基于用戶或交互數據項的相似度來建模用戶偏好,而基于內容的推薦利用了物品項的內容特征。基于CF的推薦系統得到了廣泛的應用,因為它可以有效地捕獲用戶的偏好,并且可以很容易地在多個場景中實現,而不需要在基于內容的推薦系統[5]、[6]中提取特征。然而,基于CF的推薦存在數據稀疏性和冷啟動問題[6]。為了解決這些問題,提出了混合推薦系統來統一交互級相似度和內容級相似度。在這個過程中,我們探索了多種類型的邊信息,如項目屬性[7]、[8]、項目評論[9]、[10],以及用戶的社交網絡[11]、[12]。

近年來,將知識圖譜(KG)作為邊信息引入推薦系統引起了研究者的關注。KG是一個異構圖,其中節點作為實體,邊表示實體之間的關系。可以將項目及其屬性映射到KG中,以了解項目[2]之間的相互關系。此外,還可以將用戶和用戶端信息集成到KG中,從而更準確地捕捉用戶與物品之間的關系以及用戶偏好。圖1是一個基于KG的推薦示例,其中電影“Avatar”和“Blood Diamond”被推薦給Bob。此KG包含用戶、電影、演員、導演和類型作為實體,而交互、歸屬、表演、導演和友誼是實體之間的關系。利用KG,電影與用戶之間存在不同的潛關系,有助于提高推薦的精度。基于知識的推薦系統的另一個優點是推薦結果[14]的可解釋性。在同一個示例中,根據user-item圖中的關系序列可以知道向Bob推薦這兩部電影的原因。例如,推薦《阿凡達》的一個原因是,《阿凡達》與鮑勃之前看過的《星際穿越》屬于同一類型。最近提出了多種KGs,如Freebase[15]、DBpedia[16]、YAGO[17]、谷歌的知識圖譜[18],方便了KGs的推薦構建。

圖1 一個基于kg的推薦的例子

本次綜述的目的是提供一個全面的文獻綜述利用KGs作為側信息的推薦系統。在我們的研究過程中,我們發現現有的基于KG的推薦系統以三種方式應用KGs: 基于嵌入的方法、基于路徑的方法和統一的方法。我們詳細說明了這些方法的異同。除了更準確的推薦之外,基于KG的推薦的另一個好處是可解釋性。我們討論了不同的作品如何使用KG來進行可解釋的推薦。此外,根據我們的綜述,我們發現KGs在多個場景中充當了輔助信息,包括電影、書籍、新聞、產品、興趣點(POIs)、音樂和社交平臺的推薦。我們收集最近的作品,根據應用程序對它們進行分類,并收集在這些作品中評估的數據集。

本次綜述的組織如下: 在第二部分,我們介紹了KGs和推薦系統的基礎;在第3節中,我們介紹了本文中使用的符號和概念;在第4節和第5節中,我們分別從方法和評價數據集的角度對基于知識的推薦系統進行了綜述;第六部分提出了該領域的一些潛在研究方向;最后,我們在第7節總結了這次調查。

術語概念

圖2 常用知識圖譜集合

圖3 符號

知識圖譜推薦系統方法

Embedding-based方法

基于嵌入的方法通常直接使用來自KG的信息來豐富項目或用戶的表示。為了利用KG信息,需要使用知識圖嵌入(KGE)算法將KG編碼為低秩嵌入。KGE算法可分為兩類[98]:翻譯距離模型,如TransE[99]、TransH[100]、TransR[101]、TransD[102]等;語義匹配模型,如DistMult[103]等。

根據KG中是否包含用戶,可以將基于嵌入的方法分為兩個類。在第一種方法中,KGs由項目及其相關屬性構成,這些屬性是從數據集或外部知識庫中提取的。我們將這樣的圖命名為項目圖。注意,用戶不包括在這樣的項目圖中。遵循這一策略的論文利用知識圖嵌入(KGE)算法對圖進行編碼,以更全面地表示項目,然后將項目側信息集成到推薦框架中。其大意可以如下所示。

另一種embedding-based方法直接建立user-item圖,用戶,項目,以及相關屬性函數作為節點。在用戶-項目圖中,屬性級關系(品牌、類別等)和用戶級關系(共同購買、共同查看等)都是邊。

Path-based Methods

基于路徑的方法構建一個用戶-項目圖,并利用圖中實體的連接模式進行推薦。基于路徑的方法在2013年就已經開發出來了,傳統的論文將這種方法稱為HIN中的推薦方法。通常,這些模型利用用戶和/或項的連接性相似性來增強推薦。

統一方法

基于嵌入的方法利用KG中用戶/項的語義表示進行推薦,而基于路徑的方法使用語義連接信息,并且兩種方法都只利用圖中信息的一個方面。為了更好地利用KG中的信息,提出了將實體和關系的語義表示和連通性信息結合起來的統一方法。統一的方法是基于嵌入傳播的思想。這些方法以KG中的連接結構為指導,對實體表示進行細化。

總結:

基于嵌入的方法使用KGE方法對KG(項目圖或用戶-項目圖)進行預處理,以獲得實體和關系的嵌入,并將其進一步集成到推薦框架中。然而,這種方法忽略了圖中信息的連通性模式,很少有文獻能夠給出有原因的推薦結果。基于路徑的方法利用用戶-項圖,通過預先定義元路徑或自動挖掘連接模式來發現項的路徑級相似性。基于路徑的方法還可以為用戶提供對結果的解釋。將基于嵌入的方法與基于路徑的方法相結合,充分利用雙方的信息是當前的研究趨勢。此外,統一的方法還具有解釋推薦過程的能力。

圖4 收集論文表。在表格中,Emb代表基于嵌入的方法,Uni代表統一方法,Att’代表注意力機制,’RL’代表強化學習,’AE’代表自動編碼器,’MF’代表矩陣分解。

代表數據集

圖5 不同應用場景和相應論文的數據集集合

未來方向

在以上幾節中,我們從更準確的推薦和可解釋性方面展示了基于知識的推薦系統的優勢。雖然已經提出了許多利用KG作為側信息進行推薦的新模型,但仍然存在一些改進的機會。在這一部分中,我們概述并討論了一些未來的研究方向。

  • 動態推薦。雖然基于KG的推薦系統在GNN或GCN架構下取得了良好的性能,但是訓練過程是耗時的。因此,這些模型可以看作是靜態的偏好推薦。然而,在某些情況下,如網上購物、新聞推薦、Twitter和論壇,用戶的興趣會很快受到社會事件或朋友的影響。在這種情況下,使用靜態偏好建模的推薦可能不足以理解實時興趣。為了捕獲動態偏好,利用動態圖網絡可以是一個解決方案。最近,Song等[127]設計了一個動態圖-注意力網絡,通過結合來自朋友的長期和短期興趣來捕捉用戶快速變化的興趣。按照這種方法,很自然地要集成其他類型的側信息,并構建一個KG來進行動態推薦。

  • 多任務學習。基于kg的推薦系統可以看作是圖中鏈接預測。因此,考慮到KG的性質,有可能提高基于圖的推薦的性能。例如,KG中可能存在缺失的事實,從而導致關系或實體的缺失。然而,用戶的偏好可能會被忽略,因為這些事實是缺失的,這可能會惡化推薦結果。[70]、[95]已經證明了聯合訓練KG完成模塊和推薦模塊以獲得更好的推薦是有效的。其他的工作利用多任務學習,將推薦模塊與KGE task[45]和item relation regulation task聯合訓練[73]。利用從其他kg相關任務(例如實體分類和解析)遷移知識來獲得更好的推薦性能,這是很有趣的。

  • 跨域推薦。最近,關于跨域推薦的研究已經出現。其動機是跨域的交互數據不相等。例如,在Amazon平臺上,圖書評級比其他域更密集。使用遷移學習技術,可以共享來自具有相對豐富數據的源域的交互數據,以便在目標域內進行更好的推薦。Zhang等[128]提出了一種基于矩陣的跨域推薦方法。后來,Zhao等人[129]引入了PPGN,將來自不同領域的用戶和產品放在一個圖中,并利用user item交互圖進行跨領域推薦。雖然PPGN的性能顯著優于SOTA,但是user item圖只包含交互關系,并不考慮用戶和項目之間的其他關系。通過將不同類型的用戶和項目端信息合并到用戶-項目交互圖中,以獲得更好的跨域推薦性能。

  • 知識增強語言表示。為了提高各種自然語言處理任務的性能,有將外部知識集成到語言表示模型中的趨勢。知識表示和文本表示可以相互細化。例如,Chen等人[130]提出了短文本分類的STCKA,利用來自KGs(如YAGO)的先驗知識,豐富了短文本的語義表征。Zhang等人[131]提出了ERNIE,該方法融合了Wikidata的知識,增強了語言的表示能力,該方法已被證明在關系分類任務中是有效的。雖然DKN模型[48]既利用了文本嵌入,也利用了新聞中的實體嵌入,但這兩種嵌入方式只是簡單地串聯起來,得到新聞的最終表現形式,而沒有考慮兩個向量之間的信息融合。因此,將知識增強的文本表示策略應用于新聞推薦任務和其他基于文本的推薦任務中,能夠更好地表示學習,從而獲得更準確的推薦結果,是很有前景的。

  • 知識圖譜嵌入方法。基于不同約束條件的KGE方法有兩種:翻譯距離模型和語義匹配模型。在本次綜述中,這兩種類型的KGE方法被用于三種基于KGE的推薦系統和推薦任務中。但是,還沒有全面的工作建議在什么情況下,包括數據源、推薦場景和模型架構,應該采用特定的KGE方法。因此,另一個研究方向是比較不同KGE方法在不同條件下的優勢。

  • 用戶端信息。目前,大多數基于KG的推薦系統都是通過合并項目側信息來構建圖的,而很少有模型考慮用戶側信息。然而,用戶側信息,如用戶網絡和用戶的人口統計信息,也可以很自然地集成到當前基于KGbased的推薦系統框架中。最近,Fan等人[132]使用GNN分別表示用戶-用戶社交網絡和用戶-項目交互圖,該方法在用戶社交信息方面優于傳統的基于cf的推薦系統。在我們最近的調查[96]中,一篇論文將用戶關系整合到圖表中,并展示了這種策略的有效性。因此,在KG中考慮用戶側信息可能是另一個研究方向。

付費5元查看完整內容

【導讀】新加坡國立大學的Xiang Wang、Tat-Seng Chua,以及來自中國科學技術大學的Xiangnan He在WSDM 2020會議上通過教程《Learning and Reasoning on Graph for Recommendation》介紹了基于圖學習和推理的推薦系統,涵蓋了基于隨機游走的推薦系統、基于網絡嵌入的推薦系統,基于圖神經網絡的推薦系統等內容。

Tutorial摘要:

推薦方法構建預測模型來估計用戶-項目交互的可能性。之前的模型在很大程度上遵循了一種通用的監督學習范式——將每個交互視為一個單獨的數據實例,并基于“信息孤島”進行預測。但是,這些方法忽略了數據實例之間的關系,這可能導致性能不佳,特別是在稀疏場景中。此外,建立在單獨數據實例上的模型很難展示推薦背后的原因,這使得推薦過程難以理解。

在本教程中,我們將從圖學習的角度重新討論推薦問題。用于推薦的公共數據源可以組織成圖,例如用戶-項目交互(二部圖)、社交網絡、項目知識圖(異構圖)等。這種基于圖的組織將孤立的數據實例連接起來,為開發高階連接帶來了好處,這些連接為協作過濾、基于內容的過濾、社會影響建模和知識感知推理編碼有意義的模式。隨著最近圖形神經網絡(GNNs)的成功,基于圖形的模型顯示了成為下一代推薦系統技術的潛力。本教程對基于圖的推薦學習方法進行了回顧,重點介紹了GNNs的最新發展和先進的推薦知識。通過在教程中介紹這一新興而有前景的領域,我們希望觀眾能夠對空間有更深刻的理解和準確的洞察,激發更多的想法和討論,促進技術的發展。

Tutorial大綱:

付費5元查看完整內容

元學習的研究越來越受到學者們的重視,從最初在圖像領域的研究逐漸拓展到其他領域,目前推薦系統領域也出現了相關的研究問題,本文介紹了5篇基于元學習的推薦系統相關論文,包括用戶冷啟動推薦、項目冷啟動推薦等。

  1. MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation

本文提出了一種新的推薦系統,解決了基于少量樣本物品來估計用戶偏好的冷啟動問題。為了確定用戶在冷啟動狀態下的偏好,現有的推薦系統,如Netflix,在啟動初向用戶提供物品選擇,我們稱這些物品為候選集。然后根據用戶選擇的物品做出推薦。以往的推薦研究有兩個局限性:(1) 只有少量物品交互行為的用戶推薦效果不佳,(2) 候選集合不足,無法識別用戶偏好。為了克服這兩個限制,我們提出了一種基于元學習的推薦系統MeLU。從元學習中,MeLU可以通過幾個例子快速地應用于新任務,通過幾個消費物品來估計新用戶的偏好。此外,我們提供了一個候選集合選擇策略,以確定自定義偏好估計的區分項目。我們用兩個基準數據集對MeLU進行了驗證,與兩個對比模型相比,該模型的平均絕對誤差至少降低了5.92%。我們還進行了用戶研究實驗來驗證選擇策略的有效性。

  1. Meta-Learning for User Cold-Start Recommendation 冷啟動問題是對實際推薦系統的長期挑戰。大多數現有的推薦算法依賴于大量的觀測數據,對于很少交互的推薦場景來說是脆弱的。本文用少樣本學習和元學習來解決這些問題。我們的方法是基于這樣一種見解,即從幾個例子中有一個很好的泛化,依賴于一個通用的模型初始化和一個有效的策略來使這個模型適應新出現的任務。為了實現這一點,我們將場景指定的學習與模型無關的序列元學習結合起來,并將它們統一到一個集成的端到端框架中,即場景指定的序列元學習者(或s^2 Meta)。我們的元學習器通過聚合來自各種預測任務的上下文信息來生成一個通用的初始模型,同時通過利用學習到的知識來有效地適應特定的任務。在各種現實世界數據集上的實驗表明,我們提出的模型可以在在線推薦任務中獲得對冷啟動問題的最好效果。

  2. Sequential Scenario-Specific Meta Learner for Online Recommendation

冷啟動問題是對實際推薦系統的長期挑戰。大多數現有的推薦算法依賴于大量的觀測數據,對于很少交互的推薦場景來說是脆弱的。本文用少樣本學習和元學習來解決這些問題。我們的方法是基于這樣一種見解,即從幾個例子中有一個很好的泛化,依賴于一個通用的模型初始化和一個有效的策略來使這個模型適應新出現的任務。為了實現這一點,我們將場景指定的學習與模型無關的序列元學習結合起來,并將它們統一到一個集成的端到端框架中,即場景指定的序列元學習者(或s^2 Meta)。我們的元學習器通過聚合來自各種預測任務的上下文信息來生成一個通用的初始模型,同時通過利用學習到的知識來有效地適應特定的任務。在各種現實世界數據集上的實驗表明,我們提出的模型可以在在線推薦任務中獲得對冷啟動問題的最好效果。

  1. A Meta-Learning Perspective on Cold-Start Recommendations for Items 矩陣分解(M F)是最流行的項目(item)推薦技術之一,但目前存在嚴重的冷啟動問題。項目冷啟動問題在一些持續輸出項目的平臺中顯得特別尖銳(比如Tweet推薦)。在本文中,我們提出了一種元學習策略,以解決新項目不斷產生時的項目冷啟動問題。我們提出了兩種深度神經網絡體系結構,實現了我們的元學習策略。第一個體系結構學習線性分類器,其權重由項目歷史決定,而第二個體系結構學習一個神經網絡。我們評估了我們在Tweet推薦的現實問題上的效果,實驗證明了我們提出的算法大大超過了MF基線方法。

  2. One-at-a-time: A Meta-Learning Recommender-System for Recommendation-Algorithm Selection on Micro Level

推薦算法的有效性通常用評價指標來評估,如均方根誤差、F1或點擊率CTR,在整個數據集上計算。最好的算法通常是基于這些總體度量來選擇的,然而,對于所有用戶、項目和上下文來說并沒有一個單獨的最佳算法。因此,基于總體評價結果選擇單一算法并不是最優的。在本文中,我們提出了一種基于元學習的推薦方法,其目的是為每個用戶-項目對選擇最佳算法。我們使用MovieLens 100K和1m數據集來評估我們的方法。我們的方法(RMSE,100K:0.973;1M:0.908)沒有優于單個的最佳算法SVD++(RMSE,100k:0.942;1M:0.887)。我們還探索了元學習者之間的區別,他們在每個實例(微級別),每個數據子集(中級)和每個數據集(全局級別)上進行操作。評估表明,與使用的總體最佳算法相比,一個假設完美的微級元學習器將提高RMSE 25.5%。

付費5元查看完整內容
北京阿比特科技有限公司