近年來,"蜂群 "和 "構建蜂群"是無機組系統界最普遍的流行語之一,不僅包括航空器,還包括陸地、海洋、水面以及水下的無人系統。然而,什么是蜂群,或者它需要擁有哪些基本能力,還沒有正式定義。北約的無機組飛行器社區最近開始為上述術語制定定義,以最終正式確定各自的術語供官方使用,但由于不同社區對什么是蜂群有不同的解釋和觀點,很快就陷入了困境。因此,以空中為中心的定義可能不太適合于其他領域。
本文旨在概述挑戰,并在討論未來 "蜂群 "的定義及其在無人飛行器背景下的相關術語提供思考素材。
每個術語的定義都需要滿足一個目的;否則,它就沒有意義,也不需要被定義。例如,遙控飛機(RPA)被定義為 "由經過培訓和認證的飛行員控制的無人駕駛飛機[......],其標準與有人駕駛飛機的飛行員相同。"因此,使用RPA一詞表明操作飛機需有一定程度的飛行員資格要求。以同樣的方式,需要同意該定義是為哪些條件和目的服務的,即在哪些情況下需要它。
定義 "蜂群 "所面臨的挑戰是,適用的用途差別很大,一種用途的定義參數可能與另一種用途不相關。為了概述這一挑戰,下面介紹了一些例子。
作業用途。使用蜂群來實現軍事效果是基于需要解決的軍事問題。只有當蜂群功能與其他解決方案相比能帶來軍事利益時才會被采用。所期望的效果在本質上將符合能力要求的定義,因此,需在采購者的法律框架內。實戰化蜂群技術并按照適用的國家和聯盟立法、交戰規則以及戰術、技術和程序進行操作,可能需要一個定義,該定義提供了關于軍事能力、遠程操作模式、指揮和控制手段以及人類互動程度的說明。
開發者用途。需要充分了解潛在的蜂群功能,以便從開發者的角度確定軍事使用的好處。開發蜂群技術和實現蜂群行為的正確執行可能需要復雜的自主性和人工智能應用水平,使人類能夠將蜂群作為一個整體進行操作,但不需要(甚至不允許)控制任何單獨的蜂群實體。因此,這種用途的定義可能集中在自主性水平、其在硬件和軟件中的技術實現以及蜂群功能在其系統中的適應性。
反蜂群用途。在觀察和防御蜂群時,自主性水平或指揮和控制手段并不那么重要。從這個角度來看,實體的數量、它們的觀察行為以及它們假定的蜂群能力是最相關的問題,因此也是決定性的因素,不管蜂群實體是人工控制還是自主操作。識別一個較大的實體群是否有資格成為蜂群的挑戰隨著展示的蜂群行為的復雜性而增加。
在其他情況下,"蜂群 "一詞的定義可能需要偏離或替代,以達到其目的。為了解決這個難題,有兩個選擇。首先,為每一種用途制定多個定義,其次,找到一個可以服務于所有(或至少是大多數)用途的共同標準。由于多種定義有可能在不同的用戶群體之間造成混淆和誤解,因此第二種選擇更受歡迎。每個用戶群體以后可以將其具體要求作為子類別術語附加到一般定義中,類似于RPA,它是 "非螺旋槳飛機 "這一總體定義下的一個子類別。
這就給我們帶來了一個挑戰,即為總體的蜂群定義確定一個共同標準。通過觀察蜂群,特別是其行為,可以發現共同點,不管它是由空中、陸地還是海上的無人系統組成,也不管蜂群的行為是實際執行的還是只是被感知的。因此,一個總體的定義應該從蜂群的外部外觀和視覺感知開始,而不是關注其內部運作。后者可以用子類術語來涵蓋和區分。
在開源研究中,有許多關于蜂群行為的定義,但它們主要描述的是同一個概念,通常將蜂群智能作為一個前提條件。例如:
"蜂群是大量個體組織成協調運動的現象。僅僅利用環境中他們所掌握的信息,他們就能聚集在一起,集體移動或向一個共同的方向遷移"。
"蜂群智能是對分散的、自組織的系統的研究,這些系統能夠以協調的方式快速移動"。
"在蜂群機器人學中,多個機器人通過形成類似于在自然系統中觀察到的有利結構和行為來集體解決問題,如蜜蜂群、鳥群或魚群"。
"蜂群智能源于動物的自然蜂群行為,可以定義為相同大小的動物表現出的集體行為,聚集在一起解決對其生存至關重要的問題。蜂群智能可以被定義為簡單代理群體的新興集體智能"。
上述所有定義的共同點是形成蜂群的個體的 "協調運動"。集體智能也被提到是實現這種行為的關鍵因素;然而,觀察者將無法確定蜂群的協調運動是基于集體智能還是通過其他控制手段。因此,在總體定義中,集體智能是一個需要考慮的次要屬性,需要由后續術語來涵蓋。值得注意的是,未來的技術,包括人工智能和機器學習應用,可能使觀察者能夠確定一大群實體是否擁有可能造成更大威脅的額外蜂群功能。因此,"集體智能"或類似的可識別的蜂群功能可能被納入定義中。
【值得注意的是,"多個蜂群元素 "原則上意味著,任何數量大于1的單位,如果從事蜂群行為以提高整體單位的集體能力,都可以被視為一個蜂群。由于沒有專門的系統,識別蜂群行為幾乎是不可能的,因此,除非另有證明,否則最好將看似一起行動的多個實體視為一個蜂群。更高的數量會放大蜂群行為的好處。另外,各個實體不需要完全相同,只需要兼容,作為蜂群的一部分解決軍事問題。】
根據上述定義推斷,蜂群的另一個關鍵要素是參與的實體數量,但沒有明確規定最低數量。是否有一個閾值需要跨越,以脫離傳統的分組方案,如中隊、航班,從而有資格成為蜂群?同樣,我們有幾個選擇:
1.將任何由兩個或更多元素組成的編隊都歸為蜂群。
2.將蜂群定義為超過特定數量的單個元素的群體,其數量高于上述傳統分組。
3.避免任何具體化,將這一細節再次留給后續的分類學層次。
為了避免限制性太強,并允許有子類別,建議采用最后一種方案。術語"多個蜂群實體"很好地表達了建議的 "非特定性",并將在文章后面為此而使用。
上述可觀察到的特征,即 "協調運動 "和 "多個蜂群元素",并不意味著各個蜂群實體之間有最小或最大的距離。已經有了采用廣泛分布的無機組的飛行器來轉播無線電通信或向偏遠地區提供互聯網連接的概念。單個航空器之間的距離可能是數百公里,以提供大面積的覆蓋。即使在較小的規模上,蜂群實體也可以在僅幾百米的距離內以協調的方式運作,以觀察一個地區或攻擊具有多個影響點的較大目標。如果不能對群體(或蜂群)進行整體調查,那么這些實體是否遵循預先確定的和不協調的模式或執行協調行動,對觀察者來說可能仍然是隱蔽的。因此,蜂群的空間分布不是一個總體定義的限定因素,而且會不必要地限制其應用,盡管這些特征可能在反蜂群活動中發揮作用,并在隨后的術語中加以定義。
在談論蜂群技術時,人們廣泛討論了不同的自主性水平和相應的人類互動水平。例如,自主性水平越高,在實際任務中對人類投入的要求就越低。顯示出一套完整的蜂群行為的蜂群很可能處于自主性等級的高端,將人類互動的必要性降到最低。也可以假設這種人類互動適用于整個蜂群,以控制總體的蜂群功能,而不是單個的蜂群實體。然而,在觀察由單個空中、陸地、地面或地下飛行器組成的蜂群時,很難確定其自主性和人類互動水平,因此對于總體 "蜂群 "的定義而言,這不是一個相關因素。為了不限制定義的適用性,這些特征應該用一個子術語來描述,如 "智能蜂群"、"自主蜂群 "或類似的措辭,因為它們肯定在研究和開發、蜂群就業方面具有適用性,而且可能用于法律目的。
人們通常認為,組成一個蜂群可以增強或產生單個系統無法實現的能力。蜂群可以被認為是一個系統簇,它可以執行預先設計的功能并提供一個或多個(軍事)效果。這些效果要么直接受益于蜂群行為,要么間接受益于單個系統能力的組成,作為一個組合的蜂群功能。這種好處需要從能力要求、作業和防御的角度清楚地理解,并且可以與其他軍事用途的定義聯系起來。一般來說,蜂群行為是任何蜂群能力的基礎。然而,蜂群能力可能因使用的系統類型而有很大的不同,而且與蜂群行為相比,不能觀察到,只能在執行前假設。因此,能力聲明被認為不適合作為總體定義,還應該由下屬術語涵蓋。
一個定義取決于蜂群的預期用途。由于蜂群應用提供了各種用途,本文建議從一個總體定義開始,并在下屬術語中涵蓋各個使用屬性。
以下是一個總體定義建議,涵蓋并支持所有軍事領域及其各自的無機組人員系統,隨后對定義的每個術語進行了解釋。
形成。這應表明蜂群元素之間的空間相關性,同時有意不進一步描述其具體組織。這就為各個蜂群元素之間的各種距離和空間安排留出了分類的空間。
多個。蜂群可能由少數甚至數百個元素組成,但至少要超過一個。不具體的術語 "多個 "允許該定義適用于所有類型的蜂群,無論其參與元素如何。定義一個具體的數字對于任何下屬的術語來說也將是困難的。可以對小型蜂群中的 "可計算的數量 "和大型或大規模蜂群中的 "不可計算的數量 "進行區分,這可能有助于區分人類或技術系統被接近的實體所淹沒時的威脅。
實體。它包括所有類別的無人系統,包括空中、陸地、地面和地下系統。如果計算機程序或衛星系統的協調行動是北約未來的選擇,這個術語也可以適用于網絡和空間領域。可以考慮使用從屬的術語,例如,無人駕駛飛機系統群(UASSw)或無人駕駛地面車輛群(USVSw)。
顯示協調的行為。蜂群的內部運作和技術機制可能有所不同,對于某些用途,定義甚至可能不需要審查這些內部特征。本文所確定的共同點是蜂群的行為,包括可以觀察到的協調動作和行動。故意不說明這些協調行動是如何實現的。實現蜂群功能的技術手段可以用隨后的術語來表達,如 "自主蜂群 "或 "智能蜂群"。
朝著一個目標前進。這是為軍事背景服務的,因為可以假設蜂群總是指向一個目標,以實現其特定的任務目標,從簡單的現場調查、情報、監視和偵察,到打擊或自殺任務。這可能與軍事背景以外的情況無關,可以不提。
【蜂群是由多個實體組成的,它們朝著一個目標表現出協調一致的行為。】
為 "蜂群 "找到一個一致的定義是一個困難的挑戰,因為在所有的軍事領域和民事應用中都有很多用途。要在北約內部實現對蜂群定義的廣泛接受,唯一的解決辦法是確定所有蜂群特征的共同點,將定義減少到最低限度,并將專門用途的具體細節留給下級術語。
安德烈-海德爾,中校是一名炮兵軍官,在指揮與控制和作戰計劃方面有超過15年的經驗。他是JAPCC的無人駕駛飛機系統主題專家,已有十多年的經驗,并代表JAPCC參加北約聯合能力小組的無人駕駛飛機系統和北約反無人駕駛飛機系統工作組。他撰寫了關于無人機系統和C-UAS的操作和法律問題的多項研究、書籍和文章。
安德烈亞斯-施密特,中校于1993年加入德國空軍。在軍官學校學習后,他在慕尼黑的德國武裝部隊大學學習計算機科學。自1998年以來,他在地基防空方面建立了廣泛的背景,特別是愛國者武器系統。他開始擔任戰術控制官,隨后在不同的 "愛國者 "部隊中擔任偵察官、炮臺執行官和炮臺指揮官。此外,他曾兩次不連續地被派往德克薩斯州的布萊斯堡。在這之間,他曾在前空軍師擔任A3C的任務。目前,他是JAPCC的綜合防空和導彈防御/彈道導彈防御中小企業。
最佳的飛行員-飛機互動一直被認為是實現有效操作性能的基石,同時在任務或使命中保持高水平的安全。隨著飛行任務越來越復雜,越來越多的信息到達機組成員手中。市場上有新的技術解決方案,任務中的表現是可以衡量的。當考慮到基于神經科學進步的人機互動時,就有可能衡量和評估任何人機接口(HMI)的有效性。為了支持空勤人員的表現,必須利用現有的創新,如數據融合或人工智能(AI)輔助決策和任務管理,以成功執行軍事任務。人工智能和大數據管理與機器學習相結合,是改善和運行現代作戰場景的關鍵因素。以網絡為中心的綜合武器系統為聯合部隊指揮官提供了靈活性,有助于當前和即將到來的聯合任務的成功。
在聯合行動中,當兩個或更多的國家使用所有可用的領域時,盡可能快速有效地利用所有的資產和能力,以獲得戰斗空間的最佳總體情況將是至關重要的。因此,解決和驗證為機組人員優化的下一代駕駛艙的創建是很重要的。先進的指揮和控制系統,為執行任務提供安全和可互操作的支持,將確保獲得一個綜合和同步的系統,并將實現戰場上的信息優勢。在未來,各級指揮官對戰場的可視化和理解方式,利用某些輔助手段來指導和引導他們的部隊,將成為勝利的決定因素。
根據JAPCC在2021年發布的聯合全域作戰傳單,全域作戰包括 "快速處理數據和管理情報,以及實現高效作戰所需的技術能力和政策,包括所有貢獻的資產"。其他北約出版物使用術語多域作戰(MDO),主要描述任務環境的相同挑戰。找到一個連貫的、共同使用的術語是不斷發展的,但它不會改變HMI定義背后的含義。此外,重要的是開發一個連接的、復雜的接口,能夠協助指揮官和他們的下屬軍事人員同時和毫不拖延地分享信息,并迅速做出決定和采取行動。
正如Todd Prouty在他的一篇文章中所認識到的,"聯合全域指揮與控制(JADC2)正在形成,成為連接行動的指導性概念","將使用人工智能和機器學習,通過以機器速度收集、處理和計算大量的數據來連接聯合部隊"。兩種類型的態勢感知(SA)都同樣重要,因為它們不僅可能影響任務的成功完成,甚至還可能影響戰略層面的意圖。定義SA的最簡單方法是對周圍環境的徹底了解。戰術上的SA意味著機組人員知道這個場景,知道自己在任務中的任務和角色,以及所有參與同一行動區域的部隊。他們知道如何飛行任務,也知道成功或失敗的目的和后果。飛行SA主要關注的是飛行的性能和參數,空間和時間上的位置,以及飛機的性能。這兩個SA是不同的,需要在飛行過程中不斷監測。通常情況下,兩者在任務的不同階段需要不同程度的關注,如果有能力的話,可以由機組成員共享。一些技術上的改進可以只提高一個SA,但最好是同時提高兩個SA,以滿足要求并提高整體SA。這些發展也必須支持戰略層面的意圖,并提供其在決策過程中需要的SA。
現代機體和駕駛艙應支持機組人員的機載工作量,戰斗飛行員需要這種支持以保持有效。這可以通過人工智能自動管理,使機組人員能夠將更多的精力放在他們的任務和使命上。可以說,用算法來增強機體的基本需要,以補充機組人員處理飛行期間增加的信息流的能力。
在開展行動期間,預計情況可能會迅速變化,指揮官必須立即采取行動,重新安排部隊的任務。在地面或飛行中,飛行員可能會在短時間內收到一個新的任務。這個新命令不應該被格式化為純粹的基本信息;當整個更新包也能被可視化時,支持將是最佳的。一個例子是數字移動地圖系統,它描述了關于友軍和敵軍的詳細信息,包括協調信息。當飛行員改變飛行計劃時,駕駛艙及其所有設置都將自動更新。正如《國防雜志》所指出的,"從無限的資源中收集、融合和分析數據,并將其轉化為可操作的情報傳遞到戰術邊緣的能力,需要前所未有的移動處理能力"。為了符合這些要求,推動下一代人機接口的整合應該在所有現代駕駛艙中實現標準化。
HMI-Cockpit的演變。左至右:Ramon Berk, Comando Aviazione dell'Eercito, Leonardo
值得注意的是,最近飛機駕駛艙的技術發展已經出現了巨大的轉變。在短短幾年內,駕駛艙已經從帶有模擬象限的 "經典飛行甲板 "過渡到現代的 "玻璃駕駛艙",其中經典的儀表通過復雜的多功能顯示器呈現。大多數信息在儀表、飛行管理系統和自動駕駛功能之間是相互聯系的。在現代駕駛艙中,傳統的 "旋鈕和表盤 "已經被拋棄,取而代之的是電子可重新配置的顯示器和多功能可重新配置的控制,即所謂的 "軟鍵"。
傳統上,駕駛艙設計和信息顯示方式的發展是由安全和性能提升驅動的,而現在似乎更多的是由效率和競爭力標準驅動。5例如,在全狀態操作和創新駕駛艙基礎設施(ALICIA)項目中,來自14個國家的41個合作伙伴正在合作進行研究和開發活動,旨在實現一個能夠提供全狀態操作的駕駛艙系統。考慮到在不久的將來商業航班數量的增加,該項目旨在通過使用新的操作概念和駕駛艙設計來實現更高水平的效率和競爭力。
ALICIA承諾新的解決方案能夠為機組人員提供更大的SA,同時減少機組人員的工作量并提高整個飛機的安全性。這是對HMI概念的徹底反思,尋求技術的整體整合。在設想的概念中,ALICIA利用多模態輸入/輸出設備,提供一個集成在增強的機組接口中的全條件操作應用程序。
改進軍用飛機的人機接口是一項更為復雜的任務。與商業飛行相比,需要分析的情況很多,也更復雜。在軍用駕駛艙中,與飛行本身相關的任務與完成戰斗任務所需的任務合并在一起,而且往往是在危險地區和退化的環境中飛行。此外,軍用飛機配備了更多的設備,旨在處理綜合戰斗任務和軍備系統管理。
軍事飛行的典型任務可分為兩類:
駕駛和導航:在整個飛行過程中執行。
戰斗任務:只在飛行任務的某些階段執行。
當戰斗任務發生時,它們必須與駕駛和導航任務同時進行,這是軍事和商業航空的主要區別。根據自己的經驗,軍事飛行員必須判斷在任何特定的飛行階段哪一個是優先的。因此,他們將大部分資源用于該任務,而將那些經常被誤認為不太重要的任務留給機載自動系統或利用他們的注意力的殘余部分來完成。
不幸的是,軍事飛行在任務、風險、威脅、持續時間、天氣條件等方面的復雜性和不可預測性,常常使機組人員很容易超過他們的個人極限。一旦發生這種情況,風險是任務無法完成,甚至可能被放棄。在最壞的情況下,飛機和機組人員可能會丟失,或者機組人員可能會在沒有適當或最佳SA的情況下采取行動,導致附帶損害的風險增加。
新興和顛覆性的技術可以改善未來軍用飛機上的人機接口。它們可以引入基于人工智能、深度學習或實時卷積神經網絡(RT/CNN)的新解決方案,以整合新的能力,如具有認知解決方案的系統。作為一個例子,認知人機接口和互動(CHMI2)的發展和演變,用于支持多個無人駕駛飛行器的一對多(OTM)概念中的自適應自動化,也可以被利用來支持完成 "軍事駕駛艙的多項任務 "的自適應自動化。
同樣地,研究和開發CHMI2來監測飛行員的認知工作量并提供適當的自動化來支持超負荷的機組。這些先進的系統應該能夠閱讀到達駕駛艙的命令,分析相關的威脅,并提出最 "適合任務 "的任務簡介和操作概念。同時,它們應該計算所有任務所需的數據,如燃料消耗、目標時間、"游戲時間"、路線、戰斗位置、敵人和友軍的部署、武器系統和彈藥的選擇、附帶損害估計以及適當的交戰規則等。然后,考慮到船員的認知狀態,將動態地選擇自動化水平和人機接口格式及功能。
在2009年的一項研究中,Cezary J. Szczepanski提出了一種不同的HMI優化方法,其依據是任務成功的關鍵因素是飛機操作員的工作量。如果工作量超過了一個特定的限度,任務就不能成功完成。因此,他提出了一種客觀衡量機組人員在執行任務期間的工作量的方法;具體來說,就是在設計人機接口時,要確保即使在最壞的情況下,工作量也不能超過人類操作員的極限。
將近11年后的2020年,北約科技組織成立了一個研究小組,以評估空勤人員是否有能力執行其分配的任務,并有足夠的備用能力來承擔額外的任務,以及進一步應對緊急情況的能力。該小組旨在確定和建立一種基于具體指標的實時客觀方法,以評估人機接口的有效性。
通過對神經生理參數的實時測量來評估認知狀態,有望支持新形式的適應性自動化的發展。這將實現一個增強的自主水平,類似于一個虛擬的機載飛行員,這將協助機組人員進行決策,并將他們從重復性的或分散注意力的任務中解放出來。自適應自動化似乎是實現最佳人機接口的一個重要組成部分。它有望支持高水平的自主性,以減少人類的工作量,同時保持足夠的系統控制水平。這在執行需要持續工作量的任務時可能特別重要。這預示著要全面分析與自主決策機相關的倫理和道德問題。然而,這已經超出了本文的范圍。
未來的戰斗將變得越來越快節奏和動態。新興的和顛覆性的技術有望徹底改變各級指揮官計劃和實施戰場行動的方式。人工智能、機器學習、增強的指揮和控制系統以及先進的大數據管理將大大有利于指揮官,改善SA,并極大地加快決策過程。現代軍隊設想未來的行動是完全集成的、連接的和同步的,這催生了MDO概念,以完善指揮官在多個領域快速和有效地分派/重新分派所有部隊的能力。
在概念和規劃階段的這種明顯的動態性也必須反映在執行階段。因此,必須假定,雖然指揮官能夠在很少或沒有事先通知的情況下重組和重新分配部隊任務,但機組人員也必須能夠快速、有效和安全地處理和執行這些新命令,很少或沒有時間進行預先計劃或排練。
這些新要求無疑將影響下一代軍用飛機駕駛艙的設計和開發。有必要采用一種新的方式來構思下一代人機接口,更加關注飛行員的真正認知能力。此外,需要新的解決方案來為機組人員提供更大的安全空間,同時將他們的工作量減少到可以接受的最大水平,使他們保持高效。他們應該結合任務優先級原則,審慎地考慮機組人員可以將哪些任務交給自主程序或系統。
本文重點討論了空中力量和飛行員在飛機上的工作量。可以預見,在現代情況下,所有平臺都將面臨同樣的挑戰。在行動的各個層面,所有的軍事人員都應該發展一種新的思維方式,以反映人機接口的更多整合和使用。要做到這一點,需要重新認識到人的因素的重要性。與民用航空類似,北約將需要制定和采用新的標準來指導未來軍用航空接口的設計。人機接口的改進必須包括所有的航空任務,并著重于實現實時規劃和執行。如果不仔細關注軍事飛行員所面臨的壓力,人機接口的改進只會讓飛行員更加安全,而在任務執行過程中的效率卻沒有類似的提高。開發通過實時測量神經生理參數來評估機組人員的認知狀態的方法,以及隨后開發新形式的適應性自動化,對于實現符合未來戰場要求的人機接口至關重要。
Imre Baldy,中校,于1988年加入匈牙利國防軍,并在匈牙利的'Szolnok'軍事航空學院開始了他的軍事教育。1992年,他作為武器操作員/副駕駛獲得了第一個少尉軍銜。1997年,他得到了他的第一個更高級別的任命,他加入了位于韋斯普雷姆的匈牙利空軍參謀部,在那里他獲得了國際關系和空軍防御規劃方面的經驗。2007年,他被調到塞克斯費厄爾,在那里建立了新的匈牙利聯合部隊司令部。除與直升機業務有關的其他職責外,他還負責空軍的短期規劃。他曾駕駛過米24、米8和AS-350直升機。從2018年7月開始,他成為JAPCC的載人空中/攻擊直升機的SME。
利維奧-羅塞蒂,中校,于1993年在意大利軍隊中被任命為步兵軍官。三年后,他轉入陸軍航空學校,并于1998年畢業,成為一名旋翼機飛行員。他曾擔任過排長、中隊指揮官和S3小組長。他曾駕駛過通用直升機。AB-206,AB-205,AB-212,AB-412,以及AW-129 Mangusta戰斗直升機。他曾多次作為機組成員或參謀被部署到巴爾干半島(阿爾巴尼亞,科索沃),中東(黎巴嫩,伊拉克)和中亞(阿富汗)。他還是一名合格的CBRN(化學、生物、輻射和核)專家,一名空中機動教官,他目前駐扎在JAPCC,擔任戰斗航空處的空地行動SME。
深度學習技術在計算機視覺領域的快速發展,促進了基于人工智能(AI)應用的廣泛傳播。分析不同種類的圖像和來自異質傳感器數據的能力使這項技術在軍事和國防應用中特別有趣。然而,這些機器學習技術并不是為了與智能對手競爭而設計的;因此,使它們如此有趣的特性也代表了它們在這一類應用中的最大弱點。更確切地說,輸入數據的一個小擾動就足以損害機器學習算法的準確性,并使其容易受到對手的操縱--因此被稱為對抗性機器學習。
對抗性攻擊對人工智能和機器人技術的穩定性和安全性構成了切實的威脅。這種攻擊的確切條件對人類來說通常是相當不直觀的,所以很難預測何時何地可能發生攻擊。此外,即使我們能估計出對手攻擊的可能性,人工智能系統的確切反應也很難預測,從而導致進一步的意外,以及更不穩定、更不安全的軍事交戰和互動。盡管有這個內在的弱點,軍事工業中的對抗性機器學習話題在一段時間內仍然被低估。這里要說明的是,機器學習需要在本質上更加強大,以便在有智能和適應性強的對手的情況下好好利用它。
在很長一段時間里,機器學習研究人員的唯一關注點是提高機器學習系統的性能(真陽性率/敏感度、準確性等)。如今,這些系統缺乏穩健性的問題已不容忽視;許多系統已被證明非常容易受到蓄意的對抗性攻擊和/或操縱。這一事實使它們不適合現實世界的應用,特別是關鍵任務的應用。
一個對抗性的例子是,攻擊者故意設計了一個機器學習模型的輸入,以導致該模型犯錯。一般來說,攻擊者可能無法接觸到被攻擊的機器學習系統的架構,這被稱為黑盒攻擊。攻擊者可以利用 "可轉移性 "的概念近似于白盒攻擊,這意味著旨在迷惑某個機器學習模型的輸入可以在不同的模型中觸發類似的行為。
最近針對這些系統的對抗性攻擊的演示強調了對抗性行為對穩定性影響的普遍關注,無論是孤立的還是互動的。
也許最廣泛討論的攻擊案例涉及圖像分類算法,這些算法被欺騙成 "看到 "噪聲中的圖像,即隨機產生的不對應于任何圖像的白噪聲被檢測為圖像,或者很容易被像素級的變化所欺騙,因此它們將一輛校車分類為鴕鳥,例如。同樣,如果游戲結構或規則稍有改變,而人類不會受到影響,那么表現優于人類的游戲系統(如國際象棋或AlphaGo)就會突然失敗。在普通條件下運行良好的自動駕駛汽車,只要貼上幾張膠帶,就會被誘導轉向錯誤的車道或加速通過停車標志。
許多北約國家利用人工智能和機器學習來改善和簡化軍事行動和其他國家安全舉措。關于情報收集,人工智能技術已經被納入在伊拉克和敘利亞的軍事行動中,其中計算機視覺算法被用來檢測人和感興趣的物體。軍事后勤是這一領域的另一個重點領域。美國空軍使用人工智能來跟蹤其飛機何時需要維護,美國陸軍使用IBM的人工智能軟件 "沃森 "來預測維護和分析運輸請求。人工智能的國防應用還延伸到半自主和自主車輛,包括戰斗機、無人機或無人駕駛飛行器(UAV)、地面車輛和船舶。
人們認為對抗性攻擊在日常生活中相對罕見,因為針對圖像分類算法的 "隨機噪音 "實際上遠非隨機。不幸的是,對于國防或安全技術來說,這幾乎是不可能的。這些系統將不可避免地被部署在對方有時間、精力和能力來開發和構建正是這些類型的對抗性攻擊的環境中。人工智能和機器人技術對于部署在敵人控制或敵人爭奪的地區特別有吸引力,因為這些環境對于我們的人類士兵來說是最危險的環境,在很大程度上是因為對方對環境有最大的控制。
在意識到人工智能發展和應用的技術領先的重要性后,北約于2020年在多國能力發展運動(MCDC)下啟動了人工智能、自動化和機器人技術的軍事用途(MUAAR)項目。該項目的范圍是開發概念和能力,以應對開展聯合聯盟行動的挑戰,并對其進行評估。項目的目標是評估可能受益于人工智能、自動化和機器人技術的當前和未來的軍事任務和功能。它還考慮了效率和成本節約方面的回報。
在國防應用中,對抗性地操縱機器學習分類器所帶來的危險的例子很多,嚴重程度各不相同。例如,致命的自主武器系統(LAWS)可能會將友軍戰車誤認為是敵軍戰車。同樣,一個爆炸裝置或一架敵方戰斗機可能會被錯誤地識別為一塊石頭或一只鳥。另一方面,知道人工智能垃圾郵件過濾器跟蹤某些單詞、短語和字數進行排除,攻擊者可以通過使用可接受的單詞、短語和字數來操縱算法,從而進入收件人的收件箱,進一步增加基于電子郵件的網絡攻擊的可能性。
綜上所述,人工智能支持的系統可能會因為對抗性攻擊而失敗,這些攻擊是故意設計來欺騙或愚弄算法以使其犯錯的。這種攻擊可以針對分類器的算法(白盒攻擊),也可以通過訪問輸入來針對輸出(黑盒攻擊)。這些例子表明,即使是簡單的系統也能以意想不到的方式被愚弄,有時還可能造成嚴重后果。隨著對抗性學習在網絡安全領域的廣泛應用,從惡意軟件檢測到說話人識別到網絡物理系統再到許多其他的如深度造假、生成網絡等,隨著北約增加對自動化、人工智能和自主代理領域的資助和部署,現在是時候讓這個問題占據中心位置了。在將這些系統部署到關鍵任務的情況下之前,需要對這些系統的穩健性有高度的認識。
已經提出了許多建議,以減輕軍事環境中對抗性機器學習的危險影響。在這種情況下,讓人類參與其中或在其中發揮作用是至關重要的。當有人類和人工智能合作時,人們可以識別對抗性攻擊,并引導系統采取適當的行為。另一個技術建議是對抗性訓練,這涉及給機器學習算法提供一組潛在的擾動。在計算機視覺算法的情況下,這將包括顯示那些戰略性放置的貼紙的停車標志的圖像,或包括那些輕微圖像改變的校車的圖像。這樣一來,盡管有攻擊者的操縱,算法仍然可以正確識別其環境中的現象。
鑒于一般的機器學習,特別是對抗性機器學習,仍然是相對較新的現象,對兩者的研究仍在不斷涌現。隨著新的攻擊技術和防御對策的實施,北約軍隊在關鍵任務的行動中采用新的人工智能系統時需要謹慎行事。由于其他國家,特別是中國和俄羅斯,正在為軍事目的對人工智能進行大量投資,包括在引起有關國際規范和人權問題的應用中,北約保持其戰略地位以在未來戰場上獲勝仍然是最重要的。
Elie Alhajjar博士是美國陸軍網絡研究所的高級研究科學家,同時也是紐約州西點軍校數學科學系的副教授,他在那里教授和指導各學科的學員。在來到西點軍校之前,Alhajjar博士曾在馬里蘭州蓋瑟斯堡的國家標準與技術研究所(NIST)從事研究。他的工作得到了美國國家科學基金會、美國國立衛生研究院、美國國家安全局和ARL的資助,最近他被任命為院長的研究人員。他的研究興趣包括數學建模、機器學習和網絡分析。他曾在北美、歐洲和亞洲的國際會議上展示他的研究工作。他是一個狂熱的科學政策倡導者,曾獲得民用服務成就獎章、美國國家科學基金會可信CI開放科學網絡安全獎學金、Day One技術政策獎學金和SIAM科學政策獎學金。他擁有喬治-梅森大學的理學碩士和數學博士學位,以及圣母大學的碩士和學士學位。
戰斗機的時代已經過去。這話是埃隆-馬斯克在2020年空戰研討會上描述未來空戰時說的。這產生了巨大影響力。
馬斯克的立場似乎得到了美國國防部高級研究計劃局(DARPA)Alphadogfight(ADT)演示的支持。在ADT期間,幾個人工智能(AI)項目在一場斗狗比賽中相互對決。獲勝的人工智能隨后與人類戰斗機飛行員進行了面對面的較量。雖然DARPA聲稱比賽的目的是開發支持人類飛行員的人機共生的人工智能程序,但結果對飛行員本人來說不可能更糟。人類在與機器的每一次交戰中都輸了,而且比人工智能以前的機器對手輸得更快。
同樣值得考慮的是,在超視距情況下——在這種情況下,距離的計算、對飛機相對位置的了解、相對高度、速度和武器都必須在非常高的速度下完成——結果會如何。考慮到空對空戰術的復雜性以及欺騙和電子戰在其實施中的突出作用,結果可能會更加令人震驚。
盡管如此,許多飛機制造商仍在繼續開發有人駕駛的作戰飛機。即使是成本驅動的商業航空部門也不太可能取代人類飛行員。此外,盡管西方第五代戰斗機都是單座飛機,即使是出于訓練目的,雙座設計也回到了桌面上。最近,中國第五代殲-20戰斗機采用雙座配置,蘇霍伊公司正在考慮其蘇-75 "Checkmate"的雙座版本。回歸雙座設計背后的原因仍然不透明,但鑒于目前空中行動的復雜性和對更復雜的多域作戰(MDO)的預期,下一代戰斗機可能受益于武器系統官(WSO)。
另外,DARPA的空戰進化(ACE)計劃設想了一個中間地帶,人類飛行員信任人工智能來控制飛機,而他們需要人類來指揮任務,如決定交戰策略、選擇和優先考慮目標,以及確定最佳武器或效果。
未來幾乎肯定會包括馬斯克所宣稱的、DARPA所預期的人工智能優勢,但它們應該伴隨還是取代人類飛行員?許多挑戰依然存在。本文將強調最重要的挑戰。
支持人工智能的最常見的機器學習方法是強化學習(RL),它使計算機算法能夠從過去的事件中自我學習。機器使用一個獎勵系統來區分成功和不成功的動作,它可以在沒有指導的情況下快速進行,不需要人類的互動。同時,人類也可以指出錯誤,幫助強化未來的課程,讓機器尋求成功。
獎勵函數設計是另一種機器學習技術,通過給交易分配相對價值來加速學習結果,從而補充RL。這個概念激勵人工智能通過利用它已經學到的關于其先前選擇的 "價值 "的東西,而進入到一個更高的獎勵狀態。這種評估使人工智能能夠在探索一系列行動以追求更高的獎勵時進行風險與獎勵計算。目標是在探索了所有可能的解決方案和獎勵之后,達到一個良好的平衡。
一個可能加速學習過程的額外優勢是,人工智能系統可以建立在其他人工智能系統的經驗上,使用額外的機器在所需的網絡內進行訓練,而無需人類參與,并將獲得的知識轉移到目標機器上。幾個模擬器,每個都應用不同的戰術,可以極大地加快學習過程。
然而,機器學習不應該被看作是萬能的。它仍然高度依賴于軟件設計、算法和數據選擇。納入機器學習技術內的不完整或有毒的信息會導致學習過程中出現重大缺陷或錯誤。因此,人工智能可能做出無效或危險的決策。
盡管現在的趨勢是,只有在ACE計劃顯示人工智能飛得更好的情況下,人工智能才會幫助飛行員,但在真正的戰斗機上,這兩種選擇將如何合并?
一種選擇是,飛機由人類飛行員控制,只由人工智能提供建議,至少在機器識別出關鍵風險并評估出它能比人類更快或更好地做出反應之前。人類飛行員應該始終保留對這一決定的控制權,還是應該授權人工智能在沒有預先授權的情況下進行控制,以確保任務成功或飛機生存?同樣地,飛行員是否應該在知道他的反應時間意味著失去可能影響定位或射擊機會的關鍵秒數的情況下,采取所有武器使用行動?
此外,在飛機機動能力的極端情況下不會有失去意識的風險,這是人工智能相對于人類飛行員所具有的誘人優勢之一。雖然預計人工智能可以納入飛行員的健康狀況數據,但獲得對敵優勢的唯一方法可能是犧牲飛行員的意識。在飛行員沒有意識的情況下,人工智能應該自主地使用武器嗎?
此外,由于戰斗機傳統上是以雙機或四機編隊的形式運行,關于人類與人工智能控制的決定將影響到單個飛機和整個機隊。需要考慮人工智能控制的飛機如何與其他編隊的機組人員進行交流,以及是否通過數據鏈、語音或兩者進行。鑒于飛行中的一些(而不是所有)飛機有可能在人工智能的控制下--而且有可能是無意識的飛行員--整個編隊的控制權應該下放給人工智能,還是應該轉移給任何有意識的飛行員?
一個更直接的選擇是將人工智能限制在一個輔助角色,在準確的時刻提供適當的信息,以避免飽和,也許,在特殊情況下,如生存需要時,就像現有的線控系統在超過攻擊角限制或在某些失控的情況下對飛機進行指揮。
到今天為止,由于其相當復雜,最可能的演變是人工智能只是幫助飛行員。然而,隨著技術的快速發展,我們當然不應該回避人工智能的支持,尤其是知道潛在的對手會廣泛地使用它。
許多作者都寫過關于機器人自主和人工智能控制的武器系統的道德和倫理問題,并探討了我們是否應該允許機器對人類做出生死決定。從倫理上評估的一個特殊案例是,人工智能凌駕于人類飛行員的控制之上。一些人認為,一個充分發展的人工智能將對其決定和后果負責,并承擔法律責任。相反,其他人認為至少有一個人必須保留責任和法律責任。如果人工智能控制的飛機出現錯誤,導致人類生命的損失,誰將負責?可以認為是人類飛行員,即使他可能沒有機會干預或取消行動,甚至是程序員,但最有可能的是,下令執行任務的指揮官將是負責的一方。
來自情報的數據將為人工智能的學習過程提供基礎。預計人工智能將處理飛機、其飛行成員以及可能更廣泛的云聯網系統的所有可用傳感器數據。在實時的情況下,這將支持單個飛機的決策優勢,并在測試和評估活動中提出和評估戰術的重要能力。然而,正如單靠數據不等于準確的情報,單靠數據也不會創造新的戰術。人類的判斷會解釋數據,推斷對手的能力和戰術,創造測試環境,并評估結果。這些人類選擇的準確性將不可避免地影響人工智能衍生的戰術,就像在傳統戰術開發中一樣。在這里,應該利用人工智能運行大量模擬集的能力來提供廣泛的潛在選擇,以應對不可預見的對手能力和戰術。
當我們想到戰斗機中的人工智能與人類的共生關系時,不可避免地會想到R2D2、天行者盧克和《星球大戰》中的X-Wing戰斗機。然而,在真正的戰斗機中,人工智能將在哪里?它是在飛機上還是在云中?云端的人工智能會克服通信延遲,在斗狗中獲得對人類的優勢嗎?將人工智能或飛行員移位意味著應盡量減少風險,要知道通信方面的優勢永遠不是絕對的,也不是永久的。
為了設定預期,應該注意到ADT使用了一個計算機機架和服務器來處理由人類駕駛的戰斗機提供的實時數據。這樣的計算能力和啟用的數據優勢目前無法納入戰斗機中。
在ADT競賽中,人類飛行員使用高保真的虛擬現實系統來視覺追蹤人工智能駕駛的對手飛機。然而,由于比賽中使用的數字智能模型缺乏傳感器,人工智能收到的所有對手數據都是直接輸入的,減輕了感應和解釋等更復雜的任務。使用關于對手飛行參數的準確數據給機器帶來了巨大的優勢。在實際戰斗中,這種數據不容易獲得,而且即使收集到也不一定準確。人類飛行員必須推斷出對手的參數,使解釋和決策變得復雜。人工智能agent將不得不做同樣的事情。
為此,人工智能將需要的不僅僅是飛行員可用的信息(包括雷達、警告接收器、紅外傳感器和數據鏈),以 "感受"和保持對形勢的認識。人工智能將需要一套類似于自動駕駛汽車中的視覺傳感器,以實現與人類飛行員目前所完成的同等的視覺觀察。雖然預計人工智能在解釋適當集成的傳感器方面會更快--這本身就是一個不小的成就--但人工智能對需要 "感覺或直覺 "的非預期或異常情況的反應如何,還有待觀察。這將在ACE計劃的最后一步進行評估,即兩架戰斗機之間的真正交戰,一架由人類駕駛,另一架由人工智能駕駛。
未來的戰斗機,特別是那些設想與人工智能駕駛的無人機/僚機一起使用并在MDO環境下運行的戰斗機,將經歷急劇增加飛行員工作量。人工智能必須在管理這種工作量方面發揮一些作用。
然而,考慮到各種可能性,很難想象人類作為人工智能駕駛的飛機上的乘客來管理空戰,而人工智能自主地操縱飛機進入射擊位置,然后將武器的控制權移交給飛行員或在沒有人類授權的情況下發射導彈。更容易設想的是,飛行員在人工智能的支持下駕駛飛機,以提高戰術信息的準確性和及時性,并提供威脅診斷、警告和可能的防御性機動,如使用反措施或其他戰術選擇。
雖然有理由認為,人工智能與人類的合作將不如對手使用不受約束的人工智能所能做到的,但人工智能是否能在未來的整個場景中取代人類飛行員,還有待觀察。盡管如此,預計人工智能與人類的合作將為未來的戰斗機提供一個更有彈性和有效的方法,但只有當優化的人工智能與人類的共生關系被優先考慮并實現時。
誠然,未來的戰斗機作戰行動將不斷發展,埃隆-馬斯克關于載人戰斗機時代結束的預言性警告與事實相去甚遠。
拉斐爾-伊卡索,中校于1993年加入位于圣哈維爾的西班牙空軍學院。他于1997年完成了基礎飛行員培訓,并于1998年在第23聯隊完成了戰斗機武器課程。1998年至2007年,他在薩拉戈薩空軍基地第15戰斗機聯隊的151SQN中駕駛EF-18戰斗機。2007年被分配到巴達霍斯第23聯隊的戰斗機武器學校擔任教官飛行員。2009年回到第15聯隊,在152SQN和153改裝SQN擔任EF-18教官。2008年他被晉升為少校,2009年被分配到空軍學院的學術部門,擔任飛行教官以及國防大學的教師。2013年至2016年,他在北約總部空軍司令部拉姆施泰因的評估部門(TACEVAL)擔任飛行部隊項目官員和評估員。在馬德里的武裝部隊聯合參謀課程結束后,2017年他被提升為中校,并被派往托雷洪空軍基地的西班牙空戰司令部A7科(訓練、演習和評估)擔任參謀,之后被派往聯合空軍能力中心。在此期間,他參加了阿維亞諾空軍基地的幾次部署,在巴爾干半島上空飛行。他擁有聯合參謀課程和地緣政治和國際關系的碩士學位等。他已經在C-101、F-5和EF-18上飛行了2700多個小時。
未來的北約聯合部隊將納入自主和半自主的地面、空中和海上平臺,以提高部隊的實效性和敏捷性。這些自主系統將作為力量倍增器部署在從班到旅的所有戰隊梯隊中。它們將幫助指揮官發展和保持對局勢的了解,在更廣泛的和人類操作者無法進入的地區提供持久的監視和偵察。蜂群機器人/傳感器可以提供一個協作的、多機器人/傳感器的系統,提供所需的集群行為,以實現系統能夠覆蓋這些更大的區域,共享信息,并提供單個系統無法實現的先進行為。
RTG SET-263 "用于情報監視和偵察的蜂群系統"分析了蜂群系統的運用和系統問題,這些問題可以從運用、系統和技術的角度促進它們與當前戰場戰術系統的整合。這份最終報告為以蜂群為中心的ISR系統(SS4ISR)提供了一個高水平的參考架構,它整合并擴展了SET-263前兩年研究的成果。該參考架構同時解決了以下問題:
1)運用問題,即片段式描述的相關運用場景、關鍵能力目標和支持每個目標的一套能力,以及與每個能力相關的SS4ISR作戰運用活動。
4)在聯合/多國聯盟中采用蜂群系統的系統級互操作性設計指南,以及它們與傳統系統的整合。
該文件還通過一組關系矩陣提供了運用和系統問題之間的主要關系,該矩陣提供了以下映射:
1)目標與能力的映射。
2)能力與作戰活動映射。
4)"蜂群系統 "節點與系統節點的關系。
SET-263研究報告涉及以下研究課題:探測和跟蹤,分析了采用蜂群系統來探測和跟蹤感興趣的區域;人類與蜂群互動,確定了蜂群與人類操作者之間共生團隊的能力和服務;蜂群控制和導航,分析了配置和操作模式,最終目標是解決動態和不確定環境中蜂群必須克服許多挑戰,包括快速規劃/重新規劃和對突發威脅的復原力,這是任務成功的基本要求。機器人與機器人的互動,提供了基于網絡中心、自主決策范式的多Agent系統設計,作為機器人和自主系統(RAS)的新興設計方法;蜂群系統的定位和繪圖,解決了蜂群系統采用同步定位和繪圖能力的問題;數據交換服務,分析了采用以信息為中心的架構作為蜂群系統數據交換的支持;網絡,解決蜂群系統的網絡架構和協議。
未來的北約聯合部隊將納入自主和半自主的地面、空中和海上平臺,以提高部隊的實效性和敏捷性。這些自主系統將作為力量倍增器部署在從班級到旅級的所有戰斗梯隊中[1]。它們將幫助指揮官發展和保持對局勢的了解,在更廣泛的地區和人類操作人員無法進入的地區提供持久的監視和偵察[1]。蜂群機器人/傳感器可以提供一個協作的、多機器人/傳感器的系統,提供所需的集群行為,以實現系統能夠覆蓋這些更大的區域,共享信息,并提供單個系統無法實現的先進行為[2]。將平臺數量從幾臺、幾十臺到幾百臺進行擴展并采用以蜂群為中心的行為能力將提高北約部隊的能力:1)在戰場上建立并保持優勢;2)防止敵人做出有效的反應。北約部隊與這些以蜂群為中心的系統的整合,將是實現和保持戰術優勢和作戰效率的關鍵要求。共生的人類-蜂群團隊[3]將使部隊能夠在不確定的場景和條件下有效地理解、適應、戰斗和獲勝。
分布式協作自主系統與士兵合作,提供了一種戰術抵消戰略:一種在復雜的城市和其他領域以高節奏運作的手段,大大降低了風險和士兵數量[4]。將智能系統整合到未來的部隊中,將實現以下關鍵能力:在復雜的地形中提高態勢感知能力;面對對手有爭議的環境進行彈性作戰;增加對峙距離和進入有人系統無法到達的區域;提高作戰安全性;在有爭議的城市環境、前沿作戰基地和車隊行動中,通過提高士兵和指揮官對敵人陣型的了解,使他們能夠通過常規的遠程武器或特定的武裝蜂群元素做出早期反應,從而提高指揮官的反應時間。采用以蜂群為中心的行為將進一步提高智能系統的實效性,因為它允許大量的系統以協調的方式工作和移動,并減少通信和控制要求。它還將使大量的系統能夠以分散的方式運作,然后集中在特定區域,以壓倒潛在的威脅。智能系統和蜂群能力的整合將擴大北約部隊的行動時間和空間,提高機動性和在反介入/區域封鎖(A2AD)環境中克服障礙的能力,使指揮官有能力承擔以前單純的載人編隊所無法想象的行動風險[2]。由于人類暴露在危險中的次數減少,欺騙行動、滲透到敵人防線后面以及開發和追擊行動所固有的風險變得更小,給了指揮官更大的選擇和更可靠的機動自由[2]。除了這些基于陸軍的應用,在港口保護、海上監視發射器定位和反潛戰(ASW)監視方面也可以看到這樣的場景,在北約層面采用水下或水面無人系統群可以1)以一定的持久性來探測潛艇的過境或存在,2)允許北約國家之間共享跟蹤,減少不確定性和接觸的損失。這既可以改善北約空間的安全,又可以作為國家的勸阻力量。
機器人和自主系統(RAS)對于確保機動自由和完成任務,并盡可能減少士兵的風險來說越來越重要。在未來的北約聯合部隊中加入自主和半自主的地面、空中和海上平臺群,將提高部隊的安全性、有效性和敏捷性。
用于ISR的蜂群系統影響到以下作戰能力:
收集有關建議行動的持久性ISR數據。
部隊保護和攔截;以及
反進入區域拒止(A2AD)行動。
如下所述,采用蜂群系統會給ISR行動帶來附加值:
ISR行動的現狀:
部署具有有限觀察能力的實體,提供準靜態數據;以及
操作員與機器人的控制比例效率低下。
蜂群系統對ISR行動的附加值:
部署人工智能驅動的蜂群系統,能夠:
i) 臨時、自主觀測;
ii) 優化的廣域覆蓋;
iii) 動態態勢感知。
動態確定感興趣的相關目標,以提供及時的交戰信息,具有高精度和高保真度。
優化的人機互動,以減少操作者的工作量,提高工作效率。
使用具有相關機載處理和高性能多傳感器套件的未來低SwaP(空間、重量和功率)無人機系統,減少后勤足跡。
本文件描述了用于ISR(SS4ISR)的以蜂群為中心的系統的高層次參考架構。該參考架構涉及:
-作戰運用作問題,在以下方面:
片段式描述的相關操作場景,見第2章。
關鍵能力目標和支持每個目標的能力集,見第3章。
與每個能力相關的SS4ISR操作活動,見第4章。
系統問題,在以下方面:
由SS4ISR提供的關鍵系統服務,見第5章。
支持系統服務的系統節點和相關組件的集合,見第6章。
實現預期系統能力的關鍵技術和算法,見第7章。
系統級的互操作性,見第8章。
該文件還規定了一套關系矩陣,規定了關鍵架構元素之間的以下映射關系:
能力目標與能力映射。
能力與運營活動映射。
能力與服務映射。
"蜂群系統 "節點與系統節點的關系。
該文件的組織結構如下:
第1章 - 引言,關于該文件的基本信息,以提高其可讀性。
第2章 - 用例小結,通過小結描述一組相關的作戰運用場景。
第3章 - 能力,描述了能力目標和支持這些目標的一系列部隊能力。還提供了一個矩陣,定義了能力目標和部隊能力之間的關系。
第4章 - 業務活動,描述了3.2節中確定的一套能力的關鍵SS4ISR業務活動。
第5章 - 服務視圖,描述了系統提供的一系列相關服務。
第6章 - 系統視圖,描述了實現每個服務的可能設計方案。
第7章 - 技術視圖,確定一組技術和/或算法,這被認為是某項服務的關鍵。
第8章 - 互操作性,描述了實現系統級互操作性的可能方法,作為蜂群系統適應性和進化發展的基礎。
第9章 - 關系矩陣,規定了本架構的關鍵元素之間的映射關系,即能力目標、能力、作戰場景、服務和系統節點。
本文件代表可交付的D3:SET-263:RTG SET-263的最終報告。
來自以下組織的SET-263團隊成員編輯了本文件:
Leonardo SpA, ITA.
Aselsan, tur.
挪威國防研究機構(FFI),NOR。
美國海軍空戰中心,武器部(NAWCWD),美國。
美國國家海洋情報集成辦公室(NMIO),美國。
來自以下組織的SET-263小組成員修改了該文件:
美國海軍水下作戰中心(NUWC)分部。
美國防物資組織(DMO),NLD。
軍事決策在不同的領域--陸地、海洋、空中、太空和網絡--以及不同的組織層面--戰略、作戰、戰術和技術上發揮著關鍵作用。建模和仿真被認為是支持軍事決策的一個重要工具,例如,生成和評估潛在的行動方案。為了成功地應用和接受這些技術,人們需要考慮到整個決策 "系統",包括決策過程和做出決策的指揮官或操作員。
人工智能技術可以以各種方式改善這個決策系統。例如,人工智能技術被用來從(大)數據流中提取觀察結果,自動建立(物理/人類/信息)地形模型,產生對未來事件和行動方案的預測,分析這些預測,向人類決策者解釋結果,并建立人類決策者的用戶模型。
對于所有這些應用,人工智能技術可以在不同的情況下被使用,并且已經開始被使用,因此有不同的要求。在本文中,我們概述了人工智能技術和模擬在決策"系統"中的不同作用,目的是在我們的社區中促進對人工智能的綜合看法,并為用于軍事決策的各種人工智能研發奠定基礎。
軍事決策有多種形式。它發生在不同的領域--陸地、海洋、空中、太空、網絡--以及不同的組織層次[7]。例如,在戰略層面上,決策是否以及何時在一個特定的作戰區域內開始一項軍事任務。在作戰層面上,聯合部隊指揮官決定為某項行動分配哪些軍事要素,并指定在具體行動中尋求的預期效果。在戰術層面上,例如,海上任務組的反空戰指揮官決定由哪艘護衛艦來應對來襲的威脅。最后,在技術層面上,要決定在什么范圍內使用什么武器來消滅對手。
建模和仿真被認為是支持這些現場決策過程的一個重要工具(例如,見[3]的清單)。它提供了一種理解復雜環境和評估潛在行動方案有效性的手段,而不必使用現場測試。因此,借助于建模和模擬可以更安全、更便宜、更快速,而且可以更容易地測試不同的操作方式。此外,對于戰場上的軍事行動來說,廣泛地試驗軍事行動應該如何進行,甚至可能在道德上不負責任。因為,在指揮官可以決定不繼續按照同樣的戰術行動之前,就已經產生了意想不到的效果。
現代建模和仿真經常得到人工智能(AI)技術的支持。例如,用于仿真單個節點、組織和社會行為模型(見一些背景資料[13][4]),以獲得對對手合理和可能行為的洞察力。在這種行為洞察力的基礎上,可以為許多決策層面的軍事行動設計提供智能分析和決策支持。此外,人工智能技術被用來構建這些模型,與這些模型互動,并迅速分析大量的模擬結果數據。這里的技術進步非常多,例如,使用機器學習來構建更真實的行為模型[11],改善人機協作[5],對大量的模擬數據進行理解[10]。然而,人工智能技術只有在對決策者有用的情況下才能也應該被用于軍事決策。這意味著,只有在決策質量提高或決策過程變得更容易的情況下,才應將人工智能技術(在建模和仿真中)整合起來。
成功應用和接受用于決策支持的模擬仿真--可能建立在人工智能技術之上--取決于與主要軍事決策過程的互動和不斷學習([1])。決策者和分析員應該知道如何提出正確的輸入問題,以便通過建模和仿真來回答。然后,這些問題應該通過建模和仿真研究轉化為正確的輸出答案。因此,在各種互補的人工智能技術的支持下,應該對軍事決策過程和軍事模擬之間的互動有一個廣泛、全面的看法,并服從不同的功能要求。在本文中,我們概述了由人工智能技術支持的軍事仿真在決策"系統"中的不同作用,目的是在我們的社區內促進對人工智能的綜合看法,并為軍事決策的各種人工智能研發奠定基礎。
如引言所述,決策發生在不同的領域和不同的組織層面。在這里,我們提出了一個決策系統的示意圖,以提供一個關于如何通過仿真來支持決策的一般見解。這一觀點(圖1)來自于對多個決策過程的分析,如聯合定位[5]、作戰計劃[7]、海上反空戰[1],并與著名的OODA環[8]相結合。該觀點中的元素解釋如下。
圖1:由建模和仿真支持的軍事決策周期的系統觀點。
觀察:OODA循環的第一步是觀察,從廣義上講,就是觀察現實世界中正在發展和出現的事件和情況。觀察包括,例如,來自傳感器的(原始)數據,包括我們自己的眼睛和耳朵,以及來自報告、報紙和社會媒體的符號數據。還收集了來自高層指揮和控制實體的指導意見。這些數據由分析員處理,對鏡頭中的個體進行命名,計算某些Twitter標簽的出現次數,驗證某個事件是否真的發生,等等。根據[9],這可以被稱為情境意識的第一級:對當前情況下的元素的感知。
世界模型:在OODA環的觀察步驟中,已經開始了構建世界模型的過程,無論是隱性的還是顯性的。符合軍事決策觀點的世界模型的另一個名稱是共同行動圖。所有相關的概念都在世界模型中得到體現,包括不確定因素和假設。請注意,世界模型可以被仿真,即個體、平臺、團體或社會的行為可以隨著時間的推移而被預測,即使是在用戶的頭腦中隱含完成。
定位:在OODA循環的第二步,分析者使用他的專業知識,對觀察結果進行推理,形成假設,例如對手的意圖。通過這樣做,實現了對真實世界的深入理解[12],這反映在世界模型中(仍然是顯性或隱性的)。在態勢感知方面,這被稱為第2級(對當前形勢的理解)和態勢感知能力第3級(對未來狀態的預測)。在任何時候,推理的結果可能是世界模型結構是不充分的,例如,現實世界的一個方面被認為是不相關的,但最后發現是相關的。因此,世界模型需要被更新。
決定:決策者,可能是與分析員相同的人,將根據對現實世界的理解,考慮如何采取行動的選項。世界模型的預測能力被用來演繹各種情景,讓人了解什么是理想的行動方案,什么不是,或者讓人了解空間和/或時間上的關鍵點,這樣就可以對這些關鍵點給予額外考慮。當然,如果世界模型是隱含的,這都是決策者的精神努力。此外,對于感興趣的現實世界系統的預測行為,可以得出的結論的精確性和/或確定性有很大不同:從精確的路線,到可能的戰略和理論的廣泛指示。
行動:在OODA-環的這一步,行動被執行。這些行動發生在真實世界中,然后一個新的OODA-環開始觀察是否需要重新考慮已經做出的決定。另一個行動可以是向 "較低層次"的決策過程下達命令,例如,讓下屬單位計劃和執行他們所得到的任務。這就是不同組織層次的決策過程的互動方式。還要注意的是,盡管每個組織層面的世界模型都與真實世界相聯系,但這些世界模型的結構(即被認為是相關的)可能是不同的。
從概念上講,在上述的決策過程中引入模擬(實際上首先是建模的巨大努力)是很直接的。在第一步和第二步中,建立了世界相關部分的模型,在以后的時間里,它被用來評估許多不同的情景,分析由此產生的結果,并根據其結論做出決定。正如后面將顯示的那樣,人工智能技術的作用與建模和模擬的使用有很大關系。
雖然從概念上來說,納入仿真模擬和人工智能技術是很簡單的,但為了給行動提供真正的附加值,它需要被嵌入到具體的決策過程中。而每個決策過程都是不同的,有不同的時間限制,不同的行動者,在不同的操作環境中。這將對開發使用的解決方案,包括人工智能技術,提出不同的功能要求。此外,根據具體的作戰決策環境,應用人工智能技術的附加值(或缺乏附加值)將是不同的。在下一節中,我們將對一個具體的案例進行進一步的探索,盡管肯定不是詳盡的努力,以允許對這種系統在這個過程中可能具有的不同角色進行更通用的識別。
本節提供了一個關于如何利用仿真和人工智能技術來支持作戰層面上的(蓄意)聯合目標定位決策的案例研究。對于每個想法,都有以下描述:被加強的行為者(決策者)和/或產品,人工智能如何提供支持,以及使用這種形式的支持的附加值是什么。請注意,這個案例研究的目的是為了更好地了解人工智能技術應用的廣度,因此,目標不是完全涵蓋所有的可能性,也不是過于詳細。這種類型的案例研究已經確保了可以得出初步的功能要求,人工智能技術和智能建模與仿真應該應用于此。
圖2顯示了北約盟國聯合出版物3.9中的聯合瞄準決策周期,其中強調了五個想法。
圖2--來自北約盟國聯合出版物3.9的聯合目標定位周期,JFC=聯合部隊指揮官,JTCB=聯合瞄準協調委員會,JTL=聯合瞄準清單,TNL=目標
想法1--基于AI的目標系統分析的所有來源分析。第一個想法是支持目標小組的成員在聯合目標定位周期的第二階段參與目標系統分析,進行目標開發。例如,假設從第一階段開始,就打算通過瞄準對手的石油生產來擾亂其資金能力。在第二階段,分析人員將研究石油生產的目標系統,以確定油井、煉油廠、管道、重要的道路,也許還有相關的關鍵人物,等等,基于他們擁有的所有來源(圖像、信號情報、人類情報,等等)。
人工智能技術可以協助人類分析員建立 "目標系統模型",即通過采用模式識別算法來處理大量的所有來源的信息,通過使用推理算法將信息碎片組合成一個結構化和連貫的整體。分析傳入信息的算法可能--經過增量的人工智能驅動的創新--也能夠識別尚未反映在目標系統模型中的新概念,然后可以自動添加到模型中。另一種可能性是創建一個 "虛擬分析師"(見圖3),通過不斷挑戰假設、假說和人類偏見來協助人類分析師,這需要額外的用戶建模和可解釋的AI技術。
圖3:人類和虛擬分析員,一起解釋數據,推理信息和知識,以建立一個目標系統模型。
這個想法的潛在附加值首先體現在完整性上,更多的目標可以呈現給人類分析員--它仍然可以為交叉檢查的目的做最后一步的目標審查。因為所有來源的情報都被整合到目標識別決策中,所以可以得出更具體的目標信息。識別算法經過訓練后,與基于人眼從數據中識別目標時相比,可以更快更及時地進行識別。最后,該算法可以明確地轉向識別不同類型的目標,這些目標可能并不都在人類分析員的經驗或觀察能力范圍內。
想法2--通過算法識別來自目標系統分析的優先目標。第二個想法是支持從一個給定的目標系統分析中識別優先目標。這有助于目標支持小組成員得出一個聯合的優先目標清單,該清單是在聯合目標定位周期的第二階段,即目標開發階段制定的。人工智能技術的支持始于將目標系統分析(如果還沒有的話)轉化為計算機可理解的形式,該形式由功能關系連接的實體組成,并由目標任務的目標支持。然后,在相關的時間范圍內計算直接或間接瞄準不同實體所產生的效用(例如,效果和效果的持續時間)。
然后,最終結果可以由人類分析員檢查,該分析員可能會重新引導算法的某些部分,以確保最終結果選擇的優先目標盡可能地滿足和平衡任務目標。另一種可能性是,分析表明,對目標系統的某些部分還沒有足夠的了解,無法做出某種決定,然后發出新的情報請求,以減少這種不確定性。
在這種情況下,使用人工智能技術的附加價值首先體現在通過完整地確定優先事項,包括最大限度地實現任務目標,同時最大限度地減少負面問題,從而更好更快地確定優先次序。這種全面的分析可能會導致原始的目標選擇,在這種情況下,會發現反直覺但非常有效的目標。目標優先級的可追溯性增加了,因為目標選擇問題的算法規范以及積極和消極的相關功能迫使決策者在激發他們的偏好時完全明確。
想法3--能力和優先目標的自動映射。與目標開發(第二階段)密切相關的是第三階段的能力分析。第三個想法是協助,仍然支持目標支持小組的成員,找到最適當的(致命和非致命)能力的最佳同步組合,可以應用于產生所需的物理和心理效果。使用模擬和人工智能技術來自動生成和播放高水平和低水平的行動方案,可以獲得對計劃的優勢、機會、弱點和威脅的深刻理解。當然,只有在與人類分析員和決策者密切合作的情況下,建立這樣的理解才是有用的,這就需要有人類意識的 "虛擬分析員 "技術。
想法4--計算機輔助的穩健和適應性部隊規劃和分配。在聯合定位的第四階段,能力分析的結果被整合到進一步的行動考慮中,推動聯合部隊指揮官對目標的最終批準。仿真和人工智能優化技術可用于尋找稀缺資源對目標或其他任務的最佳分配。什么被認為是 "最好的 "可以是不同的,例如,爭取最大的效果、安全、穩健、靈活,或這些和更多因素的任何組合。這可能會提供原始的規劃和分配方案,從人類分析者的角度來看,這些方案部分是反直覺的,但卻富有成效。智能優化算法可以幫助確定時間和/或空間上值得監測的關鍵點。而且,如果可以實時跟蹤進展,在事件或機會實際發生之前就可以立即生成重新分配方案,在時間緊迫的情況下減少決策時間。
想法5--自動評估軍事行動績效措施。在聯合定位的最后階段,收集和分析數據和信息,以確定計劃的行動在多大程度上得到執行(績效的衡量),以及達到預期的效果(效果的衡量)。因為這種類型的分析與其他階段的分析基本相似(即需要觀察和理解),所以在這里采用的模擬和人工智能技術可以被重復使用。例如,"目標系統模型"可以用來事先確定哪些措施或措施的組合最能說明性能和/或成功,也許還要考慮到其他因素,如效果的可測量性和延遲性。這些見解可用于指導例如戰斗損失評估工作。算法可以自動產生多種假設,當數據/信息可用時,"虛擬分析師"可以協助對這些假設和信息進行推理,幫助人類分析師以結構化的方式更好地解釋復雜的情況。
在本節中,我們將討論人工智能技術在軍事決策中可以發揮的作用,并將這些作用與前面介紹的軍事決策系統聯系起來。這些作用是由上面的案例研究綜合而成的。不同的作用是沿著兩個層次結構的,從上到下:在 "過程"層面,不同但連貫的步驟/階段被執行;在 "個體"層面,人類(或團隊)負責執行決策過程的特定步驟。
在整個決策過程的層面上,有多個步驟可以區分。在前面介紹的決策系統觀點中,這些步驟是觀察、定位、決定和行動。在聯合定位案例研究中,這些對應于六個階段,由不同的人在不同的時間執行。在這個層面上,我們為人工智能技術定義了四個功能角色,以支持決策過程。
感知:這個角色中的人工智能技術,主要以模式識別的形式,幫助處理大量的數據,如在圖像中尋找人,檢測數據流中的異常情況等。
態勢理解:這個角色的功能是實現對當前或假設的作戰環境的理解[12],從而描述所有相關實體、它們之間的關系以及不可觀察的屬性,如它們的野心和目標。例如,對關于最近敵對活動的現有信息進行推理,結合關于他們的理論的一般知識,可以用來產生關于他們最可能的意圖的假設。
計劃生成:在這個角色中,人工智能技術,例如搜索和優化,被用來生成旨在達到(或避免)某種目標情況的計劃、策略和行動方案。處理元標準,如計劃的穩健性或情況的實用性也是這個作用的一部分。顯然,在許多情況下,不確定性是行動環境所固有的,因此不能被忽視。盡管如此,對當前形勢的理解越好,預測能力就越強。
學習:扮演這一角色的人工智能技術被用來更新有關作戰環境的知識。例如,在某個時間點,人們可能會發現一個被認為是正確的關于敵人理論的假設不再有效了。為了能夠保持正確的理解,這種新知識應該反映在所有其他決策步驟中。
在單個節點層面上,決策過程的單一步驟被執行,通常由一個或一組人類分析員和/或決策者負責。無論這一步需要什么,人工智能技術都可以在不同的合作角色中被使用,以支持人類。
專家系統支持:在這個角色中,支持的形式就像一個經典的專家系統,以知識和優化結果的形式向人類決策者或分析員提供建議。重要的考慮因素是,例如,如何以人類能夠接受的方式向其提供建議。對可解釋人工智能的研究可能是一個方向。
虛擬團隊成員:在這個角色中,人工智能技術被用來在人類和支持系統之間創造一種更平等的互動關系,積極為一個共同的目標工作。例如,虛擬團隊成員可以通過提出問題使假設明確化或挑戰偏見來幫助做出決定的(認知)過程。人類-人工智能的研究可能是一個追求的方向。
自主決策:決策過程中的其他步驟的互動,專家系統和虛擬團隊成員支持的考慮同樣有效。例如,在其他決策中的人類需要能夠推斷出一個自主系統。
圖4顯示了在軍事決策系統視圖中繪制的人工智能的七個角色。當使用模擬和人工智能來支持決策過程時,應該始終考慮這些不同的角色是如何互動的,無論是在過程層面還是在個人層面。例如,在聯合目標定位的過程層面上,第二階段包括定位(目標系統分析)和決定(為達到預期效果而瞄準什么)。第三階段也包括定位(自身能力)和決定(如何實現預期效果)。這些階段共享相同的世界模型,在這個過程中引入人工智能支持將推動這些步驟的合并,這不是不可想象的。在個體層面上,例如再次考慮第2階段,分析員可以得到綜合態勢理解、規劃生成和學習技術的支持,以及虛擬團隊成員和專家系統支持技術的任何組合。
圖4:由建模和仿真支持的軍事決策周期的系統視圖,其中人工智能技術的功能(黃色)和協作(綠色)作用被描繪出來。
在本文的第一部分,我們介紹了軍事決策的系統觀點,主要基于OODA循環,其中我們介紹了世界模型,作為向整個決策周期提供建模和仿真支持的核心手段。接下來,從我們的聯合目標定位案例研究中,我們推斷出人工智能可以為軍事決策做出貢獻的七個功能性和協作性角色。這些角色對應于決策步驟,或者對應于如何向負責該過程步驟的人提供支持。最后,我們將這些人工智能角色整合到決策系統視圖中。
本文的目標是為我們社區內人工智能的綜合觀點做出貢獻,并為軍事決策的人工智能各種研發奠定基礎。在開發支持軍事決策的模擬和人工智能時,我們建議同時考慮過程層面和單個節點層面。在過程層面上,通過使用建模和仿真可以獲得好處。在單個節點層面上,為人類分析員和決策者提供實際支持,人工智能技術可以通過不同的角色組合對此作出貢獻。鑒于決策過程的各個步驟都是不同的,并且提出了不同的要求,履行這些不同角色的人工智能技術需要作為一個整體來開發。
我們相信,隨著對這一主題的更多研究,軍事決策的速度和質量都可以得到改善。然而,非常重要的是,要持續關注特定的未來人工智能應用的附加值,以及研究這些應用可能對,例如,負責該過程的人的所需技能,甚至該過程本身的影響。最后需要的是一個系統,它的存在是因為它可以建立,而不是有人幫助。對于這一點,應該更普遍地回答如何限定然后量化應用人工智能進行具體軍事決策應用的附加價值的問題。這樣的見解反過來又會成為關于人工智能用于軍事決策的集體技術路線圖的寶貴基礎。
[1] Bloemen, A., Kerbusch, P., van der Wiel, W., Coalition Force Engagement Coordination, TNO Report TNO-2013-R12117, 2015.
[2] Connable B, Perry W, Doll A, et al. Modeling, Simulation, and Operations Analysis in Afghanistan and Iraq. Santa Monica, CA: RAND, 2014.
[3] Davis P., Kulick J., Egner M. Implications of Modern Decision Science for Military Decision-Support Systems. Santa Monica, CA: RAND, 2005.
[4] Kunc, M., Malpass, J., White, L.(2016). Behavioral Operational Research, Theory, Methodology and Practice. Palgrave Macmillan, London.
[5] Langley, P., Meadows, B., Sridharan, M., Choi, D. (2017). Explainable Agency for Intelligent Autonomous Systems. Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications (IAAI-17).
[6] NATO Allied Joint Doctrine For Joint Targeting AJP 3.9(B), 2015.
[7] NATO Allied Command Operations. Comprehensive Operations Planning Directive Interim V2.0.
[8] “OODA loop.” Wikipedia, The Free Encyclopedia. 10 Mar. 2018.//en.wikipedia.org/wiki/OODA_loop
[9] “Situation Awareness.” Wikipedia, The Free Encyclopedia. 17 Mar. 2018.
[10] Smit, S., Veldhuis, G., Ferdinandus,G., et al. KaV Advanced Visual Analytics, TNO Report DHWELSS-, 2016.
[11] Toubman, A., Poppinga, G., Roessingh, J. (2015). Modeling CGF Behaviour with Machine Learning Techniques: Requirements and Future Directions. Proceedings of Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015.
[12] “Understanding.” Wikipedia, The Free Encyclopedia. 18 Apr. 2018.
[13] Zacharias, G., MacMillan, J., van Hemel, S. (2008). Behavioral modeling and simulation: From individuals to societies. National Research Council, National Academies Press.
我們的同行競爭者,利用科學、技術和信息環境的新興趨勢,已經投資于挑戰美國和重塑全球秩序的戰略和能力。他們采用創新的方法來挑戰美國和盟國在所有領域、電磁波譜和信息環境中的利益。他們經常尋求通過在武裝沖突門檻以下采取模糊的行動來實現其目標。在武裝沖突中,武器技術、傳感器、通信和信息處理方面的進步使這些對手能夠形成對峙能力,以在時間、空間和功能上將聯合部隊分開。為了應對這些挑戰,履行美國陸軍在保護國家和確保其重要利益方面的陸軍職責,陸軍正在調整其組織、訓練、教育、人員和裝備的方式,以應對這些圍繞多域作戰(MDO)概念的未來威脅。
陸軍的情報工作本質上是多領域的,因為它從多個領域收集情報,而且可以接觸到合作伙伴,彌補陸軍信息收集能力的不足。在競爭中,陸軍情報能力作為掌握作戰環境和了解威脅能力和脆弱性的一個關鍵因素。在整個競爭過程中,陸軍情報部門為每個梯隊的指揮官和參謀人員提供所需的態勢感知,以便在所有領域、電磁頻譜和信息環境中可視化和指揮戰斗,并在決策空間匯集內外部能力。
這個概念描述了關鍵的挑戰、解決方案和所需的支持能力,以使陸軍情報部門能夠在整個競爭過程中支持MDO,以完成戰役目標并保護美國國家利益。它是陸軍情報部隊、組織和能力現代化活動的基礎。這個概念還確定了對其他支持和輔助功能的影響。它將為其他概念的發展、實驗、能力發展活動和其他未來的部隊現代化努力提供信息,以實現MDO AimPoint部隊。
陸軍未來司令部的情報概念為陸軍情報部隊的現代化活動提供了一個規劃,以支持陸軍2035年的MDO AimPoint部隊在整個競爭過程中與同行競爭對手進行多域作戰。它提供了支持2035年以后MDO AimPoint部隊的見解。這個概念是對2017年美國陸軍情報功能概念中概述想法的修改:情報作為一個單位在所有領域的運作,有廣泛的合作伙伴投入。這個概念擴展了這些想法,以解決陸軍在進行大規模作戰行動中的頭號差距:支持遠距離精確射擊的深度傳感。領導陸軍情報現代化的舉措是組織上的變化,以提供旅級戰斗隊以上梯隊的能力,以及支持深層探測問題的四個物資解決方案。
支持MDO AimPoint Force 2035的組織變化使戰區陸軍、軍團和師級指揮官能夠以遠程精確火力和其他效果塑造深度機動和火力區域。在戰區層面,軍事情報旅的能力得到提高,新的多域特遣部隊擁有軍事情報能力。遠征軍的軍事情報旅被重新利用和組織,以支持軍團和師的指揮官,而不是最大限度地向下支持旅級戰斗隊。
支持MDO AimPoint Force 2035的物資變化,即將所有的傳感器、所有的火力、所有的指揮和控制節點與適當的局面融合在一起,對威脅進行近乎實時的瞄準定位。多域傳感系統提供了一個未來的空中情報、監視和偵察系統系列,從非常低的高度到低地球軌道,它支持戰術和作戰層面的目標定位,促進遠距離地對地射擊。地面層系統整合了選定的信號情報、電子戰和網絡空間能力,使指揮官能夠在網絡空間和電磁頻譜中競爭并獲勝。戰術情報定位接入節點利用空間、高空、空中和地面傳感器,直接向火力系統提供目標,并為支持指揮和控制的目標定位和形勢理解提供多學科情報支持。最后,通過分布式共同地面系統,陸軍提高了情報周期的速度、精度和準確性。
伴隨著這些舉措的是士兵培訓和人才管理方法,旨在最大限度地提高對目標定位和決策的情報支持。從2028年MDO AimPoint部隊開始,陸軍情報部門將繼續改進軍事情報隊伍,以支持2035年及以后的MDO AimPoint部隊。
這一概念確定了陸軍情報部門將如何轉型,以支持陸軍和聯合部隊在整個競爭過程中與同行競爭者抗衡。
圖1 邏輯圖
低速、慢速和小型 (LSS) 飛行平臺的普及給國防和安全機構帶來了新的快速增長的威脅。因此,必須設計防御系統以應對此類威脅。現代作戰準備基于在高保真模擬器上進行的適當人員培訓。本報告的目的是考慮到各種商用 LSS 飛行器,并從不同的角度定義 LSS 模型,以便模型可用于LSS 系統相關的分析和設計方面,及用于抵制LSS系統(包括探測和中和)、作戰訓練。在北約成員國之間提升 LSS 能力并將 LSS 擴展到現有分類的能力被認為是有用和有益的。
【報告概要】
在安全受到威脅的背景下考慮小型無人機系統 (sUAS)(通常稱為無人機)時,從物理和動態的角度進行建模和仿真遇到了一些獨特的挑戰和機遇。
無人機的參數化定義包括以下幾類:
描述無人機飛行動力學的分析模型在數學上應該是合理的,因為任務能力在很大程度上取決于車輛配置和行為。
考慮到剛體在空間中的運動動力學需要一個固定在剛體本身的參考系來進行合適的力學描述,并做出一些假設(例如,剛體模型、靜止大氣和無擾動、對稱機身和作用力在重心處),可以為 sUAV 的飛行動力學開發牛頓-歐拉方程。
在檢測 sUAS 時,必須考慮幾個現象,例如可見波范圍內外的反射、射頻、聲學以及相關技術,如被動和主動成像和檢測。
由于需要多個傳感器檢測 sUAS,因此有必要考慮識別的參數以便針對不同類型的檢測器對特征進行建模。此外,對多個傳感器的依賴還需要在信息融合和集成學習方面取得進步,以確保從完整的態勢感知中獲得可操作的情報。
無人機可探測性專家會議表明了對雷達特征以及不同無人機、雷達和場景的聲學特征進行建模的可能性,以補充實驗數據并幫助開發跟蹤、分類和態勢感知算法。此外,雷達場景模擬的適用性及其在目標建模和特征提取中的潛在用途已得到證實。
然而,由于市場上無人機的復雜性和可變性以及它們的不斷增強,就其物理和動態特性對無人機簽名進行清晰的建模似乎并不容易。
sUAS 特性的復雜性和可變性使得很難完成定義適合在仿真系統中使用的模型的任務。這是由于無人機本身的幾個參數,以及考慮到無人機的所有機動能力和特性所需的飛行動力學方程的復雜性。
此外,sUAS 特性的復雜性和可變性不允許定義用于評估相關特征的參數模型。
圖1 無人機類別與其他類別/參數的關系(part 1)
圖2 無人機類別與其他類別/參數的關系(part 2)
圖3 參考坐標系
【報告目錄】