亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在各種在線應用中,推薦系統在解決信息爆炸問題、增強用戶體驗方面顯示出了巨大的潛力。為了解決推薦系統中的數據稀疏性和冷啟動問題,研究人員提出了基于知識圖譜的推薦,利用有價值的外部知識作為輔助信息。然而,這些研究大多忽略了多模態知識圖譜(MMKGs)中數據類型的多樣性(如文本和圖像)。為了更好地利用多模態知識,提出了一種多模態知識圖譜注意力網絡(MKGAT)。具體地說,我們提出了一種多模態圖注意力技術,在MMKGs上進行信息傳播,然后使用所得到的聚合嵌入表示進行推薦。據我們所知,這是第一個將多模態知識圖譜引入推薦系統的工作。我們在來自不同領域的兩個真實數據集上進行了大量的實驗,實驗結果表明我們的模型MKGAT能夠成功地應用MMKGs來提高推薦系統的質量。

付費5元查看完整內容

相關內容

現有的基于評論的推薦模型主要從一組評論中學習長期用戶和項目表示。由于忽略了評論豐富的側面信息,這些模型存在兩個缺點:1)不能捕捉評論中反映的用戶偏好和條目特征的短期變化,2)不能準確地模擬來自評論的高階用戶-條目協作信號。為了克服這些限制,我們提出了一種名為集序列圖(SSG)的多視圖方法,通過引入兩個額外的利用審查的視圖:序列和圖,來擴充現有的單視圖(即集的視圖)方法。特別地,對于分別以集合、序列和圖的形式組織的評審,我們設計了一個三向編碼器體系結構,它聯合捕獲用戶和項目的長期(集合)、短期(序列)和協作(圖)特性,以供推薦。對于序列編碼器,我們提出了一個短期優先注意力網絡,明確地考慮順序和個性化的時間間隔審查。針對圖碼編碼器,我們設計了一種新穎的回顧感知圖注意網絡來建模用戶-項目圖中的高階多方面關系。為了消除捕獲特性中潛在的冗余,我們的融合模塊使用了跨視圖去關系機制,以鼓勵從多個視圖進行不同的表示以進行集成。在公共數據集上的實驗表明,SSG顯著優于最先進的方法。

//www.microsoft.com/en-us/research/publication/set-sequence-graph-a-multi-view-approach-towards-exploiting-reviews-for-recommendation/

付費5元查看完整內容

在信息過載的時代,個性化推薦系統對于輔助用戶決策具有重要意義。同時,對推薦的解釋進一步幫助用戶更好地了解被推薦的項目,從而做出知情的選擇,這就使得可解釋的推薦研究變得非常重要。基于文本句子的解釋由于能夠向用戶傳遞豐富的信息而成為推薦系統的一種重要的解釋形式。然而,現有的句子解釋生成方法要么局限于預定義的句子模板,這限制了句子的表現力,要么選擇自由風格的句子生成,這使得句子質量難以控制。為了同時提高句子表達能力和質量,我們提出了一種神經模板解釋生成框架,它通過從數據中學習句子模板,并生成評論特定特性的模板控制的句子,從而實現了兩方面的優點。在真實數據集上的實驗結果表明,NETE在句子質量和表達能力方面始終優于最新的解釋生成方法。通過對案例研究的進一步分析,也可以看出NETE在產生多樣化和可控解釋方面的優勢。

付費5元查看完整內容

//www.zhuanzhi.ai/paper/f89bf5e9ab6b630c51edddff406566f4

推薦系統在web應用中扮演著過濾大量信息和匹配用戶興趣的基礎角色。雖然許多人致力于開發各種場景下更有效的模型,但對于推薦系統可解釋性的探索卻處于滯后狀態。解釋可以幫助改善用戶體驗和發現系統缺陷。本文在正式引入與模型可解釋性相關的要素后,通過提高表示學習過程的透明度,提出了一種新的可解釋推薦模型。具體地說,為了克服傳統模型中的表示糾纏問題,我們修改了傳統的圖卷積來區分不同層次的信息。此外,每個表示向量被分解為若干段,其中每個段與數據中的一個語義方面相關。與之前的工作不同,在我們的模型中,因子發現和表示學習同時進行,我們能夠處理額外的屬性信息和知識。通過這種方式,該模型可以學習對用戶和項的可解釋和有意義的表示。與傳統方法需要在可解釋性和有效性之間進行權衡不同,我們所提出的可解釋模型在考慮了可解釋性后,其性能沒有受到負面影響。最后,通過綜合實驗驗證了模型的性能和解釋的可信度。

付費5元查看完整內容

將圖表示學習與多視圖數據(邊信息)相結合進行推薦是行業發展的趨勢。現有的方法大多可以歸類為多視圖表示融合;他們首先構建一個圖,然后將多視圖數據集成到圖中每個節點的一個緊湊表示中。然而,這些方法在工程和算法方面都引起了關注:1)多視圖數據在工業中是豐富的,信息量大,可能超過單個向量的容量,2)由于多視圖數據往往來自不同的分布,可能會引入歸納偏差。在本文中,我們使用一種多視圖表示對齊方法來解決這個問題。特別地,我們提出了一個多任務多視圖圖表示學習框架(M2GRL)來學習網絡規模推薦系統的多視圖圖的節點表示。M2GRL為每個單視圖數據構造一個圖,從多個圖中學習多個單獨的表示,并對跨視圖關系進行對齊。M2GRL選擇多任務學習范式,共同學習視圖內表示和跨視圖關系。此外,M2GRL利用同方差不確定性自適應調整訓練任務的權重損失。我們在淘寶上部署了M2GRL,并在570億個例子上訓練它。根據離線指標和在線A/B測試,M2GRL的性能顯著優于其他最先進的算法。淘寶多樣性推薦的進一步探索表明了利用所產生的多種表示的有效性,我們認為這對于不同焦點的行業推薦任務是一個很有前景的方向。

付費5元查看完整內容

正確處理丟失的數據是推薦中的一個基本挑戰。目前的工作大多是對未觀測數據進行負采樣,為推薦模型的訓練提供負信號。然而,現有的負采樣策略,無論是靜態的還是自適應的,都不足以產生高質量的負采樣——既能提供模型訓練的信息,又能反映用戶的真實需求。在這項工作中,我們假設項目知識圖譜(KG),它提供了豐富的項目和KG實體之間的關系,可以用來推斷信息和事實的陰性樣本。為此,我們提出了一種新的負采樣模型——知識圖譜策略網絡(KGPolicy),它作為一種強化學習代理來探索高質量的負樣本。具體來說,通過我們設計的探索操作,它從目標的正交互中導航,自適應地接收到知識感知的負信號,最終產生一個潛在的負項來訓練推薦器。我們在一個配備了KGPolicy的矩陣分解(MF)模型上進行了測試,它在最先進的采樣方法(如DNS和IRGAN)和kg增強的推薦模型(如KGAT)上都取得了顯著的改進。進一步從不同的角度進行分析,為知識感知抽樣提供了思路。我們通過這個https URL發布代碼和數據集。

付費5元查看完整內容

【導讀】近來,知識圖譜用于推薦系統是關注的焦點,能夠提升推薦系統的準確性與可解釋性。如何將知識圖譜融入到推薦系統呢? 最近中科院計算所百度微軟等學者最新綜述論文《A Survey on Knowledge Graph-Based Recommender Systems》,闡述對基于知識圖譜的推薦系統進行了系統的研究。

地址://www.zhuanzhi.ai/paper/90d0d696560bc88ea93f629b478a2128

為了解決各種在線應用中的信息爆炸問題,提高用戶體驗,推薦系統被提出來進行用戶偏好建模。盡管人們已經做出了許多努力來實現更加個性化的推薦,但是推薦系統仍然面臨著一些挑戰,比如數據稀疏性和冷啟動。近年來,以知識圖譜作為邊信息生成推薦引起了人們的極大興趣。這種方法不僅可以緩解上述問題,提供更準確的推薦,而且可以對推薦的項目進行解釋。本文對基于知識圖譜的推薦系統進行了系統的研究。我們收集了這一領域最近發表的論文,并從兩個角度進行了總結。一方面,我們通過研究論文如何利用知識圖譜進行準確和可解釋的推薦來研究所提出的算法。另一方面,我們介紹了這些工作中使用的數據集。最后,我們提出了幾個可能的研究方向。

概述

隨著互聯網的快速發展,數據量呈指數級增長。由于信息量過大,用戶在眾多的選擇中很難找到自己感興趣的。為了提高用戶體驗,推薦系統已被應用于音樂推薦[1]、電影推薦[2]、網上購物[3]等場景。

推薦算法是推薦系統的核心要素,主要分為基于協同過濾(CF)的推薦系統、基于內容的推薦系統和混合推薦系統[4]。基于CF的推薦基于用戶或交互數據項的相似度來建模用戶偏好,而基于內容的推薦利用了物品項的內容特征。基于CF的推薦系統得到了廣泛的應用,因為它可以有效地捕獲用戶的偏好,并且可以很容易地在多個場景中實現,而不需要在基于內容的推薦系統[5]、[6]中提取特征。然而,基于CF的推薦存在數據稀疏性和冷啟動問題[6]。為了解決這些問題,提出了混合推薦系統來統一交互級相似度和內容級相似度。在這個過程中,我們探索了多種類型的邊信息,如項目屬性[7]、[8]、項目評論[9]、[10],以及用戶的社交網絡[11]、[12]。

近年來,將知識圖譜(KG)作為邊信息引入推薦系統引起了研究者的關注。KG是一個異構圖,其中節點作為實體,邊表示實體之間的關系。可以將項目及其屬性映射到KG中,以了解項目[2]之間的相互關系。此外,還可以將用戶和用戶端信息集成到KG中,從而更準確地捕捉用戶與物品之間的關系以及用戶偏好。圖1是一個基于KG的推薦示例,其中電影“Avatar”和“Blood Diamond”被推薦給Bob。此KG包含用戶、電影、演員、導演和類型作為實體,而交互、歸屬、表演、導演和友誼是實體之間的關系。利用KG,電影與用戶之間存在不同的潛關系,有助于提高推薦的精度。基于知識的推薦系統的另一個優點是推薦結果[14]的可解釋性。在同一個示例中,根據user-item圖中的關系序列可以知道向Bob推薦這兩部電影的原因。例如,推薦《阿凡達》的一個原因是,《阿凡達》與鮑勃之前看過的《星際穿越》屬于同一類型。最近提出了多種KGs,如Freebase[15]、DBpedia[16]、YAGO[17]、谷歌的知識圖譜[18],方便了KGs的推薦構建。

圖1 一個基于kg的推薦的例子

本次綜述的目的是提供一個全面的文獻綜述利用KGs作為側信息的推薦系統。在我們的研究過程中,我們發現現有的基于KG的推薦系統以三種方式應用KGs: 基于嵌入的方法、基于路徑的方法和統一的方法。我們詳細說明了這些方法的異同。除了更準確的推薦之外,基于KG的推薦的另一個好處是可解釋性。我們討論了不同的作品如何使用KG來進行可解釋的推薦。此外,根據我們的綜述,我們發現KGs在多個場景中充當了輔助信息,包括電影、書籍、新聞、產品、興趣點(POIs)、音樂和社交平臺的推薦。我們收集最近的作品,根據應用程序對它們進行分類,并收集在這些作品中評估的數據集。

本次綜述的組織如下: 在第二部分,我們介紹了KGs和推薦系統的基礎;在第3節中,我們介紹了本文中使用的符號和概念;在第4節和第5節中,我們分別從方法和評價數據集的角度對基于知識的推薦系統進行了綜述;第六部分提出了該領域的一些潛在研究方向;最后,我們在第7節總結了這次調查。

術語概念

圖2 常用知識圖譜集合

圖3 符號

知識圖譜推薦系統方法

Embedding-based方法

基于嵌入的方法通常直接使用來自KG的信息來豐富項目或用戶的表示。為了利用KG信息,需要使用知識圖嵌入(KGE)算法將KG編碼為低秩嵌入。KGE算法可分為兩類[98]:翻譯距離模型,如TransE[99]、TransH[100]、TransR[101]、TransD[102]等;語義匹配模型,如DistMult[103]等。

根據KG中是否包含用戶,可以將基于嵌入的方法分為兩個類。在第一種方法中,KGs由項目及其相關屬性構成,這些屬性是從數據集或外部知識庫中提取的。我們將這樣的圖命名為項目圖。注意,用戶不包括在這樣的項目圖中。遵循這一策略的論文利用知識圖嵌入(KGE)算法對圖進行編碼,以更全面地表示項目,然后將項目側信息集成到推薦框架中。其大意可以如下所示。

另一種embedding-based方法直接建立user-item圖,用戶,項目,以及相關屬性函數作為節點。在用戶-項目圖中,屬性級關系(品牌、類別等)和用戶級關系(共同購買、共同查看等)都是邊。

Path-based Methods

基于路徑的方法構建一個用戶-項目圖,并利用圖中實體的連接模式進行推薦。基于路徑的方法在2013年就已經開發出來了,傳統的論文將這種方法稱為HIN中的推薦方法。通常,這些模型利用用戶和/或項的連接性相似性來增強推薦。

統一方法

基于嵌入的方法利用KG中用戶/項的語義表示進行推薦,而基于路徑的方法使用語義連接信息,并且兩種方法都只利用圖中信息的一個方面。為了更好地利用KG中的信息,提出了將實體和關系的語義表示和連通性信息結合起來的統一方法。統一的方法是基于嵌入傳播的思想。這些方法以KG中的連接結構為指導,對實體表示進行細化。

總結:

基于嵌入的方法使用KGE方法對KG(項目圖或用戶-項目圖)進行預處理,以獲得實體和關系的嵌入,并將其進一步集成到推薦框架中。然而,這種方法忽略了圖中信息的連通性模式,很少有文獻能夠給出有原因的推薦結果。基于路徑的方法利用用戶-項圖,通過預先定義元路徑或自動挖掘連接模式來發現項的路徑級相似性。基于路徑的方法還可以為用戶提供對結果的解釋。將基于嵌入的方法與基于路徑的方法相結合,充分利用雙方的信息是當前的研究趨勢。此外,統一的方法還具有解釋推薦過程的能力。

圖4 收集論文表。在表格中,Emb代表基于嵌入的方法,Uni代表統一方法,Att’代表注意力機制,’RL’代表強化學習,’AE’代表自動編碼器,’MF’代表矩陣分解。

代表數據集

圖5 不同應用場景和相應論文的數據集集合

未來方向

在以上幾節中,我們從更準確的推薦和可解釋性方面展示了基于知識的推薦系統的優勢。雖然已經提出了許多利用KG作為側信息進行推薦的新模型,但仍然存在一些改進的機會。在這一部分中,我們概述并討論了一些未來的研究方向。

  • 動態推薦。雖然基于KG的推薦系統在GNN或GCN架構下取得了良好的性能,但是訓練過程是耗時的。因此,這些模型可以看作是靜態的偏好推薦。然而,在某些情況下,如網上購物、新聞推薦、Twitter和論壇,用戶的興趣會很快受到社會事件或朋友的影響。在這種情況下,使用靜態偏好建模的推薦可能不足以理解實時興趣。為了捕獲動態偏好,利用動態圖網絡可以是一個解決方案。最近,Song等[127]設計了一個動態圖-注意力網絡,通過結合來自朋友的長期和短期興趣來捕捉用戶快速變化的興趣。按照這種方法,很自然地要集成其他類型的側信息,并構建一個KG來進行動態推薦。

  • 多任務學習。基于kg的推薦系統可以看作是圖中鏈接預測。因此,考慮到KG的性質,有可能提高基于圖的推薦的性能。例如,KG中可能存在缺失的事實,從而導致關系或實體的缺失。然而,用戶的偏好可能會被忽略,因為這些事實是缺失的,這可能會惡化推薦結果。[70]、[95]已經證明了聯合訓練KG完成模塊和推薦模塊以獲得更好的推薦是有效的。其他的工作利用多任務學習,將推薦模塊與KGE task[45]和item relation regulation task聯合訓練[73]。利用從其他kg相關任務(例如實體分類和解析)遷移知識來獲得更好的推薦性能,這是很有趣的。

  • 跨域推薦。最近,關于跨域推薦的研究已經出現。其動機是跨域的交互數據不相等。例如,在Amazon平臺上,圖書評級比其他域更密集。使用遷移學習技術,可以共享來自具有相對豐富數據的源域的交互數據,以便在目標域內進行更好的推薦。Zhang等[128]提出了一種基于矩陣的跨域推薦方法。后來,Zhao等人[129]引入了PPGN,將來自不同領域的用戶和產品放在一個圖中,并利用user item交互圖進行跨領域推薦。雖然PPGN的性能顯著優于SOTA,但是user item圖只包含交互關系,并不考慮用戶和項目之間的其他關系。通過將不同類型的用戶和項目端信息合并到用戶-項目交互圖中,以獲得更好的跨域推薦性能。

  • 知識增強語言表示。為了提高各種自然語言處理任務的性能,有將外部知識集成到語言表示模型中的趨勢。知識表示和文本表示可以相互細化。例如,Chen等人[130]提出了短文本分類的STCKA,利用來自KGs(如YAGO)的先驗知識,豐富了短文本的語義表征。Zhang等人[131]提出了ERNIE,該方法融合了Wikidata的知識,增強了語言的表示能力,該方法已被證明在關系分類任務中是有效的。雖然DKN模型[48]既利用了文本嵌入,也利用了新聞中的實體嵌入,但這兩種嵌入方式只是簡單地串聯起來,得到新聞的最終表現形式,而沒有考慮兩個向量之間的信息融合。因此,將知識增強的文本表示策略應用于新聞推薦任務和其他基于文本的推薦任務中,能夠更好地表示學習,從而獲得更準確的推薦結果,是很有前景的。

  • 知識圖譜嵌入方法。基于不同約束條件的KGE方法有兩種:翻譯距離模型和語義匹配模型。在本次綜述中,這兩種類型的KGE方法被用于三種基于KGE的推薦系統和推薦任務中。但是,還沒有全面的工作建議在什么情況下,包括數據源、推薦場景和模型架構,應該采用特定的KGE方法。因此,另一個研究方向是比較不同KGE方法在不同條件下的優勢。

  • 用戶端信息。目前,大多數基于KG的推薦系統都是通過合并項目側信息來構建圖的,而很少有模型考慮用戶側信息。然而,用戶側信息,如用戶網絡和用戶的人口統計信息,也可以很自然地集成到當前基于KGbased的推薦系統框架中。最近,Fan等人[132]使用GNN分別表示用戶-用戶社交網絡和用戶-項目交互圖,該方法在用戶社交信息方面優于傳統的基于cf的推薦系統。在我們最近的調查[96]中,一篇論文將用戶關系整合到圖表中,并展示了這種策略的有效性。因此,在KG中考慮用戶側信息可能是另一個研究方向。

付費5元查看完整內容

題目: A Survey on Knowledge Graph-Based Recommender Systems

摘要:

為了解決信息爆炸問題,提高用戶在各種在線應用中的體驗,人們開發了推薦系統來模擬用戶的偏好。盡管人們已經為更個性化的推薦做了很多努力,但是推薦系統仍然面臨著一些挑戰,如數據稀疏和冷啟動。近年來,以知識圖為輔助信息的推薦生成引起了人們的極大興趣。這種方法不僅可以緩解上述問題,使推薦更加準確,而且可以為推薦項目提供解釋。本文對基于知識圖的推薦系統進行了系統的研究。我們收集了最近在這一領域發表的論文,并從兩個角度對其進行了總結。一方面,我們通過研究論文如何利用知識圖進行精確和可解釋的推薦來研究所提出的算法。另一方面,我們介紹了這些工作中使用的數據集。最后,提出了該領域的幾個潛在研究方向。

付費5元查看完整內容

摘要:

推薦系統經常面對包含高度個性化的用戶歷史數據的異構數據集,單個模型無法為每個用戶提供最佳的推薦。我們在公共和私有數據集上觀察到這種普遍存在的現象,并解決了為每個用戶優化推薦質量的模型選擇問題。我們提出了一個元學習框架,以促進用戶級自適應模型選擇推薦系統。在該框架中,用來自所有用戶的數據對推薦器集合進行訓練,在此基礎上通過元學習對模型選擇器進行訓練,為具有特定用戶歷史數據的每個用戶選擇最佳模型。我們在兩個公共數據集和一個真實的生產數據集上進行了大量的實驗,證明我們提出的框架在AUC和LogLoss方面實現了對單個模型基線和樣本級模型選擇器的改進。特別是,這些改進可能會帶來巨大的利潤收益時,部署在網上推薦系統。

地址:

//arxiv.org/abs/2001.10378

付費5元查看完整內容

元學習的研究越來越受到學者們的重視,從最初在圖像領域的研究逐漸拓展到其他領域,目前推薦系統領域也出現了相關的研究問題,本文介紹了5篇基于元學習的推薦系統相關論文,包括用戶冷啟動推薦、項目冷啟動推薦等。

  1. MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation

本文提出了一種新的推薦系統,解決了基于少量樣本物品來估計用戶偏好的冷啟動問題。為了確定用戶在冷啟動狀態下的偏好,現有的推薦系統,如Netflix,在啟動初向用戶提供物品選擇,我們稱這些物品為候選集。然后根據用戶選擇的物品做出推薦。以往的推薦研究有兩個局限性:(1) 只有少量物品交互行為的用戶推薦效果不佳,(2) 候選集合不足,無法識別用戶偏好。為了克服這兩個限制,我們提出了一種基于元學習的推薦系統MeLU。從元學習中,MeLU可以通過幾個例子快速地應用于新任務,通過幾個消費物品來估計新用戶的偏好。此外,我們提供了一個候選集合選擇策略,以確定自定義偏好估計的區分項目。我們用兩個基準數據集對MeLU進行了驗證,與兩個對比模型相比,該模型的平均絕對誤差至少降低了5.92%。我們還進行了用戶研究實驗來驗證選擇策略的有效性。

  1. Meta-Learning for User Cold-Start Recommendation 冷啟動問題是對實際推薦系統的長期挑戰。大多數現有的推薦算法依賴于大量的觀測數據,對于很少交互的推薦場景來說是脆弱的。本文用少樣本學習和元學習來解決這些問題。我們的方法是基于這樣一種見解,即從幾個例子中有一個很好的泛化,依賴于一個通用的模型初始化和一個有效的策略來使這個模型適應新出現的任務。為了實現這一點,我們將場景指定的學習與模型無關的序列元學習結合起來,并將它們統一到一個集成的端到端框架中,即場景指定的序列元學習者(或s^2 Meta)。我們的元學習器通過聚合來自各種預測任務的上下文信息來生成一個通用的初始模型,同時通過利用學習到的知識來有效地適應特定的任務。在各種現實世界數據集上的實驗表明,我們提出的模型可以在在線推薦任務中獲得對冷啟動問題的最好效果。

  2. Sequential Scenario-Specific Meta Learner for Online Recommendation

冷啟動問題是對實際推薦系統的長期挑戰。大多數現有的推薦算法依賴于大量的觀測數據,對于很少交互的推薦場景來說是脆弱的。本文用少樣本學習和元學習來解決這些問題。我們的方法是基于這樣一種見解,即從幾個例子中有一個很好的泛化,依賴于一個通用的模型初始化和一個有效的策略來使這個模型適應新出現的任務。為了實現這一點,我們將場景指定的學習與模型無關的序列元學習結合起來,并將它們統一到一個集成的端到端框架中,即場景指定的序列元學習者(或s^2 Meta)。我們的元學習器通過聚合來自各種預測任務的上下文信息來生成一個通用的初始模型,同時通過利用學習到的知識來有效地適應特定的任務。在各種現實世界數據集上的實驗表明,我們提出的模型可以在在線推薦任務中獲得對冷啟動問題的最好效果。

  1. A Meta-Learning Perspective on Cold-Start Recommendations for Items 矩陣分解(M F)是最流行的項目(item)推薦技術之一,但目前存在嚴重的冷啟動問題。項目冷啟動問題在一些持續輸出項目的平臺中顯得特別尖銳(比如Tweet推薦)。在本文中,我們提出了一種元學習策略,以解決新項目不斷產生時的項目冷啟動問題。我們提出了兩種深度神經網絡體系結構,實現了我們的元學習策略。第一個體系結構學習線性分類器,其權重由項目歷史決定,而第二個體系結構學習一個神經網絡。我們評估了我們在Tweet推薦的現實問題上的效果,實驗證明了我們提出的算法大大超過了MF基線方法。

  2. One-at-a-time: A Meta-Learning Recommender-System for Recommendation-Algorithm Selection on Micro Level

推薦算法的有效性通常用評價指標來評估,如均方根誤差、F1或點擊率CTR,在整個數據集上計算。最好的算法通常是基于這些總體度量來選擇的,然而,對于所有用戶、項目和上下文來說并沒有一個單獨的最佳算法。因此,基于總體評價結果選擇單一算法并不是最優的。在本文中,我們提出了一種基于元學習的推薦方法,其目的是為每個用戶-項目對選擇最佳算法。我們使用MovieLens 100K和1m數據集來評估我們的方法。我們的方法(RMSE,100K:0.973;1M:0.908)沒有優于單個的最佳算法SVD++(RMSE,100k:0.942;1M:0.887)。我們還探索了元學習者之間的區別,他們在每個實例(微級別),每個數據子集(中級)和每個數據集(全局級別)上進行操作。評估表明,與使用的總體最佳算法相比,一個假設完美的微級元學習器將提高RMSE 25.5%。

付費5元查看完整內容
北京阿比特科技有限公司