戰斗機的時代已經過去。這話是埃隆-馬斯克在2020年空戰研討會上描述未來空戰時說的。這產生了巨大影響力。
馬斯克的立場似乎得到了美國國防部高級研究計劃局(DARPA)Alphadogfight(ADT)演示的支持。在ADT期間,幾個人工智能(AI)項目在一場斗狗比賽中相互對決。獲勝的人工智能隨后與人類戰斗機飛行員進行了面對面的較量。雖然DARPA聲稱比賽的目的是開發支持人類飛行員的人機共生的人工智能程序,但結果對飛行員本人來說不可能更糟。人類在與機器的每一次交戰中都輸了,而且比人工智能以前的機器對手輸得更快。
同樣值得考慮的是,在超視距情況下——在這種情況下,距離的計算、對飛機相對位置的了解、相對高度、速度和武器都必須在非常高的速度下完成——結果會如何。考慮到空對空戰術的復雜性以及欺騙和電子戰在其實施中的突出作用,結果可能會更加令人震驚。
盡管如此,許多飛機制造商仍在繼續開發有人駕駛的作戰飛機。即使是成本驅動的商業航空部門也不太可能取代人類飛行員。此外,盡管西方第五代戰斗機都是單座飛機,即使是出于訓練目的,雙座設計也回到了桌面上。最近,中國第五代殲-20戰斗機采用雙座配置,蘇霍伊公司正在考慮其蘇-75 "Checkmate"的雙座版本。回歸雙座設計背后的原因仍然不透明,但鑒于目前空中行動的復雜性和對更復雜的多域作戰(MDO)的預期,下一代戰斗機可能受益于武器系統官(WSO)。
另外,DARPA的空戰進化(ACE)計劃設想了一個中間地帶,人類飛行員信任人工智能來控制飛機,而他們需要人類來指揮任務,如決定交戰策略、選擇和優先考慮目標,以及確定最佳武器或效果。
未來幾乎肯定會包括馬斯克所宣稱的、DARPA所預期的人工智能優勢,但它們應該伴隨還是取代人類飛行員?許多挑戰依然存在。本文將強調最重要的挑戰。
支持人工智能的最常見的機器學習方法是強化學習(RL),它使計算機算法能夠從過去的事件中自我學習。機器使用一個獎勵系統來區分成功和不成功的動作,它可以在沒有指導的情況下快速進行,不需要人類的互動。同時,人類也可以指出錯誤,幫助強化未來的課程,讓機器尋求成功。
獎勵函數設計是另一種機器學習技術,通過給交易分配相對價值來加速學習結果,從而補充RL。這個概念激勵人工智能通過利用它已經學到的關于其先前選擇的 "價值 "的東西,而進入到一個更高的獎勵狀態。這種評估使人工智能能夠在探索一系列行動以追求更高的獎勵時進行風險與獎勵計算。目標是在探索了所有可能的解決方案和獎勵之后,達到一個良好的平衡。
一個可能加速學習過程的額外優勢是,人工智能系統可以建立在其他人工智能系統的經驗上,使用額外的機器在所需的網絡內進行訓練,而無需人類參與,并將獲得的知識轉移到目標機器上。幾個模擬器,每個都應用不同的戰術,可以極大地加快學習過程。
然而,機器學習不應該被看作是萬能的。它仍然高度依賴于軟件設計、算法和數據選擇。納入機器學習技術內的不完整或有毒的信息會導致學習過程中出現重大缺陷或錯誤。因此,人工智能可能做出無效或危險的決策。
盡管現在的趨勢是,只有在ACE計劃顯示人工智能飛得更好的情況下,人工智能才會幫助飛行員,但在真正的戰斗機上,這兩種選擇將如何合并?
一種選擇是,飛機由人類飛行員控制,只由人工智能提供建議,至少在機器識別出關鍵風險并評估出它能比人類更快或更好地做出反應之前。人類飛行員應該始終保留對這一決定的控制權,還是應該授權人工智能在沒有預先授權的情況下進行控制,以確保任務成功或飛機生存?同樣地,飛行員是否應該在知道他的反應時間意味著失去可能影響定位或射擊機會的關鍵秒數的情況下,采取所有武器使用行動?
此外,在飛機機動能力的極端情況下不會有失去意識的風險,這是人工智能相對于人類飛行員所具有的誘人優勢之一。雖然預計人工智能可以納入飛行員的健康狀況數據,但獲得對敵優勢的唯一方法可能是犧牲飛行員的意識。在飛行員沒有意識的情況下,人工智能應該自主地使用武器嗎?
此外,由于戰斗機傳統上是以雙機或四機編隊的形式運行,關于人類與人工智能控制的決定將影響到單個飛機和整個機隊。需要考慮人工智能控制的飛機如何與其他編隊的機組人員進行交流,以及是否通過數據鏈、語音或兩者進行。鑒于飛行中的一些(而不是所有)飛機有可能在人工智能的控制下--而且有可能是無意識的飛行員--整個編隊的控制權應該下放給人工智能,還是應該轉移給任何有意識的飛行員?
一個更直接的選擇是將人工智能限制在一個輔助角色,在準確的時刻提供適當的信息,以避免飽和,也許,在特殊情況下,如生存需要時,就像現有的線控系統在超過攻擊角限制或在某些失控的情況下對飛機進行指揮。
到今天為止,由于其相當復雜,最可能的演變是人工智能只是幫助飛行員。然而,隨著技術的快速發展,我們當然不應該回避人工智能的支持,尤其是知道潛在的對手會廣泛地使用它。
許多作者都寫過關于機器人自主和人工智能控制的武器系統的道德和倫理問題,并探討了我們是否應該允許機器對人類做出生死決定。從倫理上評估的一個特殊案例是,人工智能凌駕于人類飛行員的控制之上。一些人認為,一個充分發展的人工智能將對其決定和后果負責,并承擔法律責任。相反,其他人認為至少有一個人必須保留責任和法律責任。如果人工智能控制的飛機出現錯誤,導致人類生命的損失,誰將負責?可以認為是人類飛行員,即使他可能沒有機會干預或取消行動,甚至是程序員,但最有可能的是,下令執行任務的指揮官將是負責的一方。
來自情報的數據將為人工智能的學習過程提供基礎。預計人工智能將處理飛機、其飛行成員以及可能更廣泛的云聯網系統的所有可用傳感器數據。在實時的情況下,這將支持單個飛機的決策優勢,并在測試和評估活動中提出和評估戰術的重要能力。然而,正如單靠數據不等于準確的情報,單靠數據也不會創造新的戰術。人類的判斷會解釋數據,推斷對手的能力和戰術,創造測試環境,并評估結果。這些人類選擇的準確性將不可避免地影響人工智能衍生的戰術,就像在傳統戰術開發中一樣。在這里,應該利用人工智能運行大量模擬集的能力來提供廣泛的潛在選擇,以應對不可預見的對手能力和戰術。
當我們想到戰斗機中的人工智能與人類的共生關系時,不可避免地會想到R2D2、天行者盧克和《星球大戰》中的X-Wing戰斗機。然而,在真正的戰斗機中,人工智能將在哪里?它是在飛機上還是在云中?云端的人工智能會克服通信延遲,在斗狗中獲得對人類的優勢嗎?將人工智能或飛行員移位意味著應盡量減少風險,要知道通信方面的優勢永遠不是絕對的,也不是永久的。
為了設定預期,應該注意到ADT使用了一個計算機機架和服務器來處理由人類駕駛的戰斗機提供的實時數據。這樣的計算能力和啟用的數據優勢目前無法納入戰斗機中。
在ADT競賽中,人類飛行員使用高保真的虛擬現實系統來視覺追蹤人工智能駕駛的對手飛機。然而,由于比賽中使用的數字智能模型缺乏傳感器,人工智能收到的所有對手數據都是直接輸入的,減輕了感應和解釋等更復雜的任務。使用關于對手飛行參數的準確數據給機器帶來了巨大的優勢。在實際戰斗中,這種數據不容易獲得,而且即使收集到也不一定準確。人類飛行員必須推斷出對手的參數,使解釋和決策變得復雜。人工智能agent將不得不做同樣的事情。
為此,人工智能將需要的不僅僅是飛行員可用的信息(包括雷達、警告接收器、紅外傳感器和數據鏈),以 "感受"和保持對形勢的認識。人工智能將需要一套類似于自動駕駛汽車中的視覺傳感器,以實現與人類飛行員目前所完成的同等的視覺觀察。雖然預計人工智能在解釋適當集成的傳感器方面會更快--這本身就是一個不小的成就--但人工智能對需要 "感覺或直覺 "的非預期或異常情況的反應如何,還有待觀察。這將在ACE計劃的最后一步進行評估,即兩架戰斗機之間的真正交戰,一架由人類駕駛,另一架由人工智能駕駛。
未來的戰斗機,特別是那些設想與人工智能駕駛的無人機/僚機一起使用并在MDO環境下運行的戰斗機,將經歷急劇增加飛行員工作量。人工智能必須在管理這種工作量方面發揮一些作用。
然而,考慮到各種可能性,很難想象人類作為人工智能駕駛的飛機上的乘客來管理空戰,而人工智能自主地操縱飛機進入射擊位置,然后將武器的控制權移交給飛行員或在沒有人類授權的情況下發射導彈。更容易設想的是,飛行員在人工智能的支持下駕駛飛機,以提高戰術信息的準確性和及時性,并提供威脅診斷、警告和可能的防御性機動,如使用反措施或其他戰術選擇。
雖然有理由認為,人工智能與人類的合作將不如對手使用不受約束的人工智能所能做到的,但人工智能是否能在未來的整個場景中取代人類飛行員,還有待觀察。盡管如此,預計人工智能與人類的合作將為未來的戰斗機提供一個更有彈性和有效的方法,但只有當優化的人工智能與人類的共生關系被優先考慮并實現時。
誠然,未來的戰斗機作戰行動將不斷發展,埃隆-馬斯克關于載人戰斗機時代結束的預言性警告與事實相去甚遠。
拉斐爾-伊卡索,中校于1993年加入位于圣哈維爾的西班牙空軍學院。他于1997年完成了基礎飛行員培訓,并于1998年在第23聯隊完成了戰斗機武器課程。1998年至2007年,他在薩拉戈薩空軍基地第15戰斗機聯隊的151SQN中駕駛EF-18戰斗機。2007年被分配到巴達霍斯第23聯隊的戰斗機武器學校擔任教官飛行員。2009年回到第15聯隊,在152SQN和153改裝SQN擔任EF-18教官。2008年他被晉升為少校,2009年被分配到空軍學院的學術部門,擔任飛行教官以及國防大學的教師。2013年至2016年,他在北約總部空軍司令部拉姆施泰因的評估部門(TACEVAL)擔任飛行部隊項目官員和評估員。在馬德里的武裝部隊聯合參謀課程結束后,2017年他被提升為中校,并被派往托雷洪空軍基地的西班牙空戰司令部A7科(訓練、演習和評估)擔任參謀,之后被派往聯合空軍能力中心。在此期間,他參加了阿維亞諾空軍基地的幾次部署,在巴爾干半島上空飛行。他擁有聯合參謀課程和地緣政治和國際關系的碩士學位等。他已經在C-101、F-5和EF-18上飛行了2700多個小時。
最佳的飛行員-飛機互動一直被認為是實現有效操作性能的基石,同時在任務或使命中保持高水平的安全。隨著飛行任務越來越復雜,越來越多的信息到達機組成員手中。市場上有新的技術解決方案,任務中的表現是可以衡量的。當考慮到基于神經科學進步的人機互動時,就有可能衡量和評估任何人機接口(HMI)的有效性。為了支持空勤人員的表現,必須利用現有的創新,如數據融合或人工智能(AI)輔助決策和任務管理,以成功執行軍事任務。人工智能和大數據管理與機器學習相結合,是改善和運行現代作戰場景的關鍵因素。以網絡為中心的綜合武器系統為聯合部隊指揮官提供了靈活性,有助于當前和即將到來的聯合任務的成功。
在聯合行動中,當兩個或更多的國家使用所有可用的領域時,盡可能快速有效地利用所有的資產和能力,以獲得戰斗空間的最佳總體情況將是至關重要的。因此,解決和驗證為機組人員優化的下一代駕駛艙的創建是很重要的。先進的指揮和控制系統,為執行任務提供安全和可互操作的支持,將確保獲得一個綜合和同步的系統,并將實現戰場上的信息優勢。在未來,各級指揮官對戰場的可視化和理解方式,利用某些輔助手段來指導和引導他們的部隊,將成為勝利的決定因素。
根據JAPCC在2021年發布的聯合全域作戰傳單,全域作戰包括 "快速處理數據和管理情報,以及實現高效作戰所需的技術能力和政策,包括所有貢獻的資產"。其他北約出版物使用術語多域作戰(MDO),主要描述任務環境的相同挑戰。找到一個連貫的、共同使用的術語是不斷發展的,但它不會改變HMI定義背后的含義。此外,重要的是開發一個連接的、復雜的接口,能夠協助指揮官和他們的下屬軍事人員同時和毫不拖延地分享信息,并迅速做出決定和采取行動。
正如Todd Prouty在他的一篇文章中所認識到的,"聯合全域指揮與控制(JADC2)正在形成,成為連接行動的指導性概念","將使用人工智能和機器學習,通過以機器速度收集、處理和計算大量的數據來連接聯合部隊"。兩種類型的態勢感知(SA)都同樣重要,因為它們不僅可能影響任務的成功完成,甚至還可能影響戰略層面的意圖。定義SA的最簡單方法是對周圍環境的徹底了解。戰術上的SA意味著機組人員知道這個場景,知道自己在任務中的任務和角色,以及所有參與同一行動區域的部隊。他們知道如何飛行任務,也知道成功或失敗的目的和后果。飛行SA主要關注的是飛行的性能和參數,空間和時間上的位置,以及飛機的性能。這兩個SA是不同的,需要在飛行過程中不斷監測。通常情況下,兩者在任務的不同階段需要不同程度的關注,如果有能力的話,可以由機組成員共享。一些技術上的改進可以只提高一個SA,但最好是同時提高兩個SA,以滿足要求并提高整體SA。這些發展也必須支持戰略層面的意圖,并提供其在決策過程中需要的SA。
現代機體和駕駛艙應支持機組人員的機載工作量,戰斗飛行員需要這種支持以保持有效。這可以通過人工智能自動管理,使機組人員能夠將更多的精力放在他們的任務和使命上。可以說,用算法來增強機體的基本需要,以補充機組人員處理飛行期間增加的信息流的能力。
在開展行動期間,預計情況可能會迅速變化,指揮官必須立即采取行動,重新安排部隊的任務。在地面或飛行中,飛行員可能會在短時間內收到一個新的任務。這個新命令不應該被格式化為純粹的基本信息;當整個更新包也能被可視化時,支持將是最佳的。一個例子是數字移動地圖系統,它描述了關于友軍和敵軍的詳細信息,包括協調信息。當飛行員改變飛行計劃時,駕駛艙及其所有設置都將自動更新。正如《國防雜志》所指出的,"從無限的資源中收集、融合和分析數據,并將其轉化為可操作的情報傳遞到戰術邊緣的能力,需要前所未有的移動處理能力"。為了符合這些要求,推動下一代人機接口的整合應該在所有現代駕駛艙中實現標準化。
HMI-Cockpit的演變。左至右:Ramon Berk, Comando Aviazione dell'Eercito, Leonardo
值得注意的是,最近飛機駕駛艙的技術發展已經出現了巨大的轉變。在短短幾年內,駕駛艙已經從帶有模擬象限的 "經典飛行甲板 "過渡到現代的 "玻璃駕駛艙",其中經典的儀表通過復雜的多功能顯示器呈現。大多數信息在儀表、飛行管理系統和自動駕駛功能之間是相互聯系的。在現代駕駛艙中,傳統的 "旋鈕和表盤 "已經被拋棄,取而代之的是電子可重新配置的顯示器和多功能可重新配置的控制,即所謂的 "軟鍵"。
傳統上,駕駛艙設計和信息顯示方式的發展是由安全和性能提升驅動的,而現在似乎更多的是由效率和競爭力標準驅動。5例如,在全狀態操作和創新駕駛艙基礎設施(ALICIA)項目中,來自14個國家的41個合作伙伴正在合作進行研究和開發活動,旨在實現一個能夠提供全狀態操作的駕駛艙系統。考慮到在不久的將來商業航班數量的增加,該項目旨在通過使用新的操作概念和駕駛艙設計來實現更高水平的效率和競爭力。
ALICIA承諾新的解決方案能夠為機組人員提供更大的SA,同時減少機組人員的工作量并提高整個飛機的安全性。這是對HMI概念的徹底反思,尋求技術的整體整合。在設想的概念中,ALICIA利用多模態輸入/輸出設備,提供一個集成在增強的機組接口中的全條件操作應用程序。
改進軍用飛機的人機接口是一項更為復雜的任務。與商業飛行相比,需要分析的情況很多,也更復雜。在軍用駕駛艙中,與飛行本身相關的任務與完成戰斗任務所需的任務合并在一起,而且往往是在危險地區和退化的環境中飛行。此外,軍用飛機配備了更多的設備,旨在處理綜合戰斗任務和軍備系統管理。
軍事飛行的典型任務可分為兩類:
駕駛和導航:在整個飛行過程中執行。
戰斗任務:只在飛行任務的某些階段執行。
當戰斗任務發生時,它們必須與駕駛和導航任務同時進行,這是軍事和商業航空的主要區別。根據自己的經驗,軍事飛行員必須判斷在任何特定的飛行階段哪一個是優先的。因此,他們將大部分資源用于該任務,而將那些經常被誤認為不太重要的任務留給機載自動系統或利用他們的注意力的殘余部分來完成。
不幸的是,軍事飛行在任務、風險、威脅、持續時間、天氣條件等方面的復雜性和不可預測性,常常使機組人員很容易超過他們的個人極限。一旦發生這種情況,風險是任務無法完成,甚至可能被放棄。在最壞的情況下,飛機和機組人員可能會丟失,或者機組人員可能會在沒有適當或最佳SA的情況下采取行動,導致附帶損害的風險增加。
新興和顛覆性的技術可以改善未來軍用飛機上的人機接口。它們可以引入基于人工智能、深度學習或實時卷積神經網絡(RT/CNN)的新解決方案,以整合新的能力,如具有認知解決方案的系統。作為一個例子,認知人機接口和互動(CHMI2)的發展和演變,用于支持多個無人駕駛飛行器的一對多(OTM)概念中的自適應自動化,也可以被利用來支持完成 "軍事駕駛艙的多項任務 "的自適應自動化。
同樣地,研究和開發CHMI2來監測飛行員的認知工作量并提供適當的自動化來支持超負荷的機組。這些先進的系統應該能夠閱讀到達駕駛艙的命令,分析相關的威脅,并提出最 "適合任務 "的任務簡介和操作概念。同時,它們應該計算所有任務所需的數據,如燃料消耗、目標時間、"游戲時間"、路線、戰斗位置、敵人和友軍的部署、武器系統和彈藥的選擇、附帶損害估計以及適當的交戰規則等。然后,考慮到船員的認知狀態,將動態地選擇自動化水平和人機接口格式及功能。
在2009年的一項研究中,Cezary J. Szczepanski提出了一種不同的HMI優化方法,其依據是任務成功的關鍵因素是飛機操作員的工作量。如果工作量超過了一個特定的限度,任務就不能成功完成。因此,他提出了一種客觀衡量機組人員在執行任務期間的工作量的方法;具體來說,就是在設計人機接口時,要確保即使在最壞的情況下,工作量也不能超過人類操作員的極限。
將近11年后的2020年,北約科技組織成立了一個研究小組,以評估空勤人員是否有能力執行其分配的任務,并有足夠的備用能力來承擔額外的任務,以及進一步應對緊急情況的能力。該小組旨在確定和建立一種基于具體指標的實時客觀方法,以評估人機接口的有效性。
通過對神經生理參數的實時測量來評估認知狀態,有望支持新形式的適應性自動化的發展。這將實現一個增強的自主水平,類似于一個虛擬的機載飛行員,這將協助機組人員進行決策,并將他們從重復性的或分散注意力的任務中解放出來。自適應自動化似乎是實現最佳人機接口的一個重要組成部分。它有望支持高水平的自主性,以減少人類的工作量,同時保持足夠的系統控制水平。這在執行需要持續工作量的任務時可能特別重要。這預示著要全面分析與自主決策機相關的倫理和道德問題。然而,這已經超出了本文的范圍。
未來的戰斗將變得越來越快節奏和動態。新興的和顛覆性的技術有望徹底改變各級指揮官計劃和實施戰場行動的方式。人工智能、機器學習、增強的指揮和控制系統以及先進的大數據管理將大大有利于指揮官,改善SA,并極大地加快決策過程。現代軍隊設想未來的行動是完全集成的、連接的和同步的,這催生了MDO概念,以完善指揮官在多個領域快速和有效地分派/重新分派所有部隊的能力。
在概念和規劃階段的這種明顯的動態性也必須反映在執行階段。因此,必須假定,雖然指揮官能夠在很少或沒有事先通知的情況下重組和重新分配部隊任務,但機組人員也必須能夠快速、有效和安全地處理和執行這些新命令,很少或沒有時間進行預先計劃或排練。
這些新要求無疑將影響下一代軍用飛機駕駛艙的設計和開發。有必要采用一種新的方式來構思下一代人機接口,更加關注飛行員的真正認知能力。此外,需要新的解決方案來為機組人員提供更大的安全空間,同時將他們的工作量減少到可以接受的最大水平,使他們保持高效。他們應該結合任務優先級原則,審慎地考慮機組人員可以將哪些任務交給自主程序或系統。
本文重點討論了空中力量和飛行員在飛機上的工作量。可以預見,在現代情況下,所有平臺都將面臨同樣的挑戰。在行動的各個層面,所有的軍事人員都應該發展一種新的思維方式,以反映人機接口的更多整合和使用。要做到這一點,需要重新認識到人的因素的重要性。與民用航空類似,北約將需要制定和采用新的標準來指導未來軍用航空接口的設計。人機接口的改進必須包括所有的航空任務,并著重于實現實時規劃和執行。如果不仔細關注軍事飛行員所面臨的壓力,人機接口的改進只會讓飛行員更加安全,而在任務執行過程中的效率卻沒有類似的提高。開發通過實時測量神經生理參數來評估機組人員的認知狀態的方法,以及隨后開發新形式的適應性自動化,對于實現符合未來戰場要求的人機接口至關重要。
Imre Baldy,中校,于1988年加入匈牙利國防軍,并在匈牙利的'Szolnok'軍事航空學院開始了他的軍事教育。1992年,他作為武器操作員/副駕駛獲得了第一個少尉軍銜。1997年,他得到了他的第一個更高級別的任命,他加入了位于韋斯普雷姆的匈牙利空軍參謀部,在那里他獲得了國際關系和空軍防御規劃方面的經驗。2007年,他被調到塞克斯費厄爾,在那里建立了新的匈牙利聯合部隊司令部。除與直升機業務有關的其他職責外,他還負責空軍的短期規劃。他曾駕駛過米24、米8和AS-350直升機。從2018年7月開始,他成為JAPCC的載人空中/攻擊直升機的SME。
利維奧-羅塞蒂,中校,于1993年在意大利軍隊中被任命為步兵軍官。三年后,他轉入陸軍航空學校,并于1998年畢業,成為一名旋翼機飛行員。他曾擔任過排長、中隊指揮官和S3小組長。他曾駕駛過通用直升機。AB-206,AB-205,AB-212,AB-412,以及AW-129 Mangusta戰斗直升機。他曾多次作為機組成員或參謀被部署到巴爾干半島(阿爾巴尼亞,科索沃),中東(黎巴嫩,伊拉克)和中亞(阿富汗)。他還是一名合格的CBRN(化學、生物、輻射和核)專家,一名空中機動教官,他目前駐扎在JAPCC,擔任戰斗航空處的空地行動SME。
深度學習技術在計算機視覺領域的快速發展,促進了基于人工智能(AI)應用的廣泛傳播。分析不同種類的圖像和來自異質傳感器數據的能力使這項技術在軍事和國防應用中特別有趣。然而,這些機器學習技術并不是為了與智能對手競爭而設計的;因此,使它們如此有趣的特性也代表了它們在這一類應用中的最大弱點。更確切地說,輸入數據的一個小擾動就足以損害機器學習算法的準確性,并使其容易受到對手的操縱--因此被稱為對抗性機器學習。
對抗性攻擊對人工智能和機器人技術的穩定性和安全性構成了切實的威脅。這種攻擊的確切條件對人類來說通常是相當不直觀的,所以很難預測何時何地可能發生攻擊。此外,即使我們能估計出對手攻擊的可能性,人工智能系統的確切反應也很難預測,從而導致進一步的意外,以及更不穩定、更不安全的軍事交戰和互動。盡管有這個內在的弱點,軍事工業中的對抗性機器學習話題在一段時間內仍然被低估。這里要說明的是,機器學習需要在本質上更加強大,以便在有智能和適應性強的對手的情況下好好利用它。
在很長一段時間里,機器學習研究人員的唯一關注點是提高機器學習系統的性能(真陽性率/敏感度、準確性等)。如今,這些系統缺乏穩健性的問題已不容忽視;許多系統已被證明非常容易受到蓄意的對抗性攻擊和/或操縱。這一事實使它們不適合現實世界的應用,特別是關鍵任務的應用。
一個對抗性的例子是,攻擊者故意設計了一個機器學習模型的輸入,以導致該模型犯錯。一般來說,攻擊者可能無法接觸到被攻擊的機器學習系統的架構,這被稱為黑盒攻擊。攻擊者可以利用 "可轉移性 "的概念近似于白盒攻擊,這意味著旨在迷惑某個機器學習模型的輸入可以在不同的模型中觸發類似的行為。
最近針對這些系統的對抗性攻擊的演示強調了對抗性行為對穩定性影響的普遍關注,無論是孤立的還是互動的。
也許最廣泛討論的攻擊案例涉及圖像分類算法,這些算法被欺騙成 "看到 "噪聲中的圖像,即隨機產生的不對應于任何圖像的白噪聲被檢測為圖像,或者很容易被像素級的變化所欺騙,因此它們將一輛校車分類為鴕鳥,例如。同樣,如果游戲結構或規則稍有改變,而人類不會受到影響,那么表現優于人類的游戲系統(如國際象棋或AlphaGo)就會突然失敗。在普通條件下運行良好的自動駕駛汽車,只要貼上幾張膠帶,就會被誘導轉向錯誤的車道或加速通過停車標志。
許多北約國家利用人工智能和機器學習來改善和簡化軍事行動和其他國家安全舉措。關于情報收集,人工智能技術已經被納入在伊拉克和敘利亞的軍事行動中,其中計算機視覺算法被用來檢測人和感興趣的物體。軍事后勤是這一領域的另一個重點領域。美國空軍使用人工智能來跟蹤其飛機何時需要維護,美國陸軍使用IBM的人工智能軟件 "沃森 "來預測維護和分析運輸請求。人工智能的國防應用還延伸到半自主和自主車輛,包括戰斗機、無人機或無人駕駛飛行器(UAV)、地面車輛和船舶。
人們認為對抗性攻擊在日常生活中相對罕見,因為針對圖像分類算法的 "隨機噪音 "實際上遠非隨機。不幸的是,對于國防或安全技術來說,這幾乎是不可能的。這些系統將不可避免地被部署在對方有時間、精力和能力來開發和構建正是這些類型的對抗性攻擊的環境中。人工智能和機器人技術對于部署在敵人控制或敵人爭奪的地區特別有吸引力,因為這些環境對于我們的人類士兵來說是最危險的環境,在很大程度上是因為對方對環境有最大的控制。
在意識到人工智能發展和應用的技術領先的重要性后,北約于2020年在多國能力發展運動(MCDC)下啟動了人工智能、自動化和機器人技術的軍事用途(MUAAR)項目。該項目的范圍是開發概念和能力,以應對開展聯合聯盟行動的挑戰,并對其進行評估。項目的目標是評估可能受益于人工智能、自動化和機器人技術的當前和未來的軍事任務和功能。它還考慮了效率和成本節約方面的回報。
在國防應用中,對抗性地操縱機器學習分類器所帶來的危險的例子很多,嚴重程度各不相同。例如,致命的自主武器系統(LAWS)可能會將友軍戰車誤認為是敵軍戰車。同樣,一個爆炸裝置或一架敵方戰斗機可能會被錯誤地識別為一塊石頭或一只鳥。另一方面,知道人工智能垃圾郵件過濾器跟蹤某些單詞、短語和字數進行排除,攻擊者可以通過使用可接受的單詞、短語和字數來操縱算法,從而進入收件人的收件箱,進一步增加基于電子郵件的網絡攻擊的可能性。
綜上所述,人工智能支持的系統可能會因為對抗性攻擊而失敗,這些攻擊是故意設計來欺騙或愚弄算法以使其犯錯的。這種攻擊可以針對分類器的算法(白盒攻擊),也可以通過訪問輸入來針對輸出(黑盒攻擊)。這些例子表明,即使是簡單的系統也能以意想不到的方式被愚弄,有時還可能造成嚴重后果。隨著對抗性學習在網絡安全領域的廣泛應用,從惡意軟件檢測到說話人識別到網絡物理系統再到許多其他的如深度造假、生成網絡等,隨著北約增加對自動化、人工智能和自主代理領域的資助和部署,現在是時候讓這個問題占據中心位置了。在將這些系統部署到關鍵任務的情況下之前,需要對這些系統的穩健性有高度的認識。
已經提出了許多建議,以減輕軍事環境中對抗性機器學習的危險影響。在這種情況下,讓人類參與其中或在其中發揮作用是至關重要的。當有人類和人工智能合作時,人們可以識別對抗性攻擊,并引導系統采取適當的行為。另一個技術建議是對抗性訓練,這涉及給機器學習算法提供一組潛在的擾動。在計算機視覺算法的情況下,這將包括顯示那些戰略性放置的貼紙的停車標志的圖像,或包括那些輕微圖像改變的校車的圖像。這樣一來,盡管有攻擊者的操縱,算法仍然可以正確識別其環境中的現象。
鑒于一般的機器學習,特別是對抗性機器學習,仍然是相對較新的現象,對兩者的研究仍在不斷涌現。隨著新的攻擊技術和防御對策的實施,北約軍隊在關鍵任務的行動中采用新的人工智能系統時需要謹慎行事。由于其他國家,特別是中國和俄羅斯,正在為軍事目的對人工智能進行大量投資,包括在引起有關國際規范和人權問題的應用中,北約保持其戰略地位以在未來戰場上獲勝仍然是最重要的。
Elie Alhajjar博士是美國陸軍網絡研究所的高級研究科學家,同時也是紐約州西點軍校數學科學系的副教授,他在那里教授和指導各學科的學員。在來到西點軍校之前,Alhajjar博士曾在馬里蘭州蓋瑟斯堡的國家標準與技術研究所(NIST)從事研究。他的工作得到了美國國家科學基金會、美國國立衛生研究院、美國國家安全局和ARL的資助,最近他被任命為院長的研究人員。他的研究興趣包括數學建模、機器學習和網絡分析。他曾在北美、歐洲和亞洲的國際會議上展示他的研究工作。他是一個狂熱的科學政策倡導者,曾獲得民用服務成就獎章、美國國家科學基金會可信CI開放科學網絡安全獎學金、Day One技術政策獎學金和SIAM科學政策獎學金。他擁有喬治-梅森大學的理學碩士和數學博士學位,以及圣母大學的碩士和學士學位。
近年來,"蜂群 "和 "構建蜂群"是無機組系統界最普遍的流行語之一,不僅包括航空器,還包括陸地、海洋、水面以及水下的無人系統。然而,什么是蜂群,或者它需要擁有哪些基本能力,還沒有正式定義。北約的無機組飛行器社區最近開始為上述術語制定定義,以最終正式確定各自的術語供官方使用,但由于不同社區對什么是蜂群有不同的解釋和觀點,很快就陷入了困境。因此,以空中為中心的定義可能不太適合于其他領域。
本文旨在概述挑戰,并在討論未來 "蜂群 "的定義及其在無人飛行器背景下的相關術語提供思考素材。
每個術語的定義都需要滿足一個目的;否則,它就沒有意義,也不需要被定義。例如,遙控飛機(RPA)被定義為 "由經過培訓和認證的飛行員控制的無人駕駛飛機[......],其標準與有人駕駛飛機的飛行員相同。"因此,使用RPA一詞表明操作飛機需有一定程度的飛行員資格要求。以同樣的方式,需要同意該定義是為哪些條件和目的服務的,即在哪些情況下需要它。
定義 "蜂群 "所面臨的挑戰是,適用的用途差別很大,一種用途的定義參數可能與另一種用途不相關。為了概述這一挑戰,下面介紹了一些例子。
作業用途。使用蜂群來實現軍事效果是基于需要解決的軍事問題。只有當蜂群功能與其他解決方案相比能帶來軍事利益時才會被采用。所期望的效果在本質上將符合能力要求的定義,因此,需在采購者的法律框架內。實戰化蜂群技術并按照適用的國家和聯盟立法、交戰規則以及戰術、技術和程序進行操作,可能需要一個定義,該定義提供了關于軍事能力、遠程操作模式、指揮和控制手段以及人類互動程度的說明。
開發者用途。需要充分了解潛在的蜂群功能,以便從開發者的角度確定軍事使用的好處。開發蜂群技術和實現蜂群行為的正確執行可能需要復雜的自主性和人工智能應用水平,使人類能夠將蜂群作為一個整體進行操作,但不需要(甚至不允許)控制任何單獨的蜂群實體。因此,這種用途的定義可能集中在自主性水平、其在硬件和軟件中的技術實現以及蜂群功能在其系統中的適應性。
反蜂群用途。在觀察和防御蜂群時,自主性水平或指揮和控制手段并不那么重要。從這個角度來看,實體的數量、它們的觀察行為以及它們假定的蜂群能力是最相關的問題,因此也是決定性的因素,不管蜂群實體是人工控制還是自主操作。識別一個較大的實體群是否有資格成為蜂群的挑戰隨著展示的蜂群行為的復雜性而增加。
在其他情況下,"蜂群 "一詞的定義可能需要偏離或替代,以達到其目的。為了解決這個難題,有兩個選擇。首先,為每一種用途制定多個定義,其次,找到一個可以服務于所有(或至少是大多數)用途的共同標準。由于多種定義有可能在不同的用戶群體之間造成混淆和誤解,因此第二種選擇更受歡迎。每個用戶群體以后可以將其具體要求作為子類別術語附加到一般定義中,類似于RPA,它是 "非螺旋槳飛機 "這一總體定義下的一個子類別。
這就給我們帶來了一個挑戰,即為總體的蜂群定義確定一個共同標準。通過觀察蜂群,特別是其行為,可以發現共同點,不管它是由空中、陸地還是海上的無人系統組成,也不管蜂群的行為是實際執行的還是只是被感知的。因此,一個總體的定義應該從蜂群的外部外觀和視覺感知開始,而不是關注其內部運作。后者可以用子類術語來涵蓋和區分。
在開源研究中,有許多關于蜂群行為的定義,但它們主要描述的是同一個概念,通常將蜂群智能作為一個前提條件。例如:
"蜂群是大量個體組織成協調運動的現象。僅僅利用環境中他們所掌握的信息,他們就能聚集在一起,集體移動或向一個共同的方向遷移"。
"蜂群智能是對分散的、自組織的系統的研究,這些系統能夠以協調的方式快速移動"。
"在蜂群機器人學中,多個機器人通過形成類似于在自然系統中觀察到的有利結構和行為來集體解決問題,如蜜蜂群、鳥群或魚群"。
"蜂群智能源于動物的自然蜂群行為,可以定義為相同大小的動物表現出的集體行為,聚集在一起解決對其生存至關重要的問題。蜂群智能可以被定義為簡單代理群體的新興集體智能"。
上述所有定義的共同點是形成蜂群的個體的 "協調運動"。集體智能也被提到是實現這種行為的關鍵因素;然而,觀察者將無法確定蜂群的協調運動是基于集體智能還是通過其他控制手段。因此,在總體定義中,集體智能是一個需要考慮的次要屬性,需要由后續術語來涵蓋。值得注意的是,未來的技術,包括人工智能和機器學習應用,可能使觀察者能夠確定一大群實體是否擁有可能造成更大威脅的額外蜂群功能。因此,"集體智能"或類似的可識別的蜂群功能可能被納入定義中。
【值得注意的是,"多個蜂群元素 "原則上意味著,任何數量大于1的單位,如果從事蜂群行為以提高整體單位的集體能力,都可以被視為一個蜂群。由于沒有專門的系統,識別蜂群行為幾乎是不可能的,因此,除非另有證明,否則最好將看似一起行動的多個實體視為一個蜂群。更高的數量會放大蜂群行為的好處。另外,各個實體不需要完全相同,只需要兼容,作為蜂群的一部分解決軍事問題。】
根據上述定義推斷,蜂群的另一個關鍵要素是參與的實體數量,但沒有明確規定最低數量。是否有一個閾值需要跨越,以脫離傳統的分組方案,如中隊、航班,從而有資格成為蜂群?同樣,我們有幾個選擇:
1.將任何由兩個或更多元素組成的編隊都歸為蜂群。
2.將蜂群定義為超過特定數量的單個元素的群體,其數量高于上述傳統分組。
3.避免任何具體化,將這一細節再次留給后續的分類學層次。
為了避免限制性太強,并允許有子類別,建議采用最后一種方案。術語"多個蜂群實體"很好地表達了建議的 "非特定性",并將在文章后面為此而使用。
上述可觀察到的特征,即 "協調運動 "和 "多個蜂群元素",并不意味著各個蜂群實體之間有最小或最大的距離。已經有了采用廣泛分布的無機組的飛行器來轉播無線電通信或向偏遠地區提供互聯網連接的概念。單個航空器之間的距離可能是數百公里,以提供大面積的覆蓋。即使在較小的規模上,蜂群實體也可以在僅幾百米的距離內以協調的方式運作,以觀察一個地區或攻擊具有多個影響點的較大目標。如果不能對群體(或蜂群)進行整體調查,那么這些實體是否遵循預先確定的和不協調的模式或執行協調行動,對觀察者來說可能仍然是隱蔽的。因此,蜂群的空間分布不是一個總體定義的限定因素,而且會不必要地限制其應用,盡管這些特征可能在反蜂群活動中發揮作用,并在隨后的術語中加以定義。
在談論蜂群技術時,人們廣泛討論了不同的自主性水平和相應的人類互動水平。例如,自主性水平越高,在實際任務中對人類投入的要求就越低。顯示出一套完整的蜂群行為的蜂群很可能處于自主性等級的高端,將人類互動的必要性降到最低。也可以假設這種人類互動適用于整個蜂群,以控制總體的蜂群功能,而不是單個的蜂群實體。然而,在觀察由單個空中、陸地、地面或地下飛行器組成的蜂群時,很難確定其自主性和人類互動水平,因此對于總體 "蜂群 "的定義而言,這不是一個相關因素。為了不限制定義的適用性,這些特征應該用一個子術語來描述,如 "智能蜂群"、"自主蜂群 "或類似的措辭,因為它們肯定在研究和開發、蜂群就業方面具有適用性,而且可能用于法律目的。
人們通常認為,組成一個蜂群可以增強或產生單個系統無法實現的能力。蜂群可以被認為是一個系統簇,它可以執行預先設計的功能并提供一個或多個(軍事)效果。這些效果要么直接受益于蜂群行為,要么間接受益于單個系統能力的組成,作為一個組合的蜂群功能。這種好處需要從能力要求、作業和防御的角度清楚地理解,并且可以與其他軍事用途的定義聯系起來。一般來說,蜂群行為是任何蜂群能力的基礎。然而,蜂群能力可能因使用的系統類型而有很大的不同,而且與蜂群行為相比,不能觀察到,只能在執行前假設。因此,能力聲明被認為不適合作為總體定義,還應該由下屬術語涵蓋。
一個定義取決于蜂群的預期用途。由于蜂群應用提供了各種用途,本文建議從一個總體定義開始,并在下屬術語中涵蓋各個使用屬性。
以下是一個總體定義建議,涵蓋并支持所有軍事領域及其各自的無機組人員系統,隨后對定義的每個術語進行了解釋。
形成。這應表明蜂群元素之間的空間相關性,同時有意不進一步描述其具體組織。這就為各個蜂群元素之間的各種距離和空間安排留出了分類的空間。
多個。蜂群可能由少數甚至數百個元素組成,但至少要超過一個。不具體的術語 "多個 "允許該定義適用于所有類型的蜂群,無論其參與元素如何。定義一個具體的數字對于任何下屬的術語來說也將是困難的。可以對小型蜂群中的 "可計算的數量 "和大型或大規模蜂群中的 "不可計算的數量 "進行區分,這可能有助于區分人類或技術系統被接近的實體所淹沒時的威脅。
實體。它包括所有類別的無人系統,包括空中、陸地、地面和地下系統。如果計算機程序或衛星系統的協調行動是北約未來的選擇,這個術語也可以適用于網絡和空間領域。可以考慮使用從屬的術語,例如,無人駕駛飛機系統群(UASSw)或無人駕駛地面車輛群(USVSw)。
顯示協調的行為。蜂群的內部運作和技術機制可能有所不同,對于某些用途,定義甚至可能不需要審查這些內部特征。本文所確定的共同點是蜂群的行為,包括可以觀察到的協調動作和行動。故意不說明這些協調行動是如何實現的。實現蜂群功能的技術手段可以用隨后的術語來表達,如 "自主蜂群 "或 "智能蜂群"。
朝著一個目標前進。這是為軍事背景服務的,因為可以假設蜂群總是指向一個目標,以實現其特定的任務目標,從簡單的現場調查、情報、監視和偵察,到打擊或自殺任務。這可能與軍事背景以外的情況無關,可以不提。
【蜂群是由多個實體組成的,它們朝著一個目標表現出協調一致的行為。】
為 "蜂群 "找到一個一致的定義是一個困難的挑戰,因為在所有的軍事領域和民事應用中都有很多用途。要在北約內部實現對蜂群定義的廣泛接受,唯一的解決辦法是確定所有蜂群特征的共同點,將定義減少到最低限度,并將專門用途的具體細節留給下級術語。
安德烈-海德爾,中校是一名炮兵軍官,在指揮與控制和作戰計劃方面有超過15年的經驗。他是JAPCC的無人駕駛飛機系統主題專家,已有十多年的經驗,并代表JAPCC參加北約聯合能力小組的無人駕駛飛機系統和北約反無人駕駛飛機系統工作組。他撰寫了關于無人機系統和C-UAS的操作和法律問題的多項研究、書籍和文章。
安德烈亞斯-施密特,中校于1993年加入德國空軍。在軍官學校學習后,他在慕尼黑的德國武裝部隊大學學習計算機科學。自1998年以來,他在地基防空方面建立了廣泛的背景,特別是愛國者武器系統。他開始擔任戰術控制官,隨后在不同的 "愛國者 "部隊中擔任偵察官、炮臺執行官和炮臺指揮官。此外,他曾兩次不連續地被派往德克薩斯州的布萊斯堡。在這之間,他曾在前空軍師擔任A3C的任務。目前,他是JAPCC的綜合防空和導彈防御/彈道導彈防御中小企業。
美國缺乏一套專門的人工智能(AI)戰爭的理論。這導致了在戰爭的作戰層面上缺乏對人工智能影響的討論。人工智能的定義通常采用技術視角,不考慮對作戰藝術的影響。提議的作戰藝術的新要素 "抓手(Grip)"解釋了人工智能和人類在兩個方面的基本關系:自主性和角色交換。“抓手”為人工智能戰爭的理論奠定了基礎,除了揭示改變任務指揮理論的必要性外,還提出了作戰的假設。美國空軍陸戰隊的發展以及由此產生的戰爭作戰水平(和作戰藝術)在歷史上有類似的案例,說明關鍵假設如何影響戰場的可視化。去除“人在回路中”的人工智能戰爭的假設,揭示了需要一種新的作戰藝術元素來安排部隊的時間、空間和目的,此外,美國陸軍任務指揮理論需要調整,以使指揮官能夠在各種形式的控制之間移動。
“機器人和人工智能可以從根本上改變戰爭的性質......誰先到達那里,誰就能主宰戰場。”- 美國陸軍部長馬克-埃斯佩爾博士,2018年
預計人工智能(AI)將極大地改變21世紀的戰爭特征。人工智能的潛在應用只受到想象力和公共政策的限制。人工智能擁有縮短決策周期的潛力,超過了人類的理論極限。人工智能也有望執行人類、機器和混合編隊的指揮和控制功能。人工智能在自主武器系統(AWS)中的潛力同樣是無限的:分布式制造、蜂群和小型化的先進傳感器為未來的指揮官創造了大量的配置變化。與圍繞人工智能的技術、倫理和概念問題相關的無數問題,為如何將這項技術整合到戰爭的戰術層面上蒙上了陰影。現代軍隊幾個世紀以來一直在為正確整合進化(和革命)的技術進步而奮斗。美國內戰期間的鐵路技術對 "鐵路頭 "軍隊和格蘭特將軍在維克斯堡戰役中的勝利都有貢獻。25年后,法國人忽視了普魯士的鐵路試驗,給第三帝國帶來了危險,同時也沒能把握住小口徑步槍的優勢。卡爾-馮-克勞塞維茨在《論戰爭》中指出,每個時代都有自己的戰爭和先入為主的觀念。本專著將探討當前的先入為主的觀念和人工智能在戰爭的操作層面的出現。
對作戰層面的討論側重于作戰藝術,以及指揮官和他們的參謀人員如何通過整合目的、方式和手段,以及在時間、空間和目的上安排部隊來發展戰役。在作戰藝術中缺乏以人工智能為主題的討論,增加了不適當地部署裝備和以不充分的理論進行戰斗的風險;實質上是在邦聯的火車上與追兵作戰。美國的政策文件和技術路線圖主要集中在能力發展和道德影響上,而沒有描述一個有凝聚力的人工智能戰爭的理論。但美國和中國在自主行動方面的實驗趨于一致;這引起了沖突的可能性,其特點是越來越多的被授權的人工智能和AWS沒有得到實際理論框架的支持。這個問題導致了幾個問題。美國軍隊的人工智能戰爭理論是什么?大國競爭者的人工智能戰爭理論是什么?有哪些關于顛覆性技術的歷史案例?理論應該如何改變以解釋顛覆性技術?
本專著旨在回答上述問題。它還提出了兩個概念,以使指揮官能夠在戰場上可視化和運用人工智能;一個被暫時稱為 "抓手"的作戰藝術的新元素和一個任務指揮理論的延伸。該論點將分三個主要部分進行闡述。第一節(理論)將證明人工智能需要一個認知工具來在時間、空間和目的上安排部隊,方法是:綜合美國的人工智能戰爭理論,描述中國的人工智能戰爭理論,以及揭示當前文獻中的“抓手”理論。第二節(歷史)是對1973年為應對技術轉變而從主動防御演變而來的空地戰(ALB)的案例研究。第二節將重點討論戰場維度的思想、任務指揮理論的演變以及相關的作戰藝術的正式出現。第三節(新興理論)提出了作戰藝術的新要素,作為一種認知工具,幫助指揮官和參謀部將21世紀的戰場可視化。第三節將把以前的章節整合成一個有凝聚力的模型,讓指揮官和參謀部在時間、空間和目的方面可視化他們與AI和AWS的關系。第三節還將提供一個任務指揮理論的建議擴展,以說明人機互動的情況。
人工智能的復雜性導致了正式的戰爭理論的缺乏;然而,在美國的政策和發展文件中存在著一個初步的美國人工智能戰爭理論。人工智能戰爭理論必須解釋人類和人工智能之間的關系,這樣才能完整。通過作戰藝術和任務指揮的視角來看待人工智能,揭示了自主性和角色互換的兩個頻譜,通過不同的組合創造了人工智能戰爭理論的維度。這些維度,或者說掌握的形式,代表了作戰藝術的一個新元素。同樣,需要將任務指揮理論擴展到一個過程-產出模型中,以實現掌握形式之間的移動。
綜合美國目前的人工智能政策和AWS的發展路線圖,提供了一幅戰略領導人如何看待人工智能的圖景,允許發展一個暫定的戰爭理論。由于缺乏關于武器化人工智能的歷史數據,政策和發展路線圖是必需的,因此本專著中提出的理論是由提煉出來的概念產生的。由于中國的工業和技術基礎的規模,中國被選為對抗模式,預計在10到15年內,中國將超越俄羅斯成為美國最大的戰略競爭對手。
圖文并茂的案例研究方法將被用來分析主動防御和空地戰之間的過渡。該案例研究將整合技術、政策和戰爭理論,以喚起人們對多域作戰(MDO)和人工智能在21世紀戰爭中作用的疑問。第二節的批判性分析側重于理論的發展,而不是其應用。第二節的詳細程度是有限制的,因為它仍然是一個更大(和有限)整體的一部分,因此重點應繼續揭示戰場可視化和認知輔助工具之間的聯系。第三節通過作戰藝術的新元素和任務指揮理論的調整來回答每一節中發現的問題,從而將前幾節連接起來。人工智能缺乏歷史,考慮到人們不能直接分析以前的沖突,以獲得教訓或原則。在這種情況下,任務指揮理論提供了一種間接的方法來理解使人類能夠集中式和分布式指揮和控制功能的機制,以及為什么人工智能缺乏相應的機制會抑制我們感知機會的能力。第三節將把美國現行政策和路線圖中的幾個抓手成分匯總到任務指揮理論提供的框架中。
本專著存在于美國陸軍多域作戰概念的框架內,其理解是解決方案是聯合性質的,因為 "陸軍不能單獨解決問題,概念發展必須在整個聯合部隊中保持一致,清晰的語言很重要。"本專著不能被理解為對MDO中提出的問題的單一解決方案,而是一種幫助實現戰斗力聚合的方法。
關于人工智能的討論充滿了倫理、法律和道德方面的考慮,本專著不會涉及這些方面。本專論的假設是,人工智能的軍事用途在政治上仍然是可行的,而且 "戰略前提 "允許該技術的軍事應用走向成熟。由于運用的變化幾乎是無限的,人工智能的戰術實施將不會被詳細討論,而重點是在作戰層面上的概念整合。一般能力將被限制在與作戰藝術和作戰過程有關的具體趨勢上。
大數據、人工智能和機器學習代表了當今最前沿的一些技術,并可能成為未來幾十年甚至更久的主導技術。大多數專家都認為,人工智能的發展將比1879年電力發明以來的任何技術都更能改變我們的生活,這一點通常被稱為人工智能或簡稱AI。
可悲的是,在人工智能和無人系統(或用老話說的 "機器人")的編隊協作問題上,熱度遠遠高于光度,其中大部分是由大眾媒體推動的。普通大眾被不斷喂食關于 "壞"機器人的書籍和電影(例如《世界大戰》、《終結者》),甚至是關于 "好"機器人叛變的書籍和電影(例如《2001:太空漫游》和《機器之家》),普遍擔心今天的機器人--使用人工智能的無人駕駛機器--將以我們在2021年只能模糊感知的方式來主宰我們的生活。
當涉及到人工智能的軍事應用時,這些擔憂就會變得異常強烈。許多人表示擔心,美國軍方可能會失去對其無人系統的控制,特別是其武裝的無人系統。這些擔心已經表現在許多方面,最明顯的是谷歌停止了美國國防部的算法戰爭跨功能團隊的工作,也就是所謂的Maven項目。這尤其令人擔憂,因為Maven項目與武裝無人系統毫無關系。
在許多國家,關于人工智能的軍事用途的對話已經變得尖銳,并阻礙了人工智能在美國軍事武器系統中的有效插入。當人工智能、自主性、無人駕駛和武裝在同一個句子中使用時,這些擔憂被放大了。同時,美國的同行競爭者,中國和俄羅斯,認識到了人工智能在控制他們自己的社會以及其他社會方面的價值,并且正在投資數千億于人工智能,其中大部分是為了給他們的軍隊提供一個與美國軍隊不對稱的優勢。
此外,也許更重要的是,由于今天的戰爭速度往往超過了人腦做出正確決定的能力,美國軍隊需要大數據、人工智能和機器學習,以使其作戰人員在戰斗中獲得優勢,特別是在決策領域。美國軍隊--以及其他國家的軍隊--曾發生過決策者在正確的時間沒有得到正確的信息,來支持時間緊迫的作戰決策而導致悲劇發生的一些情況。
重要的是要注意到,做出這些次優決策的軍事人員在手頭的工具下做了他們能做的最好工作。發生的情況是,戰爭的速度往往超過了人腦做出正確決策的能力。事實上,正如美國陸軍研究實驗室首席科學家亞歷山大-科特博士在一次指揮和控制會議上所說:"人類的認知帶寬將成為戰場上最嚴重的制約因素。"
直到最近,將強化決策提高到新水平的技術根本不存在。今天,它確實存在,而且利用大數據、人工智能和機器學習能夠為作戰人員提供的東西,很可能導致海戰的下一個突破,特別是在決策領域。海軍太平洋信息戰系統中心與海軍研發界、工業界和學術界的合作伙伴一起,正在領導各種努力,以確保美國作戰人員有能力以更少的人和更少的錯誤做出更好的決策。
21世紀在世界秩序、地緣政治和戰爭方式方面迎來了巨大的變化。正如美國國家情報委員會的頂點出版物《全球趨勢:進步的悖論》所說:
《全球趨勢:進步的悖論》指出,未來五年,國家內部和國家之間的緊張局勢將不斷加劇。全球增長將放緩,就像日益復雜的全球挑戰即將到來一樣。范圍越來越廣的國家、組織和有能力的個人將塑造地緣政治。無論好壞,新出現的全球格局正在結束冷戰后美國占主導地位的時代。以公眾期望的方式進行國際合作和治理將變得更加困難。Covid-19危機放大了這些困難,暴露了國際合作的極限。擁有否決權的人處處威脅要阻止合作,而信息回音室效應將強化無數相互競爭的現實,破壞對世界事件的共同理解。因此,未來幾年發生沖突的幾率將比近期任何時候都要高。
這一評估在美國國家情報局局長的《世界范圍內的威脅評估》中得到了再次確認,其中部分內容指出。"隨著大國和地區侵略者利用復雜的全球趨勢,同時適應美國外交政策的新優先事項,各國之間的競爭將在未來幾年內增加。國家間沖突的風險,包括大國之間的沖突,比冷戰結束以來的任何時候都要高。"雖然現在評估Covid-19大流行病的全面影響還為時過早,但初步跡象表明,這場危機加劇了美國與其同行競爭對手之間的緊張關系。
2021年,美國仍然在世界各地參與活動。國家安全戰略涉及對美國安全和繁榮的廣泛威脅。這些威脅包括從中國和俄羅斯這樣的高端同行競爭對手,到朝鮮和伊朗,以及以伊黎伊斯蘭國為代表的恐怖主義的持續威脅。在里根國防論壇上的國家安全戰略預演中,當時的國家安全顧問麥克馬斯特將軍強調了這些威脅,并再次確認了前政府的 "4+1戰略",將俄羅斯、中國、伊朗和朝鮮這四個國家以及 "+1"--恐怖分子,尤其是ISIL--列為美國今天必須應對的緊迫威脅。
國際安全范式的這一巨大變化的程度怎么強調都不過分。引起這一新焦點的原因并不神秘,那就是與中國和俄羅斯的大國競爭。事實上,《國家安全戰略》提出了保護美國人民和維護他們的生活方式、促進繁榮、通過實力維護和平以及提升美國在世界上的影響力的戰略愿景。值得注意的是,這個新的、發達的戰略代表了與以前版本的巨大轉變,以前的版本側重于安全、繁榮和國際秩序這三大支柱,都是一些沒有什么具體內容的理想。這個新的國家安全戰略強化了美國對中國和俄羅斯的立場,拋棄了 "朋友 "和 "伙伴 "的字眼,取而代之的是 "修正主義國家 "和 "競爭對手"。
《國防戰略》進一步發展了《國家安全戰略》中提出的主題,更直接地處理了對美國安全和繁榮的威脅。這份文件指出,美國面臨的核心挑戰是被《國家安全戰略》歸類為修正主義大國的長期戰略競爭的重新出現。它指出,越來越明顯的是,中國和俄羅斯想要塑造一個符合其“獨裁”模式的世界--獲得對其他國家的經濟、外交和安全決定的否決權。《國防戰略》發表后不久,美國防部高級官員從詞典中刪除了 "4+1戰略 "一詞,現在以 "2+3戰略 "的方式談論,以承認俄羅斯和中國構成的生存威脅。美國防部領導人已經公開表示,"中國是第一,俄羅斯是第二"。此外,他們還說,俄羅斯仍然是我們最大的近期安全挑戰,而中國是我們最大的長期挑戰。
這份國防戰略繼續說:"與中國和俄羅斯的長期戰略競爭是國防部的主要優先事項,需要增加和持續的投資,因為它們今天對美國的安全和繁榮構成了巨大的威脅,而且這些威脅在未來可能會增加。"
國會研究服務處的一份文件《向國會提交的關于大國競爭和國防的報告》中描述了這種急劇變化的戰略格局。以下是這份報告對今天的戰略環境的描述:
國際關系的后冷戰時代--始于20世紀90年代初,有時被稱為單極時刻(美國是單極大國)--在2006-2008年顯示出消退的初步跡象,到2014年已經讓位于與中國和俄羅斯重新開始的大國競爭以及這兩個國家和其他國家對二戰以來美國主導的國際秩序要素的挑戰,這是一種根本性的不同情況。
在奧巴馬政府2015年6月的《國家軍事戰略》中,大國競爭的恢復與其他考慮因素一起被承認,并被置于特朗普政府2017年12月的《國家安全戰略》(NSS)和2018年1月的《國防戰略》(NDS)的中心位置。2017年12月的NSS和2018年1月的NDS正式調整了美國國家安全戰略和美國國防戰略的方向,明確將主要精力放在與中國和俄羅斯的大國競爭上。國防部(DOD)官員隨后將對抗中國的軍事能力確定為國防部的首要任務。
國會研究處隨后的一份報告《國防初探:地理、戰略和部隊設計》強調了將美國的戰略重點轉向這兩個歐亞大國的重要性,指出:
以下是《紐約時報》的一篇社論如何看待美國面臨的長期挑戰問題。"冠狀病毒可能幾乎改變了一切,但它并沒有改變這一點。美國面臨的全球挑戰還在繼續,美國的對手在測試極限,看看他們能在最小的反擊下取得什么成果。"
雖然通常留給更高級別的文件,但美國海軍的《維持海上優勢的設計2.0》也強調了這種同行(而且明顯不再是 "近鄰")競爭的首要重要性,指出:"中國和俄羅斯正在部署其國家力量的所有要素以實現其全球“野心”......中國和俄羅斯試圖以對自己更有利的條件重新定義整個國際體系的規范"。
邁克爾-吉爾德伊上將在就任美國海軍作戰部長后的指示中,強調了這種對高端作戰的需求,以及與美國海軍陸戰隊整合的重要性,在他的FRAGO 01/2019中指出:"我們將確保作戰能力和致命部隊的整體性,使分布式海上作戰、遠征先進基地作戰和有爭議環境中的瀕海作戰效益最大化。"
雖然是聯合部隊集體為國家作戰,但海軍部隊在應對大國競爭方面的重要性在一份題為《海上安全和大國競爭》的報告中得到強調。《維護以美國為首的國際秩序》,其中部分內容指出:
這并不是說海軍比美國其他軍種更重要,也不是說像一些海軍專家所建議的那樣,海軍應該在有限的國防預算中獲得更大的份額,而是說大國競爭的前線是,而且可能繼續是廣闊的歐亞大陸的沿海地區。南中國海的持續摩擦只是大國競爭中的一個爭論點,還有很多其他爭論點。
美國在2020年12月發布的新海洋戰略《海上優勢》毫不含糊地將海上事務置于這一大國競爭的最前沿,其中部分內容指出:
自我們上次在2015年發布《21世紀海權合作戰略》以來,安全環境發生了巨大的變化。一些國家正在爭奪關鍵地區的權力平衡,并試圖破壞現有的世界秩序。我們的對手的重大技術發展和積極的軍事現代化正在侵蝕我們的軍事優勢。遠程精確導彈的擴散意味著美國不能再假定在沖突時可以不受限制地進入世界海洋。
自21世紀初以來,我們的三個海務部門一直在警惕地注視著中國日益增長的海軍力量和俄羅斯聯邦日益增長的侵略行為。我們部署在全球的海軍部隊每天都與中國和俄羅斯的軍艦和飛機互動。我們親眼目睹了他們越來越復雜和越來越有侵略性的行為。中國代表著最緊迫的、長期的戰略威脅。
《國防戰略》高度關注技術,并指出,如果不利用先進的技術來支持我們的作戰人員,美國將無法實現它所尋求的安全和繁榮,并指出:
安全環境也受到快速的技術進步和戰爭性質變化的影響。開發新技術的動力是無情的,以較低的準入門檻擴大到更多的行為者,并以加速的速度發展。新技術包括先進的計算、大數據分析、人工智能、自主性、機器人、定向能、高超音速和生物技術--正是這些技術確保我們能夠打贏未來的戰爭。
新的商業技術將改變社會,并最終改變戰爭的性質。許多技術發展將來自于商業部門,這意味著國家競爭者和非國家行為者也將有機會獲得這些技術,這一事實有可能侵蝕我們國家已經習慣的傳統的超強對抗。保持技術優勢將需要改變行業文化、投資來源和保護整個國家安全創新基地。
《全球趨勢》中強調的發展。《全球趨勢:進步的悖論》以及《國家安全戰略》和《國防戰略》中強調的發展,在美國軍方的未來展望出版物《2035年聯合行動環境》(又稱JOE)中得到了呼應。《聯合作戰環境》的副標題是 "有爭議和無序世界中的聯合部隊",它著眼于20年后,研究未來將如何影響作戰和聯合部隊。《聯合作戰環境》強調,即使在伊拉克和阿富汗的沖突逐漸結束時,美國軍隊在本十年的剩余時間和以后將面臨越來越大的壓力。
《2035年聯合行動環境》有一節專門討論技術。報告的作者解釋了這樣處理技術問題的理由:
聯合部隊將面臨一個主要由加速的技術變革定義的未來技術環境。在過去的20年里,美國對高技術戰爭的做法鼓勵了對手發展非對稱、非常規、不規則和混合的方法。敵人將繼續創新,應用不同的高低技術組合來挫敗美國的利益和軍事力量。
到2035年,美國將面對一系列尋求在一些關鍵領域實現技術平等的競爭對手。累積的結果將是這樣一種情況,用前國防部副部長羅伯特-沃克的話說,"我們的部隊面臨著非常現實的可能性,即到達未來的一個戰區,發現自己面臨著一個先進的、破壞性的技術庫,這可能會使我們以前的技術優勢被推翻--我們的武裝部隊不再擁有無爭議的戰區準入或不受約束的行動自由。"
很明顯,美國情報界和美國軍方都認識到,世界秩序的變化速度與技術生態系統的快速變化如出一轍。此外,在美國政府的最高層,人們承認美國曾經享有的技術優勢已經被削弱,美國軍隊不能再以純粹的技術優勢來支配其對手了。事實上,一些寫軍事和技術的專家已經預示了這種認識。
軍事歷史學家馬克斯-布特(Max Boot)在他的暢銷書《全新的戰爭》(War Made New)中指出:"我的觀點是,技術設定了可能的參數;它創造了軍事革命的潛力。"他用歷史實例支持他的論點,說明技術驅動的 "軍事革命 "如何改變了戰爭并改變了歷史的進程。重要的是,布特指出了技術的重要性,它使那些迅速創新和運用新軍事技術的國家獲得了戰爭勝利的優勢。
美國軍隊已經接受了技術變革的浪潮,這構成了戰爭方式的真正革命。隨著全球技術變革的步伐加快,美國特別善于運用新技術來應對威脅。正如布魯斯-伯科維茨在《戰爭的新面貌》中指出的那樣:
雖然所引用的兩本書都是十多年前的舊書,但它們關于技術的論述在美國軍隊接受新工具的方式上仍然是正確的。但正如《2035年聯合作戰環境》以及其他高級別政府、情報界和軍事出版物所指出的,雖然美軍一直善于采用新技術用于軍事用途,但這一過程一直處于壓力之下。有許多因素阻礙了新技術在美國軍隊中的應用,包括這些部隊在過去20年中所面臨的高操作節奏、預算壓力和持續的扣押幽靈,以及往往是笨重的軍事采購系統。盡管有這些壓力,各軍種已經找到了接受新技術的方法,這些技術有望使平衡重新向美國的優勢傾斜。
今天,美國軍隊采用的創新技術中增長最迅速的領域之一涉及無人駕駛系統。在過去的幾十年里,美軍使用的無人駕駛飛行器(UAVs)已經從寥寥無幾增加到1萬多架,而無人駕駛地面車輛(UGVs)的使用已經從零爆炸到12000多架。無人水面飛行器(USV)和無人水下飛行器(UUV)的使用也在增長,因為USV和UUV被證明在廣泛的軍事應用中越來越有用。軍事無人系統(UxS)的擴大使用已經在創造十年前不存在的戰略、作戰和戰術的可能性。
武裝無人系統的擴大使用不僅改變了現代戰爭的面貌,而且還改變了戰斗行動的決策過程。事實上,有人認為,無人機戰爭的興起正在改變我們對 "戰爭 "本身的概念和定義。這些系統在伊拉克和阿富汗的沖突中被廣泛使用,并且隨著美國的戰略重點轉向印度-亞洲-太平洋地區以及這一戰略所要求的高端戰爭,這些系統將繼續具有同樣的相關性,甚至更加重要。無人系統,尤其是它們的效用,不是作為獨立的實體,而是作為被稱為 "人-機-隊 "的作戰伙伴,是美國 "第三抵消戰略 "的一個基本原則。
美國防部已經啟動了 "第三次抵消戰略",以確保美國保持對潛在對手的軍事優勢。"抵消"戰略是一種軍事競爭的方法,它試圖以不對稱的方式彌補不利的地位。與其在潛在對手也可能擁有巨大實力的領域進行正面競爭,抵消戰略試圖通過引入新的作戰概念和技術,將競爭的軸心轉向美國具有顯著和可持續優勢的領域。
美國在冷戰期間成功地推行了兩種不同的抵消戰略。這些戰略使美國能夠 "抵消"蘇聯在常規部隊中的數量優勢,而不需要在前沿部署的部隊中進行巨大的投資,因為這需要以士兵對士兵、以坦克對坦克的方式提供超額補償。這些抵消戰略依賴于技術、作戰方法和組織結構的根本創新,以彌補蘇聯在時間、空間和部隊規模上的優勢。
這些抵消戰略中的第一個發生在20世紀50年代,當時艾森豪威爾總統試圖通過利用美國的核優勢來克服華沙條約組織的數量優勢,引入戰場核武器--從而將競爭的軸心從常規部隊數量轉移到美國擁有不對稱優勢的領域。這種方法提供了穩定性并為威懾提供了基礎。
第二種抵消戰略產生于20世紀70年代末和80年代初,因為人們認識到蘇聯已經實現了核均勢。第二個抵消戰略試圖通過追求一種新的聯合行動方式來創造一種持久的優勢,即利用常規精確武器、支持實時精確瞄準的實時遠程ISR(情報、監視、偵察)傳感器能力以及允許這些能力在整個戰斗空間同步執行的聯合戰斗網絡的綜合效應。
幸運的是,構成 "第二次抵消戰略 "的軍事技術從未在與蘇聯的正面交鋒中得到檢驗。然而,在 "沙漠風暴 "行動中,這些技術被部署在一支由蘇聯訓練和裝備的軍隊面前。如前所述,正如《戰爭的新面孔》所描述的那樣,伊拉克的失敗是徹底的,代表了現代戰爭中最一邊倒的運動之一。顯然,美國的潛在敵人注意到技術在這場勝利中發揮的關鍵作用。
在20世紀80年代初引入第二套抵消戰略時,美國是唯一擁有知識和能力來開發、部署和成功執行情報、監視和偵察能力、天基系統以及支持這種方法的精確武器的國家。今天,像俄羅斯和中國這樣的競爭對手(以及這些國家向其擴散先進能力的國家)正在追求和部署先進的武器和能力,這些武器和能力展示了許多與傳統上為美國優勢提供高科技基礎的技術力量,如精確制導彈藥。在俄羅斯在敘利亞的力量投射行動中,可以看到美國技術能力與潛在競爭對手之間的這種日益對稱性。
國際安全環境中出現的越來越多的均勢,使得美國必須開始考慮各種技術、系統概念、軍事組織和作戰概念的組合,這些技術、系統概念、軍事組織和作戰概念可能會改變競爭的性質,使美國比潛在對手更有優勢。這一系列的能力為第三個抵消戰略提供了基礎。如同以前的抵消戰略一樣,第三個抵消戰略尋求在預算有限的環境下,通過確定美國獨特的力量和能力所帶來的不對稱優勢,保持并擴大美國的技術和作戰競爭優勢。第三套抵消戰略確保美國的常規威懾態勢在未來仍像今天一樣強大,并為將這一優勢擴展到未來創造條件。
在解釋《第三次抵消戰略》的技術要素時,當時的國防部副部長羅伯特-沃克強調了無人系統、人工智能、機器學習和自動駕駛方面新興能力的重要性。他指出,這些技術為聯合部隊提供了巨大的優勢,使未來的部隊能夠開發和操作先進的聯合、協作的人機戰斗網絡,在太空、空中、海上、海底、地面和網絡領域同步作戰。人工智能將使聯合作戰網絡的自主性達到新的水平--決策權的有限授權,從而為人機協作和作戰團隊帶來全新的機會。
無人系統、人工智能和機器學習等技術在第三個抵消戰略中,特別是在該戰略的長期研究和發展計劃(LRRDP)中的突出地位很難被夸大。
也就是說,該戰略有一個強有力的組成部分,強調在使用具有日益復雜的人工智能和機器學習能力的無人系統時,要讓人類處于循環之中。事實上,人機協作是現存的 "第三抵消戰略 "文件以及國防部高級官員的演講和訪談中所強調的一個必要條件。雖然深入研究 "第三抵消戰略 "技術主旨的全部細節超出了本文的范圍,但重要的是要注意,該戰略的主要技術路線集中在人機協作和戰斗團隊的概念上。這一概念的五個基本組成部分是:
自主深度學習系統,它將利用機器學習,在人類反應時間太慢的領域 "以光速 "運作,例如網絡攻擊、電子戰攻擊或大型導彈突襲攻擊。
人機協作,這將使機器能夠幫助人類更快地做出更好的決定。工部長列舉了F-35聯合攻擊戰斗機和海軍綜合火控反航(NIFC-CA)作為這些概念的例子。
輔助人類作戰,這將專注于人和機器可以一起行動的方式,通過可穿戴電子設備、外骨骼和戰斗應用等工具,在各種可能的緊急情況下協助作戰人員。
先進的人機作戰團隊,將側重于人類與無人系統合作作戰;其中一個例子是海軍的P-8 "海神 "與MQ-4C "海神 "的作戰。展望未來,團隊合作的下一個層次將研究蜂群戰術和合作自主。
網絡支持的、網絡硬化的自主武器,將有彈性地在電子戰和網絡環境中運行。目前的一個例子包括戰術戰斧Block IX,其目標可以在飛行中更新。
知識淵博的外部觀察家參考了《第三次抵消戰略》,并強調了無人駕駛系統在實現美國戰略目標方面的重要性。前歐洲盟軍最高司令官詹姆斯-斯塔夫里迪斯(James Stavridis)上將在其發表在《外交政策》上的文章《新三體》中指出,無人系統是這個新三體的三大支柱之一,他指出:"新三體的第二個能力是無人駕駛車輛和傳感器。三合會的這一分支不僅包括空中攻擊無人機,還包括空中、地面和海洋表面的無人監視車......這種系統有一個明顯的優勢,即不需要所有最昂貴的部件:人。"
美國陸軍的一份報告描述了在2014年首次闡述的第三次抵消戰略,而且遠在美國開始稱中國和俄羅斯為同行競爭對手之前,該戰略必須在21世紀的第三個十年中變形和改變:
蘇聯軍隊在數量上的優勢促成了前兩個抵消戰略。隨著美國軍事技術進步的應用已經擴散到近似的對手,它已經有效地重新平衡了戰場。為確保第三次抵消戰略的成功實施,國防部與美國政府必須就我們試圖抵消的東西以及如何平衡這些優先事項以對付處于巨大不同區域和能力的對手達成一致。
第三抵消戰略的運用將恢復美國的力量投射能力,通過可靠的拒絕和懲罰威脅來加強常規威懾力,并作為長期競爭的一部分對潛在的對手施加代價。平衡或擊敗對手能力的能力需要資源,為確保有效運用該戰略,我們必須解決我們試圖抵消的問題。
鑒于第三個抵消戰略的強烈技術重點,在美國尋求在本十年及以后實施這一戰略時,這一戰略的表現將由聯合部隊放置在戰場上的軍事平臺、系統、傳感器和武器所代表。同樣明顯的是,美國各軍種--特別是美國海軍--已經表示希望將無人系統作為其部隊結構中一個日益重要的部分投入戰場。
在國會作證時,前國防部長邁克爾-埃斯珀回答了一個問題:"美國防部技術現代化的首要任務是什么?"他指出,"對我來說,是人工智能。我認為人工智能將可能改變戰爭的特征,我相信誰先掌握了它,誰就會在戰場上主宰很多很多年。這是一個根本性的游戲改變者。我們必須先到達那里。"
美國軍方有許多理由主動利用大數據、人工智能和機器學習來使其武器系統變得更好。也許最令人信服的理由是,我們的潛在對手--特別是我們的同行競爭對手--正在積極地這樣做。一個古老的觀點是軍事術語,"敵人有投票權"。在這種情況下,俄羅斯正在用盧布投票,中國正在用人民幣投票。
這些國家正在對這些技術進行巨大投資。雖然這兩個國家出于國內原因進行這些投資,但他們正在有意和有條不紊地將這些技術盡可能快地插入他們的軍事系統,以便創造一個與美國軍隊不對稱的優勢。鑒于俄羅斯和中國注重保密,這些舉動似乎有悖常理,但這兩個國家都沒有試圖對這些目標保密。
在一次被廣泛宣傳的講話中,俄羅斯總統弗拉基米爾-普京這樣說。"人工智能是未來,不僅是俄羅斯的,而且是全人類的。它帶來了巨大的機遇,但也有難以預測的威脅。誰成為這個領域的領導者,誰就會成為世界的統治者。"
很明顯,其他 "大國 "將人工智能的發展視為一場競賽,并將從中利用競爭性軍事應用。
從美國的角度來看,以及從一些美國盟國的角度來看,這場競賽在很大程度上是,盡管不完全是,軍事競爭的一個方面。美國和盟國對一個或多個潛在對手在人工智能發展中領先的可能性表示擔憂。第三套抵消戰略被設想為一種在人工智能等新技術的軍事競爭中保持領先的方法。
軍事大國競爭的歷史表明,人工智能競爭,本質上是一場軍備競賽,是一種自然發展。然而,比技術跨越更令人擔憂的是,美國的軍事對手--所有某種形式的專制政權--可能不會像以前那樣致力于維持 "人在回路中 "的方法,將人工智能納入軍事事務。這在目前俄羅斯的軍事人工智能發展中似乎尤其如此。
俄羅斯、中國和美國這三個主要軍事大國都認識到,大數據、人工智能和機器學習有可能應用于軍事能力。在政府參與人工智能研究、他們愿意在人工智能發展中承擔的風險、他們將在多大程度上讓位于人工智能系統的自主權以及他們尋求的直接應用方面,這三者的近期目標都有所不同。
鑒于潛在對手將大數據、人工智能和機器學習植入其軍事武器系統的程度,美國軍方非常有必要采取同樣的措施,以確保這些國家不會獲得不對稱的優勢。也就是說,美國軍方的重點必須是證明人工智能武器系統將 "首先不造成傷害"。因此,將人工智能插入軍事系統不是一個 "非此即彼 "的問題,而是一個 "多少?"的問題。換句話說,美國軍方必須專注于在正確的時間和地點應用適量的人工智能。
正如我們前面所指出的,美國防部已經接受了第三套抵消戰略,試圖為美國提供對同行和其他對手的不對稱優勢。雖然這一戰略有許多方面,但其中一個支柱涉及技術,而這一支柱在很大程度上取決于大數據、人工智能和機器學習來獲得這一優勢。作為這一技術重點的一個子集,人機合作被認為是利用人工智能的無人系統獲得軍事優勢的一種方式。
在軍事系統中找到這種恰到好處的自主權平衡所需的能力必須利用許多仍在出現的技術。軍方知道它想實現什么,但往往不知道它需要什么技術或甚至能力,以使系統在自主性和人際互動之間達到適當的平衡。這種探索的一個關鍵因素是,不要擔心機器本身擁有什么屬性--速度、耐力和其他屬性,而是要關注機器內部的東西。美國國防科學委員會的報告《自主性在國防部系統中的作用》是這樣說的:
關于將人工智能植入軍事系統的一些爭議源于術語的不精確。幫助澄清這種模糊性的方法之一是確保在使用自主性一詞時,它指的是人和機器之間的關系。在一段時間內執行某項功能,然后停止并等待人類的輸入,然后再繼續,這樣的機器通常被稱為半自主或有人類在環。可以完全依靠自己的力量完成某項功能的機器,但有一個人在監督,并能夠在機器出現故障或失靈時進行干預,通常被稱為人類監督下的自主或人類在環。能夠完全獨立完成某項功能而人類無法干預的機器通常被稱為完全自主或人類不參與的機器。
這表明,我們需要重新調整關于自主武器的一些辯論,以更準確地區分增加武器的自主性和自主武器。在這個意義上,自主性不是指機器的智能,而是指它與人類控制器的關系。對于相對較少的無人系統將用武器與敵人作戰,這種平衡是至關重要的。在發射武器之前,無人平臺需要向操作者--必須有一個操作者在其中--提供一個關于發射決定可能帶來的利弊的決策矩陣。
可以說,即使是一些在美國軍事人工智能領域工作的人,對于將人工智能插入美國軍事武器系統也會有一些矛盾。也許解決這個問題的最好方法是考慮二戰中最知名的照片之一。這張照片由美國信號部隊的約翰-摩爾中尉拍攝,描述了德懷特-艾森豪威爾將軍在1944年6月5日,即入侵諾曼底的前一天與第101空降師的士兵交談。在此之前,艾森豪威爾已經聽取了空軍元帥利-馬洛里的匯報,101師是入侵期間將遭受80%傷亡的兩支部隊之一。
那些研究無人系統對軍事行動的影響的人--特別是那些大力提倡無人系統的人--看了這張照片,可以設想艾森豪威爾將軍不是與美國空降兵對話,而是與他將派往戰場的機器人對話。那些害怕無人系統的人可能會想象美國空降兵就像照片中描述的那樣,但他們會設想一個機器人來指揮這些士兵,而不是艾森豪威爾將軍--顯然這是一個站不住腳的情況。但是,那些深思熟慮地考慮人工智能無人系統對軍事行動的影響的人,會設想艾森豪威爾將軍向一隊美國空降兵講話,與他們的機器人伙伴站在一起。顯然,需要做更多的工作來充分解決人機合作對今天的軍隊意味著什么。
但這種利用大數據、人工智能和機器學習的普遍愿望未能解決一個關鍵問題,即我們希望這些技術能夠幫助作戰人員執行哪些具體任務。問題的根源可能是美國軍方沒有能力將作戰人員的需求轉化為大數據、人工智能和機器學習所帶來的技術解決方案。除非或直到這樣做,否則這些技術不太可能被充分利用來支持美國的作戰人員。
作為上個世紀最具代表性的電影之一,斯坦利-庫布里克的《2001:太空漫游》將機器人(當時的無人駕駛車輛)的自主性問題作為其中心主題。看過這部電影的人很少能忘記這樣一個場景:宇航員大衛-鮑曼和弗蘭克-普爾考慮斷開HAL(啟發式編程的算法計算機)的認知電路,因為他似乎錯誤地報告了航天器的通信天線中存在故障。他們試圖隱瞞他們所說的話,但不知道HAL能讀懂他們的嘴唇。面對斷線的前景,HAL決定殺死宇航員,以保護并繼續其程序化的指令。
雖然今天很少有人擔心21世紀的HAL會背叛它的主人,但在使用日益自主的無人系統方面所涉及的問題是復雜的、具有挑戰性和有爭議的。庫布里克1968年的電影是有先見之明的。半個多世紀后,雖然我們接受了無人系統其他方面的改進,如推進力、有效載荷、隱身性、速度、耐力和其他屬性,但我們仍在處理多少自主權是足夠的,多少可能是太多的問題。這可以說是我們在未來十年內需要解決的有關軍事無人系統的最重要問題。
這些正在進行的辯論已經催生了一個山寨的書籍產業,試圖解決人工智能、自主性和無人系統的問題,特別是武裝的軍事無人系統。諸如《為戰爭而生》(Wired for War)、《遙控殺人》(Killing by Remote Control)等書。無人駕駛軍隊的倫理;無人駕駛。無人機、數據和完美戰爭的幻覺;反思無人機戰爭;無主之軍。自主武器與戰爭的未來》和《無人機下的國家》只是試圖以深思熟慮的方式解決這一復雜問題的書籍中的一個例子。
無人系統將變得更加自主,與它們感知環境和適應環境的能力成正比。這種能力使無人系統能夠實現更高的決策速度,并使友軍能夠在對手的OODA(觀察、定向、決定和行動)環路內行動。隨著環境或任務的變化,感知和適應的能力將使無人系統能夠找到實現其任務的最佳解決方案,而無需依賴人類操作員的持續監督、輸入和決策。然而,雖然我們需要無人系統在敵人的OODA環內運作,但我們是否準備好讓它們在沒有我們的決策下運作--在我們的OODA環內運作?
《經濟學人》雜志的一篇文章《道德與機器》以這種方式討論了自主權和人在回路中的問題:
隨著機器變得越來越聰明,越來越普遍,自主機器最終必然會在不可預測的情況下做出生死攸關的決定,從而承擔--或者至少看起來承擔--道德機構。目前,武器系統有人類操作員 "在環",但隨著它們越來越復雜,將有可能轉為 "在環 "操作,由機器自主執行命令。
隨著這種情況的發生,它們將面臨著倫理上的困境。一架無人機是否應該向已知目標藏身的房屋開火,而該房屋可能還藏有平民?無人駕駛汽車是否應該轉彎以避開行人,如果這意味著撞上其他車輛或危及車內人員?參與災難恢復的機器人是否應該告訴人們正在發生的真相,如果這有可能引起恐慌?
這些問題導致了 "機器倫理"領域的出現,其目的是讓機器有能力做出適當的選擇--換句話說--分辨是非。工程師、倫理學家、律師和政策制定者之間需要更多的合作,如果讓他們自己來決定,他們都會制定出非常不同的規則。
在《紐約時報》的一篇題為 "智能無人機 "的專欄文章中,比爾-凱勒這樣描述無人系統的自主權問題:
如果你覺得使用遙控戰士無人機令人不安,想象一下,殺死一個可疑敵人的決定不是由遠處控制室的操作員做出的,而是由機器本身做出的。想象一下,一個空中機器人研究下面的景觀,識別出敵對活動,計算出附帶損害的風險最小,然后,在沒有人類參與的情況下,扣動扳機。
歡迎來到戰爭的未來。當美國人在爭論總統是否有權下令用無人機進行暗殺時,強大的動力--科學、軍事和商業--正在推動我們走向將同樣的致命權力讓給軟件的那一天。
最近,雖然看起來有些反常,但對自主機器和人工智能的擔憂也來自于在開發這些技術能力方面最為突出的行業。《紐約時報》的一篇文章,題為 "機器人霸主?也許不是",引用了電影《機器之家》的導演亞歷克斯-加蘭(Alex Garland)的話,他談到了人工智能,并引用了幾個科技行業領導人的話。
美國防部正在把人類對無人系統的控制問題作為第一要務來處理,并發布了政策指示,以確保人類確實保持在OODA循環中。時任美國防部副部長阿什頓-卡特(Ashton Carter)的一項指令發布了以下指導:
這些指令和討論是--而且應該是--政策制定者、軍事領導人、工業界、學術界和科技界之間對話的一部分,因為明天的自主系統的設計和運作是經過深思熟慮的。正如當時的國防部副部長羅伯特-沃克在新美國安全中心國防論壇上發言時指出的那樣,"我們堅信,人類應該是唯一能夠決定何時使用致命武力的人。但當你受到攻擊時,特別是在機器的速度下,我們希望有一臺機器可以保護我們"。
發布政策聲明是一回事,但實際設計自主系統來執行預期的計劃又是另一回事。從政策的角度來看,這是一個關鍵點,因為盡管人們可以選擇把各種層次的決策權交給自主機器,但卻不能逃避對由此產生的行動的責任。在高度自主的系統中,系統對操作者來說變得不透明,這些操作者經常會問一些問題,如:。它在做什么?它為什么要這樣做?它接下來要做什么?如果被問到這些問題,很難看到操作者如何能履行對自主系統行動的責任。
由于這些原因,美國政府,特別是美國軍方要向美國公眾證明它不會失去對機器人的控制,其門檻是異常高的。許多人表示擔心,美國軍方可能會失去對其無人系統的控制,特別是其武裝的無人系統。這些擔心已經表現在許多方面,最明顯的是谷歌停止了國防部算法戰爭跨職能團隊的工作,也就是所謂的Maven項目。這尤其令人擔憂,因為Maven項目與武裝無人系統無關。
在美國最高級別的政策和戰略文件中,無人系統被作為聯合部隊未來作戰方式的一個重要部分。最近的《四年期國防審查》(QDR)指出:"延續1990年代末開始的趨勢,美軍將增加對無人系統的使用和整合。" 在QDR的其他地方,無人駕駛系統被確定為。"保持我們投射力量的能力"。重要的是,《QDR》強調無人系統是國防部致力于創新和適應的一個關鍵部分。
美國國防部對無人系統的愿景是將這些系統納入聯合部隊。由于無人系統被所有軍種使用,國防部發布了一個路線圖,為軍隊使用無人系統提供一個總體愿景。在新的路線圖發布后不久,《海軍內部》雜志發表的一篇文章指出:"國防部新的30年無人系統計劃--四年來第一次更新路線圖--旨在為快速發展的無人系統技術領域制定一個三十年的指南。"最近的路線圖,即2017-2042財年無人系統綜合路線圖,特別指出需要加強無人系統的自主性,指出。
2017-2042財年無人系統綜合路線圖接著列出了四個感興趣的基礎領域,將加速無人系統的整合。這些領域包括:
互操作性。互操作性在歷史上一直是,并將繼續是無人系統集成和運行的主要推動力。載人和無人系統已經越來越多地將其能力協同起來,重點關注使用開放和通用架構的關鍵需求。一個強大的互操作性基礎提供了一個結構,將使未來的作戰取得進展。
自主性。自主性和機器人技術的進步有可能徹底改變作戰概念,成為一個重要的力量倍增器。自主性將大大提高載人和無人系統的效率和效力,為國防部提供戰略優勢。
網絡安全。無人系統操作通常依賴于網絡連接和有效的頻譜訪問。必須解決網絡漏洞,以防止破壞或操縱。
人機協作。如果說互操作性奠定了基礎,那么人機協作則是最終目標。人類力量和機器之間的協作將實現革命性的合作,機器將被視為重要的隊友。
報告接著討論了機器人和無人系統的聯合概念(JCRAS),它為這些系統在未來戰爭場景中的應用提供了一個愿景,直到2035年。JCRAS與之前討論的2035年聯合行動環境直接保持一致,指出了機器人和自主系統(RAS)給聯合部隊帶來的八個關鍵屬性:
學習能力。未來的RAS將通過與環境、人類的互動以及訪問網絡資源來學習。
更強的態勢感知。未來的RAS將通過收集、處理和優先處理來自先進傳感器網絡的信息來增強意識,這將為作戰人員將數據轉換成知識。這將使復雜、擁擠的戰斗空間中的行動更加有效。
實現更高的性能。與載人和可選擇的載人系統不同,RAS沒有人類生理上的限制(如疲勞)。這允許在單一平臺上延長射程和徘徊時間,進行持久監視,并對傳感器和有效載荷進行全新組合。
提高效率和效益。能力更強的RAS將能夠在軍事行動范圍內執行更多的聯合任務,如戰區內空運、地雷行動、打擊大規模殺傷性武器、供應和維持,同時提高部隊的效率和效力。
提供更大的靈活性。未來的RAS系統將可以通過交換模塊硬件和/或下載新的軟件來快速重新配置,從而賦予新的能力。未來的RAS多任務功能將使聯合部隊能夠快速適應,以滿足不同或不斷變化的任務要求。
通過以機器速度運行來提高節奏。RAS以不斷增加的機器速度 "思考"。RAS可以融合來自網絡ISR傳感器的數據,機動到一個有利的位置,并比對手的人類和RAS更快采取行動。先進的數據分析、實時處理和替代性決策框架將使指揮官能夠比對手更快地做出決定和采取行動。
提供產生大規模的潛力。目前聯合部隊的載人庫存是基于相對較少的高能力、復雜和昂貴的武器裝備,無法迅速再生。RAS提供了使用大量廉價系統以產生大規模的機會。
啟用分布式和分散式行動。敵方的技術將以更高的精度和范圍瞄準美國部隊,使傳統部隊面臨更大的風險。使用RAS進行分布式和/或分散式作戰將提高未來作戰環境中的能力。
正如《質量發展報告》和《無人系統綜合路線圖》都指出的那樣,在美軍面臨具有強大防御能力的同行競爭者的那些地區,無人系統是特別重要的資產。聯合行動準入概念認為,"無人系統,可以在目標區域內徘徊以提供情報收集或火力",是一種關鍵能力,在對手擁有大量防御設施,可以限制美國和聯軍進入的地區,這種能力特別有價值。 此外,無人系統是在西太平洋等高威脅地區執行美國 "空海作戰概念"(現更名為 "全球公域準入和機動聯合概念",簡稱JAM-GC)的一個關鍵組成部分,在這些地區,對手的防御系統對有人駕駛飛機和水面平臺構成了不可接受的高風險。
海軍部已經為海軍和海軍陸戰隊的無人系統開發制定了雄心勃勃的目標。在一份備忘錄中,負責研究、開發和采購的海軍助理部長James Geurts閣下強調了無人駕駛系統的重要性,他在求職信中指出:
這份詳細的備忘錄繼續指出:"無人駕駛和自主技術正在改變各國開展軍事行動的方式......無人駕駛和自主系統的使用將改變我們的戰斗方式。" 美國防部的無人系統愿景隨后引出了無人系統戰略和計劃,最后引出了一系列高級無人系統目標:
通過載人、無人和自主能力的綜合團隊實現空中優勢。
通過擴大我們的海底星座的全球范圍來實現海底優勢。
通過載人和無人自主能力的綜合團隊,實現地面優勢。
吸收我們未來的地面戰斗力。
實行多領域的無人駕駛和自主系統。
實現無人駕駛的大規模。
通過整合無人駕駛和自主系統,實現持久的供應、支持和維持。
實現全面的無人操作能力和先進的自主性和機器學習。
這八個高層次目標中的每一個都有一個段落來支持,該段落提供了關于總體目標所需的更多細節,以及海軍部打算采取的步驟來實現這些預期結果。備忘錄接著詳細介紹了近期的促進因素和塑造努力,然后在結論中指出。"增加無人駕駛和自主系統的作戰使用,有望為我們的海軍部隊釋放出一種革命性的能力。"
最近,海軍部公布了期待已久的《無人駕駛作戰框架》。該文件旨在協調整個部門的無人系統工作,列出了雄心勃勃的目標,旨在幫助使無人系統成為海軍平臺庫存中越來越重要的一部分。該框架有五個目標。
在海軍和聯合行動的全部范圍內推進有人-無人的團隊效應。
建立一個數字基礎設施,快速和大規模地整合和采用無人駕駛能力。
激勵無人駕駛系統的快速增量開發和測試周期。
分解共同的問題,一次解決,并跨平臺和領域擴展解決方案。
為無人駕駛貢獻(平臺、系統、子系統)創造一個以能力為中心的方法。
盡管如此,這份38頁的報告確實為海軍部打算如何將無人駕駛系統引入艦隊和緬因州部隊提供了一個組織動力和指南。
大多數人都熟悉兒童寓言故事《金發姑娘和三只熊》。當金發女郎品嘗三碗粥時,她發現一碗太熱,一碗太冷,還有一碗恰到好處。當美國防部和各軍種尋求實現自主性和人類互動的最佳平衡--平衡這兩種經常對立的力量并使其 "恰到好處"--在一開始就將這種能力設計到未來的無人系統中,而不是試圖在事后將其固定下來,這可能是唯一可持續的前進道路。如果我們不能做到這一點,幾乎不可避免的是,對我們的武裝無人系統將具有 "HAL"式的力量并超出我們的控制的擔憂將破壞這些重要作戰伙伴的承諾。
在用于軍事用途的無人系統中建立適當程度的自主性的一個關鍵是要記住一句老話:"你站在哪里取決于你坐在哪里。" 用戶和設計無人系統的人經常從不同的--通常是明顯不同的--觀點來對待他們試圖完成的任務。海軍研究咨詢委員會的一份報告指出,在設計具有適當程度的自主性的無人系統時,必須調和四個不同的觀點:
用戶觀點。我可以給這個平臺一個任務,并相信它能在沒有持續關注的情況下完成它嗎?它能識別和處理意外事件或模糊的任務嗎?
機器人學觀點。我能否建立一個實用的機器人,在正確的時間做正確的事情?我可以動態地控制、導航、執行和測量我的機器人嗎?它能管理和融合數據嗎?
機器學習觀點。我的機器能解釋復雜的傳感器嗎?它能理解口頭語言,解釋手勢,或識別人或物嗎?
認知的觀點。我的機器能不能復制人類智能的元素,如認知、推理和推理?
隨著美國軍方出于各種原因增加對無人系統的依賴,它最好在某個時候決定該平臺是否足夠好,也就是說,它具有執行任務所需的速度、耐力和其他物理屬性。一旦確定了這一點,那么正如國防科學委員會報告所建議的那樣,軟件開發的艱苦工作必須成為優先考慮的因素。
利用大數據、人工智能和機器學習的普遍愿望未能解決一個關鍵問題,即我們希望這些技術能夠幫助作戰人員執行哪些具體任務。問題的根源可能是美國軍方缺乏將作戰人員的需求轉化為建議由大數據、人工智能和機器學習實現的技術解決方案的能力。作為前美國海軍軍官和艦艇指揮官,我們思考這個問題的方式讓我們很自然地想到海軍的例子。
開始解決這個問題的一個方法是思考海上的指揮官需要什么信息。無論是1812年8月艾薩克-赫爾艦長試圖帶著憲法號對蓋瑞爾號采取行動,還是今天的航母打擊群指揮官考慮將他的艦艇帶入一個可能有爭議的地區,指揮官需要三個主要東西來幫助他做出最佳決定。
他或她需要知道部隊前方的情況,需要將這些信息傳達給旗艦,并需要做出明智的決定。雖然今天的海軍指揮官擁有豐富的資產來幫助實現這些目標,但現在大數據、人工智能和機器學習可以幫助彌補一些差距。
一個打擊小組的指揮官擁有許多資產,可以展望部隊未來,以評估戰術形勢。他可能使用MQ-4C “海衛一”無人機系統來執行這種偵察任務。今天,"海衛一"操作人員會收到MQ-4C看到的流媒體視頻。但這需要他連續幾個小時盯著這段視頻(海衛一的續航時間為30小時),看到的主要是空曠的海洋空間。
利用大數據、人工智能和機器學習,MQ-4C可以被訓練成只發送它遇到的每艘船的視頻,從而大大壓縮了人類的工作量。更進一步,"海衛一"可以對每一次接觸進行機載分析,以標明其可能的興趣。例如,如果一艘船在航道上運行,已向海事當局提交了航行計劃,并提供了AIS(自動識別系統)信號,那么它很可能只值得操作者注意,“海衛一”將相應地標記它。然而,如果它不符合這些標準(例如,該船突然改變航線,離開了航道,或者沒有AIS信號),操作人員將被提醒。隨著這項技術的不斷發展,“海衛一”或其他無人機系統最終可能會配備分類算法,有可能導致自動識別目標。
一旦“海衛一”處理了這些信息,大數據、人工智能和機器學習可以幫助確定如何與旗艦溝通。在今天有爭議的電子戰環境中,不同的通信路徑具有不同程度的脆弱性。在 “海衛一”號發射之前,指揮官可以確定可接受的通信截獲風險水平,以及泄露打擊群存在的風險。
掌握了這個指揮官的意圖,并利用大數據、人工智能和機器學習,"海衛一"可以評估電子環境,從多個通信路徑中進行選擇,并確定哪條路徑提供最小的攔截漏洞。鑒于 "海衛一"號的尺寸和增長潛力,它甚至可以攜帶一個較小的無人機,并將其發射回部隊,以傳遞這種監視信息。
在旗艦上,指揮官必須了解他的傳感器所收集的數據,然后做出一些時間關鍵性的決定。他應該繼續前進,等待,還是撤退?他應該在前面偵察,還是在另一個方向?他是否應該調用其他部隊,或者他的有機資產是否足以成功地完成任務而不會給他的部隊帶來不必要的風險?
這就是大數據、人工智能和機器學習可以做出重要貢獻,幫助指揮官做出關鍵決策的地方。
如果指揮官選擇勇往直前,強制進行交戰,大數據、人工智能和機器學習可以做到今天的初級戰術決策輔助工具無法做到的事情--提供一系列選擇,并評估每個選擇的利弊。重要的是,這些技術并不--也不應該--做出決定,而是為指揮官提供足夠的、經過精心策劃的信息,以便他能比對手更快地做出最佳決定。
對于致命的軍事無人系統來說,在授權無人作戰伙伴發射武器之前,操作者必須知道什么,或者像經常發生的那樣,建議上級當局授權采取致命行動,這個標準更高。例如,考慮軍事操作人員管理一系列正在進行的無人駕駛航空系統飛行的情況,他們一直在觀察一個恐怖分子,并等待上級當局授權使用從該無人駕駛航空系統發射的空對地導彈來消除威脅。
利用大數據、人工智能和機器學習,操作者可以訓練無人駕駛航空系統預測上級主管部門在授權發射前會問什么問題,即使不能提供點解決方案,至少也可以提供百分比概率或信心水平的問題,例如。這個人是預定目標的信心水平是多少?這種信心是基于什么?是面部識別、聲音識別、行為模式、與某些人的聯系、與已知家庭成員的接近或與已知同伙的接近?對家庭成員、已知同伙或未知人員造成附帶損害的可能性是什么?等待與現在出擊的潛在影響是什么?
這些考慮只是操作者必須訓練其配備致命武器的無人系統處理的問題的一個子集。用大數據、人工智能和機器學習來增強這些系統,并利用它們在敵人和我們的決策圈內運作的能力,遠不是把致命的權力讓給無人系統,而是使這些系統能夠在戰斗的壓力下把人類操作員從不得不做出實時的、往往是即時的決定中解放出來。從一開始就將這種能力設計到無人系統中,最終將使它們成為其軍事操作者的有效伙伴。
這使我們回到了美國防部副部長羅伯特-沃克提出的一些擔憂。他指出,當敵人以 "機器速度 "攻擊我們時,我們需要利用機器來幫助保護我們。建立具有強大的大數據、人工智能和機器學習水平的無人系統,能夠與操作人員合作進行這項工作,才能最終確保我們建造的無人系統充分發揮其潛力,幫助我們的作戰人員在戰斗中獲勝。
有令人信服的證據表明,美國,特別是美國軍隊,必須在利用大數據、人工智能和機器學習方面超過我們的同行競爭對手。人工智能國家安全委員會在其2019年的臨時報告中明確分析了人工智能將如何成為游戲規則的改變者。"人工智能將塑造權力的未來。"2020年,《未來國防工作組報告》這樣提出將大數據、人工智能和機器學習插入美國軍事武器系統的必要性:
我們通過使用無人機系統的例子討論了插入大數據、人工智能和機器學習的影響,在這種情況下,MQ-4C “海衛一”,因為當插入這些技術的問題出現時,這是大多數人想到的戰爭領域。但還有一個領域,大數據、人工智能和機器學習可以在戰爭中產生更大的影響,那就是決策領域。
伊恩-托爾在其獲獎的美國海軍誕生和成熟的歷史《六艘護衛艦》中,不僅記錄了海軍的早期發展,還記錄了它在多場戰爭中的掙扎。67很少有人在讀完這本書后,會對1775年至1815年間海軍和國家的生存是如何的近在眼前。
雖然我們很容易被托爾的敘述所吸引,像讀小說一樣快速閱讀這段歷史,但至關重要的是,不要錯過決策在海軍的勝利和失敗中的重要性。從在哪里建造這些護衛艦,到選擇它們的活動區域,到它們要打哪場戰役和避免哪場戰役,以及其他一系列的決定,主要是使國家能夠在那危險的幾十年中生存下來的正確決定。
雖然今天美國海軍的平臺和武器與迪凱特、普雷布爾、班布里奇、赫爾、佩里、勞倫斯等艦長的海軍沒有任何相似之處,但今天的艦長仍然必須做出他們的前輩所做的那種生死攸關的決定。大不相同的是今天的決策速度。像憲法號、星座號和其他早期護衛艦的艦長往往有幾個小時甚至幾天的時間來做出關鍵的選擇,而今天的艦長必須在幾分鐘甚至幾秒鐘內做出決定。
軍事史上不乏這樣的例子:做出更好決定的指揮官獲得了勝利,即使他們的對手擁有地理或物質優勢,這些事件在此無需重述。值得注意的是,在過去的幾個世紀里,各級領導人有幾個小時,甚至幾天的時間來做出關鍵決定。但到了上個世紀中期,戰爭的變化極大地壓縮了決策周期。
在朝鮮戰爭期間,俄羅斯的米格-15戰斗機和美國的F-86 "佩刀 "戰斗機為爭奪制空權展開了激烈的戰斗。空軍上校約翰-博伊德(John Boyd)為了找到一種減輕美國戰斗損失的方法,創造了我們今天所知的OODA循環。OODA是指:觀察、定向、決定和行動。
博伊德的概念是,勝利的關鍵是創造一個比對手更快地做出適當決定的環境。博伊德的構思最初是一種在空對空作戰中獲得成功的理論,是根據他的能量-機動性理論和他對米格-15戰斗機和北美F-86佩刀戰斗機在朝鮮的空對空作戰的觀察而發展出來的。哈利-希拉克--F-16戰斗機的總設計師在談到OODA理論時說:"時間是主導參數。在最短的時間內完成OODA循環的飛行員占了上風,因為他的對手在應對已經發生變化的情況時被抓住了。"
即使是非軍事觀察員也清楚,空對空作戰可以說是壓力最大的軍事行動之一。但是,軍事領導人越來越意識到,壓力--尤其是無法處理信息--導致軍事操作人員開始出現自己的OODA環,并做出次優的決定。
在壓力下做出關鍵軍事決策的挑戰在1965年的電影《貝德福德事件》中進入流行文化。這部電影松散地基于美國海軍艦艇和蘇聯潛艇之間的一些冷戰事件,其情節線圍繞著美國驅逐艦貝德福德號(DLG 113)和一艘蘇聯潛艇之間的貓捉老鼠游戲。
貝德福德號的船員在長達數日的潛艇搜尋中變得越來越疲憊。隨著尋找蘇聯對手的緊迫性加劇,貝德福德號的船長無視他的船員在壓力下萎靡不振的警告,提高了他的要求,甚至碾壓了柴油潛艇的呼吸器。當有人問船長他是否會對他的對手開第一槍時,他回答說他不會,但 "如果他開一槍,我就開一槍"。一個疲憊的少尉把他的船長的話誤認為是 "開一槍 "的命令,于是發射了一枚反潛火箭,摧毀了潛艇,但在它發射一枚核武魚雷之前,潛艇就被消滅了。
雖然是虛構的,但《貝德福德事件》對55年后的一個真實世界的事件卻有可怕的預見。雖然對2020年1月伊朗革命衛隊擊落一架烏克蘭噴氣式客機的全面調查需要幾個月,甚至幾年的時間,但今天已知的是,在戰斗的壓力下,伊朗剛剛向美國軍隊發射了一連串彈道導彈,該國對美國的反擊保持高度警惕。
在伊朗情報或軍事指揮系統的某個地方,發出了巡航導彈來襲的警告。負責一個防空導彈組的軍官試圖聯系他的上級指揮中心,以獲得開火的授權。可悲的是,他無法接通,帶著不完整的信息,他發射了兩枚防空導彈,176人死亡。
這些事件--一個是虛構的,一個是非常真實的--有一個共同點:人類被迫在信息不充分或錯誤的情況下做出關鍵決定。在《貝德福德事件》中,它是人類之間相隔幾英尺的空氣間隙。在烏克蘭飛機被擊落的案例中,是無法溝通,以及對威脅的錯誤認知。
很容易將上述事件視為難以置信的虛構或不如美國軍隊的決定,但這將是一個悲劇性的錯誤。美軍人員做出錯誤決定導致生命損失的引人注目的事件已經困擾了美國軍隊四十多年。
1987年5月,美國海軍斯塔克號(FFG 31)在兩伊戰爭的禁區邊界附近巡邏。由于錯誤地認為交戰雙方都不會以美國軍艦為目標,當斯塔克號試圖與來襲的飛機進行溝通時,艦長一開始并沒有感到震驚。伊拉克的 "幻影 "噴氣機發射了兩枚 "飛魚 "導彈,造成37名美國人死亡,近二十人受傷。
1988年7月,懷著對斯塔克號艦長未能采取行動保護他的艦艇的回憶,在兩伊戰爭仍然激烈的情況下,當他的艦艇被伊朗炮艇圍攻時,文森斯號(CG49)的艦長錯誤地認為,一架接近的飛機正在接近并以攻擊姿態下降。他發射了一枚SM- 2ER導彈,擊落了伊朗航空公司655號航班,機上290人全部死亡。
1994年4月,兩架美國空軍F-15 "攻擊鷹 "在伊拉克上空擊落兩架美國陸軍UH-60 "黑鷹 "直升機,認為它們是伊拉克的米-24 "雌鹿 "直升機,機上26名軍人和平民全部死亡。空軍AWACS控制飛機和 "攻擊鷹 "之間的誤傳,以及自動識別敵我系統的故障,是造成這場悲劇的近因。
2001年2月,在瓦胡島以南10英里處,在為VIP平民游客進行的演示中,美國海軍格林維爾號核潛艇(SSN 772)進行了一次緊急壓載打擊機動,并在日本漁船愛媛丸號下浮出水面。船上的三十五人中有九人死亡。
2017年6月,美國海軍菲茨杰拉德號(DDG 62)與集裝箱船MV ACX Crystal相撞。她的七名船員被殺,其他幾人受傷。僅僅三個月后,美國海軍約翰-S-麥凱恩號(DDG 56)與懸掛利比里亞國旗的油輪Alnic MC相撞。她的10名船員在這次事故中死亡。
雖然所有這些悲慘的事故背后有多種原因,最明顯的是涉及美國海軍菲茨杰拉德號和美國海軍約翰-S-麥凱恩號的致命碰撞,但很明顯,在每個案例中,都有可用的數據,如果使用得當,可能會打破安全專家所說的 "事故鏈",并防止悲劇的發生。
值得注意的是,做出這些次優決策的軍方人員是在手頭的工具下做了他們能做的最好工作。發生的情況是,戰爭的速度往往超過了人腦做出正確決定的能力。事實上,正如美國陸軍研究實驗室的首席科學家亞歷山大-科特博士在一次指揮和控制會議上所說,"人類的認知帶寬將成為戰場上最嚴重的制約因素"。
美國空軍技術地平線報告這樣描述這一挑戰:"盡管今天人類在許多任務上仍然比機器更有能力,但人類的自然能力正變得與技術提供或要求的巨大數據量、處理能力和決策速度越來越不匹配。更緊密的人機耦合和增強人的表現將成為可能和必要。"由于這些原因和其他原因,海軍需要大數據、人工智能和機器學習,以使其作戰人員在戰斗中獲得優勢。
對于我們今天使用技術的人來說,這一挑戰應該不足為奇。正如任何擁有智能手機的人在打開機器后不久就知道的那樣,獲得足夠的數據很少是個問題。有時讓人不知所措的是對大量的數據進行分類,并試圖只挑出當下必要的數據。從戰爭的角度來看,這意味著系統只向決策者提供經過精心策劃的信息,以幫助他或她做出更好的決定,而且往往是在戰斗的壓力下。
每年春天在海軍戰爭學院舉行的當前戰略論壇是美國海軍的年度會議,討論和評估海軍對國家和國際安全的貢獻。雖然每個論壇都有其亮點,但2017年的活動可能會被人們記住,因為海軍作戰部長在會上用手說話。沒錯,約翰-理查森上將,一個核潛艇兵--而不是一個戰斗機飛行員--用他的手說話,把聽眾帶回了70多年前發明的航空戰術。
CNO將時鐘撥回到20世紀50年代的空軍上校約翰-博伊德和OODA循環。理查森上將用OODA環路來討論美國海軍正在使用的各種新技術。他指出,海軍已經在博伊德分類法中的觀察和行動部分進行了大量投資。他指出,在大數據、機器學習和人工智能等新興技術出現之前,我們對OODA環路中的 "觀察和決定 "部分無能為力,但今天我們可以。
這正是CNO在他的講話中使用博伊德的OODA循環的原因。他解釋說,今天的海軍作戰人員有大量的--甚至是壓倒性的--數據需要處理。他們需要大數據、人工智能和機器學習來整理這些數據,只呈現那些有助于決策者和扣動扳機者更快做出更好決策的信息。不難看出,這種將數據轉化為戰術上有用的信息的努力對作戰的所有方面都很重要,而不僅僅是戰斗機戰術。
現在可能是時候在美國海軍幾十年來幫助作戰人員做出更好決策的努力基礎上再接再厲了。海軍在利用技術幫助作戰人員在緊張的情況下以更少的人和更少的錯誤更快地做出更好的決定方面一直走在前列。在20世紀80年代,海軍研究辦公室啟動了一項計劃,研究作戰人員如何在高度緊張的情況下做出更好的決定。這項計劃被稱為TADMUS(壓力下的戰術決策),它利用認知科學在了解決策者如何做出決策方面取得了新的突破。這導致了海軍太平洋信息戰中心的科學家和工程師設計了幾個原型(多模式觀察站、知識墻和其他),并進行了測試,在幫助決策者實現改進決策方面取得了令人鼓舞的成果。
TADMUS與類似的海軍項目一樣,就其本身而言是好的。但正如理查德森上將在其當前戰略論壇的發言中所指出的,直到最近,將強化決策提升到新水平的技術還不存在。今天,它確實存在,而且利用大數據、人工智能和機器學習能夠為作戰人員提供的東西,很可能導致海戰的下一個突破,特別是在決策領域。海軍太平洋信息戰中心與通過海軍研發界、工業界和學術界的合作伙伴一起,正在領導各種努力,以確保美國作戰人員有能力以更少的人和更少的錯誤做出更好的決定。
在美國戰略和軍事指導的最高層,大數據、人工智能和機器學習被認為對為美國軍隊提供作戰優勢極為重要。而且,那些負責將這些技術整合到美國軍事平臺、系統、傳感器和武器的人越來越多地將決策確定為這些技術可以增加最大價值的一個重要領域。
在AFCEA/海軍研究所 "西部 "會議上的講話中,海軍預算主任迪特里希-庫爾曼少將這樣提出了海軍如何能夠最好地利用大數據、人工智能和機器學習的問題。"我們如何利用人工智能,不是為了生產殺人的自主平臺,而是為了讓指揮官在戰斗中獲得優勢?"的確,美國海軍--進而是美國軍隊--想要利用大數據、機器學習和人工智能的本質,不是在沒有人類監督的情況下向遠方發射終結者般的無人系統,而是幫助操作員做出更快、更明智的決定。
軍事作戰人員將始終處于循環之中,并將得到大數據、機器學習和人工智能的協助。軍方希望通過這些尖端技術--無論是應用于無人系統還是戰爭的其他方面--來實現的是進入對手的OODA循環。負責研究、開發和采購的海軍助理部長詹姆斯-格茨閣下在一次軍事工業會議上這樣說:"如果一支部隊能夠利用人工智能讓決策者比對手更快地做出決定,那么它每次都會贏。"
在海軍戰爭學院的一次演講中,美國防部聯合人工智能中心主任杰克-沙納漢中將這樣說。"人工智能對美國國防最有價值的貢獻將是它如何幫助人類做出更好、更快、更精確的決定,特別是在高后果的行動中。"
很明顯,美國國防部已經認識到,淹沒在數據海洋中的作戰人員無法做出有效的決策,并試圖利用人工智能和機器學習等技術來幫助整理數據,只呈現在激烈戰斗中有用的信息。
沙納漢將軍在戰爭學院的講話中談到了利用大數據、人工智能和機器學習幫助作戰人員做出更好決策的機會和挑戰,他指出:"在思考、書寫和談論人工智能與實踐之間存在著鴻溝。卷起袖子,投入到人工智能項目中,這是無可替代的。
最近,國防部聯合人工智能中心的新主任邁克爾-格羅恩中將這樣強調了決策:
在20世紀的戰爭中,衡量軍事優勢的單位是坦克、艦艇或飛機,以及 "勝過槍炮和棍棒 "對手的能力。在21世紀的戰爭中,軍事領導人只有幾分鐘甚至幾秒鐘的時間來做出關鍵的決定,超越對手的思維能力將決定勝利和失敗的區別。
當美國軍方及其國防工業伙伴在21世紀的第三個十年中制定他們的研發投資決策時,早就應該關注一個長期被忽視的領域--我們的軍事決策者的思想,并確保他們能夠做出更好的決定,比他們的對手更快和更少的錯誤。
軍事決策在不同的領域--陸地、海洋、空中、太空和網絡--以及不同的組織層面--戰略、作戰、戰術和技術上發揮著關鍵作用。建模和仿真被認為是支持軍事決策的一個重要工具,例如,生成和評估潛在的行動方案。為了成功地應用和接受這些技術,人們需要考慮到整個決策 "系統",包括決策過程和做出決策的指揮官或操作員。
人工智能技術可以以各種方式改善這個決策系統。例如,人工智能技術被用來從(大)數據流中提取觀察結果,自動建立(物理/人類/信息)地形模型,產生對未來事件和行動方案的預測,分析這些預測,向人類決策者解釋結果,并建立人類決策者的用戶模型。
對于所有這些應用,人工智能技術可以在不同的情況下被使用,并且已經開始被使用,因此有不同的要求。在本文中,我們概述了人工智能技術和模擬在決策"系統"中的不同作用,目的是在我們的社區中促進對人工智能的綜合看法,并為用于軍事決策的各種人工智能研發奠定基礎。
軍事決策有多種形式。它發生在不同的領域--陸地、海洋、空中、太空、網絡--以及不同的組織層次[7]。例如,在戰略層面上,決策是否以及何時在一個特定的作戰區域內開始一項軍事任務。在作戰層面上,聯合部隊指揮官決定為某項行動分配哪些軍事要素,并指定在具體行動中尋求的預期效果。在戰術層面上,例如,海上任務組的反空戰指揮官決定由哪艘護衛艦來應對來襲的威脅。最后,在技術層面上,要決定在什么范圍內使用什么武器來消滅對手。
建模和仿真被認為是支持這些現場決策過程的一個重要工具(例如,見[3]的清單)。它提供了一種理解復雜環境和評估潛在行動方案有效性的手段,而不必使用現場測試。因此,借助于建模和模擬可以更安全、更便宜、更快速,而且可以更容易地測試不同的操作方式。此外,對于戰場上的軍事行動來說,廣泛地試驗軍事行動應該如何進行,甚至可能在道德上不負責任。因為,在指揮官可以決定不繼續按照同樣的戰術行動之前,就已經產生了意想不到的效果。
現代建模和仿真經常得到人工智能(AI)技術的支持。例如,用于仿真單個節點、組織和社會行為模型(見一些背景資料[13][4]),以獲得對對手合理和可能行為的洞察力。在這種行為洞察力的基礎上,可以為許多決策層面的軍事行動設計提供智能分析和決策支持。此外,人工智能技術被用來構建這些模型,與這些模型互動,并迅速分析大量的模擬結果數據。這里的技術進步非常多,例如,使用機器學習來構建更真實的行為模型[11],改善人機協作[5],對大量的模擬數據進行理解[10]。然而,人工智能技術只有在對決策者有用的情況下才能也應該被用于軍事決策。這意味著,只有在決策質量提高或決策過程變得更容易的情況下,才應將人工智能技術(在建模和仿真中)整合起來。
成功應用和接受用于決策支持的模擬仿真--可能建立在人工智能技術之上--取決于與主要軍事決策過程的互動和不斷學習([1])。決策者和分析員應該知道如何提出正確的輸入問題,以便通過建模和仿真來回答。然后,這些問題應該通過建模和仿真研究轉化為正確的輸出答案。因此,在各種互補的人工智能技術的支持下,應該對軍事決策過程和軍事模擬之間的互動有一個廣泛、全面的看法,并服從不同的功能要求。在本文中,我們概述了由人工智能技術支持的軍事仿真在決策"系統"中的不同作用,目的是在我們的社區內促進對人工智能的綜合看法,并為軍事決策的各種人工智能研發奠定基礎。
如引言所述,決策發生在不同的領域和不同的組織層面。在這里,我們提出了一個決策系統的示意圖,以提供一個關于如何通過仿真來支持決策的一般見解。這一觀點(圖1)來自于對多個決策過程的分析,如聯合定位[5]、作戰計劃[7]、海上反空戰[1],并與著名的OODA環[8]相結合。該觀點中的元素解釋如下。
圖1:由建模和仿真支持的軍事決策周期的系統觀點。
觀察:OODA循環的第一步是觀察,從廣義上講,就是觀察現實世界中正在發展和出現的事件和情況。觀察包括,例如,來自傳感器的(原始)數據,包括我們自己的眼睛和耳朵,以及來自報告、報紙和社會媒體的符號數據。還收集了來自高層指揮和控制實體的指導意見。這些數據由分析員處理,對鏡頭中的個體進行命名,計算某些Twitter標簽的出現次數,驗證某個事件是否真的發生,等等。根據[9],這可以被稱為情境意識的第一級:對當前情況下的元素的感知。
世界模型:在OODA環的觀察步驟中,已經開始了構建世界模型的過程,無論是隱性的還是顯性的。符合軍事決策觀點的世界模型的另一個名稱是共同行動圖。所有相關的概念都在世界模型中得到體現,包括不確定因素和假設。請注意,世界模型可以被仿真,即個體、平臺、團體或社會的行為可以隨著時間的推移而被預測,即使是在用戶的頭腦中隱含完成。
定位:在OODA循環的第二步,分析者使用他的專業知識,對觀察結果進行推理,形成假設,例如對手的意圖。通過這樣做,實現了對真實世界的深入理解[12],這反映在世界模型中(仍然是顯性或隱性的)。在態勢感知方面,這被稱為第2級(對當前形勢的理解)和態勢感知能力第3級(對未來狀態的預測)。在任何時候,推理的結果可能是世界模型結構是不充分的,例如,現實世界的一個方面被認為是不相關的,但最后發現是相關的。因此,世界模型需要被更新。
決定:決策者,可能是與分析員相同的人,將根據對現實世界的理解,考慮如何采取行動的選項。世界模型的預測能力被用來演繹各種情景,讓人了解什么是理想的行動方案,什么不是,或者讓人了解空間和/或時間上的關鍵點,這樣就可以對這些關鍵點給予額外考慮。當然,如果世界模型是隱含的,這都是決策者的精神努力。此外,對于感興趣的現實世界系統的預測行為,可以得出的結論的精確性和/或確定性有很大不同:從精確的路線,到可能的戰略和理論的廣泛指示。
行動:在OODA-環的這一步,行動被執行。這些行動發生在真實世界中,然后一個新的OODA-環開始觀察是否需要重新考慮已經做出的決定。另一個行動可以是向 "較低層次"的決策過程下達命令,例如,讓下屬單位計劃和執行他們所得到的任務。這就是不同組織層次的決策過程的互動方式。還要注意的是,盡管每個組織層面的世界模型都與真實世界相聯系,但這些世界模型的結構(即被認為是相關的)可能是不同的。
從概念上講,在上述的決策過程中引入模擬(實際上首先是建模的巨大努力)是很直接的。在第一步和第二步中,建立了世界相關部分的模型,在以后的時間里,它被用來評估許多不同的情景,分析由此產生的結果,并根據其結論做出決定。正如后面將顯示的那樣,人工智能技術的作用與建模和模擬的使用有很大關系。
雖然從概念上來說,納入仿真模擬和人工智能技術是很簡單的,但為了給行動提供真正的附加值,它需要被嵌入到具體的決策過程中。而每個決策過程都是不同的,有不同的時間限制,不同的行動者,在不同的操作環境中。這將對開發使用的解決方案,包括人工智能技術,提出不同的功能要求。此外,根據具體的作戰決策環境,應用人工智能技術的附加值(或缺乏附加值)將是不同的。在下一節中,我們將對一個具體的案例進行進一步的探索,盡管肯定不是詳盡的努力,以允許對這種系統在這個過程中可能具有的不同角色進行更通用的識別。
本節提供了一個關于如何利用仿真和人工智能技術來支持作戰層面上的(蓄意)聯合目標定位決策的案例研究。對于每個想法,都有以下描述:被加強的行為者(決策者)和/或產品,人工智能如何提供支持,以及使用這種形式的支持的附加值是什么。請注意,這個案例研究的目的是為了更好地了解人工智能技術應用的廣度,因此,目標不是完全涵蓋所有的可能性,也不是過于詳細。這種類型的案例研究已經確保了可以得出初步的功能要求,人工智能技術和智能建模與仿真應該應用于此。
圖2顯示了北約盟國聯合出版物3.9中的聯合瞄準決策周期,其中強調了五個想法。
圖2--來自北約盟國聯合出版物3.9的聯合目標定位周期,JFC=聯合部隊指揮官,JTCB=聯合瞄準協調委員會,JTL=聯合瞄準清單,TNL=目標
想法1--基于AI的目標系統分析的所有來源分析。第一個想法是支持目標小組的成員在聯合目標定位周期的第二階段參與目標系統分析,進行目標開發。例如,假設從第一階段開始,就打算通過瞄準對手的石油生產來擾亂其資金能力。在第二階段,分析人員將研究石油生產的目標系統,以確定油井、煉油廠、管道、重要的道路,也許還有相關的關鍵人物,等等,基于他們擁有的所有來源(圖像、信號情報、人類情報,等等)。
人工智能技術可以協助人類分析員建立 "目標系統模型",即通過采用模式識別算法來處理大量的所有來源的信息,通過使用推理算法將信息碎片組合成一個結構化和連貫的整體。分析傳入信息的算法可能--經過增量的人工智能驅動的創新--也能夠識別尚未反映在目標系統模型中的新概念,然后可以自動添加到模型中。另一種可能性是創建一個 "虛擬分析師"(見圖3),通過不斷挑戰假設、假說和人類偏見來協助人類分析師,這需要額外的用戶建模和可解釋的AI技術。
圖3:人類和虛擬分析員,一起解釋數據,推理信息和知識,以建立一個目標系統模型。
這個想法的潛在附加值首先體現在完整性上,更多的目標可以呈現給人類分析員--它仍然可以為交叉檢查的目的做最后一步的目標審查。因為所有來源的情報都被整合到目標識別決策中,所以可以得出更具體的目標信息。識別算法經過訓練后,與基于人眼從數據中識別目標時相比,可以更快更及時地進行識別。最后,該算法可以明確地轉向識別不同類型的目標,這些目標可能并不都在人類分析員的經驗或觀察能力范圍內。
想法2--通過算法識別來自目標系統分析的優先目標。第二個想法是支持從一個給定的目標系統分析中識別優先目標。這有助于目標支持小組成員得出一個聯合的優先目標清單,該清單是在聯合目標定位周期的第二階段,即目標開發階段制定的。人工智能技術的支持始于將目標系統分析(如果還沒有的話)轉化為計算機可理解的形式,該形式由功能關系連接的實體組成,并由目標任務的目標支持。然后,在相關的時間范圍內計算直接或間接瞄準不同實體所產生的效用(例如,效果和效果的持續時間)。
然后,最終結果可以由人類分析員檢查,該分析員可能會重新引導算法的某些部分,以確保最終結果選擇的優先目標盡可能地滿足和平衡任務目標。另一種可能性是,分析表明,對目標系統的某些部分還沒有足夠的了解,無法做出某種決定,然后發出新的情報請求,以減少這種不確定性。
在這種情況下,使用人工智能技術的附加價值首先體現在通過完整地確定優先事項,包括最大限度地實現任務目標,同時最大限度地減少負面問題,從而更好更快地確定優先次序。這種全面的分析可能會導致原始的目標選擇,在這種情況下,會發現反直覺但非常有效的目標。目標優先級的可追溯性增加了,因為目標選擇問題的算法規范以及積極和消極的相關功能迫使決策者在激發他們的偏好時完全明確。
想法3--能力和優先目標的自動映射。與目標開發(第二階段)密切相關的是第三階段的能力分析。第三個想法是協助,仍然支持目標支持小組的成員,找到最適當的(致命和非致命)能力的最佳同步組合,可以應用于產生所需的物理和心理效果。使用模擬和人工智能技術來自動生成和播放高水平和低水平的行動方案,可以獲得對計劃的優勢、機會、弱點和威脅的深刻理解。當然,只有在與人類分析員和決策者密切合作的情況下,建立這樣的理解才是有用的,這就需要有人類意識的 "虛擬分析員 "技術。
想法4--計算機輔助的穩健和適應性部隊規劃和分配。在聯合定位的第四階段,能力分析的結果被整合到進一步的行動考慮中,推動聯合部隊指揮官對目標的最終批準。仿真和人工智能優化技術可用于尋找稀缺資源對目標或其他任務的最佳分配。什么被認為是 "最好的 "可以是不同的,例如,爭取最大的效果、安全、穩健、靈活,或這些和更多因素的任何組合。這可能會提供原始的規劃和分配方案,從人類分析者的角度來看,這些方案部分是反直覺的,但卻富有成效。智能優化算法可以幫助確定時間和/或空間上值得監測的關鍵點。而且,如果可以實時跟蹤進展,在事件或機會實際發生之前就可以立即生成重新分配方案,在時間緊迫的情況下減少決策時間。
想法5--自動評估軍事行動績效措施。在聯合定位的最后階段,收集和分析數據和信息,以確定計劃的行動在多大程度上得到執行(績效的衡量),以及達到預期的效果(效果的衡量)。因為這種類型的分析與其他階段的分析基本相似(即需要觀察和理解),所以在這里采用的模擬和人工智能技術可以被重復使用。例如,"目標系統模型"可以用來事先確定哪些措施或措施的組合最能說明性能和/或成功,也許還要考慮到其他因素,如效果的可測量性和延遲性。這些見解可用于指導例如戰斗損失評估工作。算法可以自動產生多種假設,當數據/信息可用時,"虛擬分析師"可以協助對這些假設和信息進行推理,幫助人類分析師以結構化的方式更好地解釋復雜的情況。
在本節中,我們將討論人工智能技術在軍事決策中可以發揮的作用,并將這些作用與前面介紹的軍事決策系統聯系起來。這些作用是由上面的案例研究綜合而成的。不同的作用是沿著兩個層次結構的,從上到下:在 "過程"層面,不同但連貫的步驟/階段被執行;在 "個體"層面,人類(或團隊)負責執行決策過程的特定步驟。
在整個決策過程的層面上,有多個步驟可以區分。在前面介紹的決策系統觀點中,這些步驟是觀察、定位、決定和行動。在聯合定位案例研究中,這些對應于六個階段,由不同的人在不同的時間執行。在這個層面上,我們為人工智能技術定義了四個功能角色,以支持決策過程。
感知:這個角色中的人工智能技術,主要以模式識別的形式,幫助處理大量的數據,如在圖像中尋找人,檢測數據流中的異常情況等。
態勢理解:這個角色的功能是實現對當前或假設的作戰環境的理解[12],從而描述所有相關實體、它們之間的關系以及不可觀察的屬性,如它們的野心和目標。例如,對關于最近敵對活動的現有信息進行推理,結合關于他們的理論的一般知識,可以用來產生關于他們最可能的意圖的假設。
計劃生成:在這個角色中,人工智能技術,例如搜索和優化,被用來生成旨在達到(或避免)某種目標情況的計劃、策略和行動方案。處理元標準,如計劃的穩健性或情況的實用性也是這個作用的一部分。顯然,在許多情況下,不確定性是行動環境所固有的,因此不能被忽視。盡管如此,對當前形勢的理解越好,預測能力就越強。
學習:扮演這一角色的人工智能技術被用來更新有關作戰環境的知識。例如,在某個時間點,人們可能會發現一個被認為是正確的關于敵人理論的假設不再有效了。為了能夠保持正確的理解,這種新知識應該反映在所有其他決策步驟中。
在單個節點層面上,決策過程的單一步驟被執行,通常由一個或一組人類分析員和/或決策者負責。無論這一步需要什么,人工智能技術都可以在不同的合作角色中被使用,以支持人類。
專家系統支持:在這個角色中,支持的形式就像一個經典的專家系統,以知識和優化結果的形式向人類決策者或分析員提供建議。重要的考慮因素是,例如,如何以人類能夠接受的方式向其提供建議。對可解釋人工智能的研究可能是一個方向。
虛擬團隊成員:在這個角色中,人工智能技術被用來在人類和支持系統之間創造一種更平等的互動關系,積極為一個共同的目標工作。例如,虛擬團隊成員可以通過提出問題使假設明確化或挑戰偏見來幫助做出決定的(認知)過程。人類-人工智能的研究可能是一個追求的方向。
自主決策:決策過程中的其他步驟的互動,專家系統和虛擬團隊成員支持的考慮同樣有效。例如,在其他決策中的人類需要能夠推斷出一個自主系統。
圖4顯示了在軍事決策系統視圖中繪制的人工智能的七個角色。當使用模擬和人工智能來支持決策過程時,應該始終考慮這些不同的角色是如何互動的,無論是在過程層面還是在個人層面。例如,在聯合目標定位的過程層面上,第二階段包括定位(目標系統分析)和決定(為達到預期效果而瞄準什么)。第三階段也包括定位(自身能力)和決定(如何實現預期效果)。這些階段共享相同的世界模型,在這個過程中引入人工智能支持將推動這些步驟的合并,這不是不可想象的。在個體層面上,例如再次考慮第2階段,分析員可以得到綜合態勢理解、規劃生成和學習技術的支持,以及虛擬團隊成員和專家系統支持技術的任何組合。
圖4:由建模和仿真支持的軍事決策周期的系統視圖,其中人工智能技術的功能(黃色)和協作(綠色)作用被描繪出來。
在本文的第一部分,我們介紹了軍事決策的系統觀點,主要基于OODA循環,其中我們介紹了世界模型,作為向整個決策周期提供建模和仿真支持的核心手段。接下來,從我們的聯合目標定位案例研究中,我們推斷出人工智能可以為軍事決策做出貢獻的七個功能性和協作性角色。這些角色對應于決策步驟,或者對應于如何向負責該過程步驟的人提供支持。最后,我們將這些人工智能角色整合到決策系統視圖中。
本文的目標是為我們社區內人工智能的綜合觀點做出貢獻,并為軍事決策的人工智能各種研發奠定基礎。在開發支持軍事決策的模擬和人工智能時,我們建議同時考慮過程層面和單個節點層面。在過程層面上,通過使用建模和仿真可以獲得好處。在單個節點層面上,為人類分析員和決策者提供實際支持,人工智能技術可以通過不同的角色組合對此作出貢獻。鑒于決策過程的各個步驟都是不同的,并且提出了不同的要求,履行這些不同角色的人工智能技術需要作為一個整體來開發。
我們相信,隨著對這一主題的更多研究,軍事決策的速度和質量都可以得到改善。然而,非常重要的是,要持續關注特定的未來人工智能應用的附加值,以及研究這些應用可能對,例如,負責該過程的人的所需技能,甚至該過程本身的影響。最后需要的是一個系統,它的存在是因為它可以建立,而不是有人幫助。對于這一點,應該更普遍地回答如何限定然后量化應用人工智能進行具體軍事決策應用的附加價值的問題。這樣的見解反過來又會成為關于人工智能用于軍事決策的集體技術路線圖的寶貴基礎。
[1] Bloemen, A., Kerbusch, P., van der Wiel, W., Coalition Force Engagement Coordination, TNO Report TNO-2013-R12117, 2015.
[2] Connable B, Perry W, Doll A, et al. Modeling, Simulation, and Operations Analysis in Afghanistan and Iraq. Santa Monica, CA: RAND, 2014.
[3] Davis P., Kulick J., Egner M. Implications of Modern Decision Science for Military Decision-Support Systems. Santa Monica, CA: RAND, 2005.
[4] Kunc, M., Malpass, J., White, L.(2016). Behavioral Operational Research, Theory, Methodology and Practice. Palgrave Macmillan, London.
[5] Langley, P., Meadows, B., Sridharan, M., Choi, D. (2017). Explainable Agency for Intelligent Autonomous Systems. Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications (IAAI-17).
[6] NATO Allied Joint Doctrine For Joint Targeting AJP 3.9(B), 2015.
[7] NATO Allied Command Operations. Comprehensive Operations Planning Directive Interim V2.0.
[8] “OODA loop.” Wikipedia, The Free Encyclopedia. 10 Mar. 2018.//en.wikipedia.org/wiki/OODA_loop
[9] “Situation Awareness.” Wikipedia, The Free Encyclopedia. 17 Mar. 2018.
[10] Smit, S., Veldhuis, G., Ferdinandus,G., et al. KaV Advanced Visual Analytics, TNO Report DHWELSS-, 2016.
[11] Toubman, A., Poppinga, G., Roessingh, J. (2015). Modeling CGF Behaviour with Machine Learning Techniques: Requirements and Future Directions. Proceedings of Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015.
[12] “Understanding.” Wikipedia, The Free Encyclopedia. 18 Apr. 2018.
[13] Zacharias, G., MacMillan, J., van Hemel, S. (2008). Behavioral modeling and simulation: From individuals to societies. National Research Council, National Academies Press.
對于人工智能的軍事用途所帶來的接受挑戰,傳統的反應是堅持要求人類保持 "有意義的人類控制",作為一種產生信心和信任的方式。考慮到人工智能和相關基礎技術的普遍性和快速發展,這不再是一個適當的回應。人工智能將在整個軍事行動范圍內廣泛的指揮和控制(C2)活動中發揮重要的、日益增長的作用。雖然在公眾心目中,人工智能的威脅沒有 "殺手機器人 "那么直接,但在軍事決策中使用人工智能會帶來關鍵的挑戰,同時也有巨大的優勢。加強人類對技術本身的監督并不能防止無意的(更不用說有意的)濫用。
本文以各級(作戰操作員、指揮官、政治領導人和公眾)的信任對有效采用人工智能進行軍事決策至關重要這一前提為基礎,探討了關鍵的相關問題。對人工智能的信任究竟意味著什么?如何建立和維持它以支持軍事決策?人類操作員和人工智能體之間的共生關系對未來的指揮需要作出哪些改變?
當人類對人工智能的行為持有某些期望,而不考慮人工智能體的意圖或道德時,可以說存在對人工智能的信任。然而,與此同時,信任不僅僅是技術性能和可靠性的一個功能--它不能僅僅通過解決數據完整性和可解釋性問題來保證,盡管它們很重要。軍事人工智能中的信任建設還必須解決軍事組織和指揮結構、文化和領導力方面的必要變化。實現總體上適當的信任水平需要一個整體的方法。除了信任人工智能的使用目的之外,軍事指揮官和操作人員還需要充分信任--并且在如何信任--支撐任何特定人工智能模型的輸入、過程和輸出方面得到充分的培訓和具有豐富經驗。然而,最困難的,也可以說是最關鍵的層面是組織生態系統層面的信任。如果不改變軍事決策的體制因素,未來人工智能在C2中的使用將仍然是次優的,被限制在一個模擬框架內。有效引進任何新技術,更不用說像人工智能這樣的變革性技術,需要從根本上重新思考人類活動的組織方式。
優先考慮人和制度層面并不意味著對技術進行更多的控制;相反,它需要在不斷發展的人機認知系統中重新思考人的作用和貢獻。未來的指揮官將需要能夠在一個真正的 "整體部隊"中領導不同的團隊,整合來自軍事、政府和民事領域的貢獻。他們必須對他們的人工隊友有足夠的了解,以便能夠與他們合作并挑戰他們。這更類似于海鷗的雜音,而不是個別 "翠鳥"領導人的天才。為了發展新的指揮和領導概念,英國防部必須重新思考其方法,不僅是培訓和職業管理,還有決策結構和程序,包括未來總部的規模、位置和組成。
人工智能已經在改變戰爭,挑戰人類長期的習慣。通過在訓練和演習中接受更多的實驗,以及探索C2的替代模式,國防部可以更好地準備迎接未來不可避免的變化。
人工智能正在改變人類的思維和決策方式。未來,它將越來越多地影響人類如何確定各種認知過程的優先次序,調整他們的學習、行為和訓練,并更廣泛地改造他們的機構。這些變化在整個軍隊中仍不完全明顯。盡管有新的技術和戰爭迅速發展的特點,今天的武裝部隊在組織結構上與后拿破侖時代歐洲的職業軍隊并沒有很大的區別。太多的人仍然參與到軍事任務中,而這些任務技術可以做得更好更快,并且對于重新思考人類對人機團隊的認知貢獻也沒有給予足夠的重視,而這正是解決未來指揮和控制(C2)問題所需要的。
本文以QinetiQ公司早先的一份報告為基礎,該報告將信任視為軍事能力的基本組成部分和2020年代軍事適應性的基本要求。本文探討了在軍事決策中越來越多地使用人工智能的最新趨勢和想法。本文并不直接關注這一趨勢的倫理(或法律)問題,盡管這些問題很重要。相反,本文強調了信任作為人工智能時代軍事指揮的一個因素的重要性和意義。
人工智能對軍事決策和C2的潛在深遠影響很少引起專家團體以外的關注。大多數公眾關注的是技術的優勢和風險,而不是人類認知和制度構建的潛力和限制。20多年前,著名的社會生物學家E-O-威爾遜抓住了人類當前的挑戰。威爾遜說,真正的問題是,"我們有舊石器時代的情感;中世紀的制度;和神一樣的技術。"在過去的幾十年里,技術的發展速度遠遠超過了人類適應它的能力。強調人工智能的技術屬性,而忽略其日益增長使用中的人類和制度層面,只會使挑戰更加復雜。
在許多領域,人工智能的軍事經驗仍然有限,需要做更多的工作來了解人工智能在人類決策中作用日益增長的影響。本文旨在引發一場更廣泛的辯論,討論英國國防企業內部所需的文化和組織變革,包括指揮部和指揮官的作用,以確保人工智能在未來軍事決策中的最佳使用。
本文的見解來自與人工智能、人類認知、軍事決策和信任理論有關的更廣泛的文獻。這項研究在2021年9月至2022年2月期間進行,大大受益于與來自國防、學術界和工業界的廣泛專家和用戶的訪談。
前兩章提供了本文的理論背景。第一章探討了人工智能和信任的概念,第二章則分析了人類機構的作用以及人工智能對人類做出選擇和決定的認知能力的影響。第三章結合信任、人工智能和人類機構的概念,提出了一個在人工智能支持的軍事決策中發展信任的五維框架。第四章擴大了對C2的分析范圍,特別關注人工智能對傳統上支撐武裝部隊行使權力和指導的人和體制結構的影響。最后一章提出了對未來指揮、領導和 "全軍 "團隊的進一步研究領域。
對于人工智能或與人工智能有關的信任,并沒有標準的定義。這兩個概念都有不同的解釋,有時也會有激烈的爭論。本章沒有試圖綜合所有關于這兩個術語的文獻,而是建立了一個基準定義,為隨后討論關于人工智能應用于軍事C2的信任作用提供框架。
人工智能的概念起源于1950年著名的圖靈測試,該測試發生在這個詞被創造出來的幾年前。通過關注它做什么而不是它是什么,更容易將人工智能概念化。人工智能 "試圖讓計算機做人類思想能做的各種事情"。在最基本的方面,它可以被理解為追求特定任務的虛擬信息處理能力。正如 "智能"(或 "思想")有許多層面和不同的用途,人工智能也是如此。因此,人工智能從廣泛的學科中汲取不同的想法和技術,不僅包括數學和計算機工程,還包括哲學、經濟學、神經科學、心理學和語言學。
廣義上講,有三種不同層次的人工智能:人工狹義智能,通常被稱為 "狹義人工智能";人工通用智能,有時被稱為人類水平的人工智能;或者更強大的人工超級智能,超過人類的智能水平。在這一點上,有些人認為會出現一個奇點,在這個奇點中,人工智能要么變得有自我意識,要么達到持續改進的能力,使它的發展超出人類控制。后兩種水平被認為仍有一段距離,盡管距離有多遠還存在爭議。不過,就目前而言,狹義人工智能更先進應用的出現,如先進的機器人技術,加上計算能力的爆炸,才是目前關于人工智能的軍事用途辯論的主要動力。本文重點討論狹義人工智能的應用。
圖 1:AI 類型的簡化分類
在狹義的人工智能中,還有更多的類別,盡管這些技術并不完全是離散的,而且經常被結合使用。最常見的區別是符號人工智能和亞符號或非符號人工智能,前者通常被描述為基于邏輯,后者基于自適應或學習。符號人工智能依賴于順序指令和自上而下的控制,使其特別適合于確定的問題和基于規則的過程。非符號人工智能,其中神經網絡是一種常見的方法,涉及并行、自下而上的處理和近似推理;這與動態條件和數據不完整的情況最相關。符號人工智能提供了精確性和可解釋性,而涉及神經網絡的非符號人工智能則不那么脆弱(網絡中缺少一個節點并不會導致整個網絡無法運行),并且能夠在沒有明確規則或一致證據的情況下識別模式。
有三種常見的機器學習類型,根據有助于智能體學習過程的反饋類型進行區分:監督學習;無監督學習;以及強化學習。在監督學習中,系統被訓練來產生假設或采取具體行動,以追求基于特定輸入的目標值或輸出(被稱為標簽)(例如,圖像識別)。無監督學習沒有設定規格或標簽,也沒有明確的反饋;相反,系統通過尋找數據中的模式進行學習(例如,DNA序列聚類)。強化學習依賴于一個反饋回路,通過試錯或獎懲機制穩定地強化系統的學習行為(例如,先進的機器人技術或無人駕駛汽車)。與監督學習不同,強化學習中使用的輸入數據不是預先定義的,這允許更廣泛的探索,但與無監督學習不同,它有一個預期的應用或總體目標(與總體獎勵最大化相關)。
所有三種類型的機器學習,無論監督或自律的程度如何,都提出了重要的信任和值得信賴的問題。所需的信任程度和性質因使用人工智能的目的不同而不同。
信任描述了兩個或多個智能體之間的互動。信任的傳統定義是假設信任者對受托人的能力和善意(或動機)存在合理的信念。對許多人來說,道德誠信(或意圖)的問題是信任與其他概念(如信心)的區別。另一些人認為,信任的范圍和所指比信心更廣,后者被視為與具體事件相關的獨立判斷。大多數信任的定義趨于統一的是一種脆弱的感覺。沒有背叛的可能性,沒有風險的存在,就不可能有信任。
正是因為經典的信任概念中隱含著假定的道德因素,一些人質疑使用該術語來描述人類與人工智能體的關系。他們認為,在目前狹義人工智能的水平上,我們不能將意向性或道德機構歸于人工智能系統,因此使用 "信任 "一詞是不恰當的。另一些人采取了不那么純粹的觀點,并以反映日常使用的方式應用該術語,意味著對系統的可靠性有信心。
信任作為一個術語在計算機科學中被廣泛使用。更重要的是,信任仍然是公眾和用戶接受人工智能的一個基本方面。今天,關于人工智能的國家政策、法規和專家建議經常強調 "值得信賴的人工智能 "的必要性。例如,DARPA的空戰進化計劃正在探索方法,以模擬和客觀地衡量飛行員在斗狗時對人工智能的信任。認識到這些尚未解決的定義問題,作者選擇了略微調整 "信任 "一詞,使之與通常的做法一致。
作者調整后的信任概念需要對人工智能的表現有一定的預期,而不需要假設人工智能方面的特定動機。因此,對人工智能體行為的積極預期可能是信任存在的充分條件,而不考慮意圖。
在目前大多數關于人工智能的討論中,重點往往是人作為信任者,系統作為受托人,盡管任何認知智能體,包括自主機器人和智能機器,原則上也可以履行信任者的角色。這樣理解的話,信任就成了 "系統成員之間互動的促進者,無論這些成員是人類智能體、人工智能體還是兩者的組合(混合系統)"。事實上,在人工智能更成熟的應用案例中,受托人最有可能同時包括人工智能支持的系統(人工智能體)和該系統的提供者(人類智能體)。在目前的人工智能水平上,信任似乎是一種單向的關系,涉及人類 "信任 "人工智能的程度,而不是真正的雙向信任,即人工智能對人類表現的看法。
各種因素決定了(人類)對技術的信任,包括但不限于信任者的能力水平和信任傾向,以及整體環境或背景(包括更廣泛的文化和機構動態)。除了這些針對人類和環境的考慮,決定一個人或組織對人工智能的信任程度的是技術的性能、過程(它如何產生特定的輸出),以及重要的是目的。所有這三者都決定了人工智能系統的設計和部署。
除了技術的穩健性和安全性,隱私、公平、透明度和問責制是一些最常被提出的影響公眾對人工智能信任的問題。然而,主要是由于設計適當的算法、理解復雜軟件系統的內部結構以及為基于算法的決策賦予責任等方面的困難,所以在值得信賴的人工智能的關鍵屬性列表中總是會加入進一步的考慮:這被交替稱為人類機構、監督或有意義的控制。在某些情況下,保持人類對技術使用的監督可能是唯一的保護措施,以防止無意中出現有偏見的、不可捉摸的和/或監管不力的人工智能系統的風險。
控制通常被看作是信任的反面。當對智能體執行任務的能力有信任時,就不需要監督。然而,即使在人工智能更適合做決定的情況下,人類也會經常傾向于干預。信任不足可能和過度信任一樣有風險或適得其反。事實上,正如絕對的控制是罕見的,絕對的信任也是如此。在開發和使用人工智能的過程中,有必要在適當的信任水平和適當的控制水平之間取得謹慎的平衡。這是 "校準的信任 "或可適應/適應性自主性等概念的核心。信任是根據人工智能的能力來校準的,對人工智能能做什么或不能做什么的期望將影響信任的水平。同樣,在可適應的自主性的情況下,用戶定制自主性水平的能力可以支持更大的信任水平。這在國家安全決策中尤為關鍵,因為信任或不信任人工智能的影響可能是最大的。
對技術在人類事務中的作用的擔憂并不新鮮。許多人認為關于人工智能的辯論與之前關于技術的爭論沒有什么不同。根據這一論點,人工智能構成了一種進化,而不是對過去活動的徹底背離,即使人類有時可能在背離以前的自動化水平的情況下被從決策圈中移除。雖然信任仍然是一個挑戰,特別是在機構和社會層面,但穩步應用最初仍然有限的人工智能來支持軍事活動,隨著時間的推移,可以培養出熟悉和越來越多的信心。
其他人,通常是政府以外的人,質疑這種漸進式的方法。他們認為人工智能的崛起是一種范式的轉變,與以前的任何技術都有質的不同。以前的技術都沒有將人工智能的雙重用途特性、傳播的便利性和實質性的破壞潛力結合起來。在過去,最具破壞性的技術都在政府的控制之下,或者在軍事領域之外幾乎沒有應用。此外,雖然以前政府主導了大部分新技術的開發,但這種趨勢幾乎完全逆轉;現在大部分投資和創新來自于工業。鑒于軍事和民用界限的模糊,以及我們的對手和競爭者對人工智能的投資,認為我們可以控制人工智能發展和使用的速度和程度是不明智的。在反思算法技術的進步時,一些人甚至進一步聲稱技術和人類之間的角色發生了逆轉,人們正在成為 "人類的人工制品"和"(技術系統的)智能體"。
如果我們接受對人工智能系統在未來如何操作(和運行)進行完全控制的限制,關鍵問題是我們如何在算法超過目前的性能水平后長期確保適當的交互和人類判斷。反應時間是軍事競賽中的一個關鍵優勢;加快OODA(觀察--方向--決定--行動)循環的各個方面,通常會給那些先到者帶來領先優勢。而這樣做只要一方開始使用人工智能來加快他們的決策和反應時間,另一方就會受到壓力。
2020年12月,美國空軍首次使用人工智能副駕駛飛行了一架軍用飛機。這種被稱為ARTUμ的算法完全控制了傳感器的使用和戰術導航,而其人類隊友則駕駛著U2間諜飛機。這是首次出現人工智能控制軍事系統的情況。用美國空軍前首席采購官員威爾-羅珀的話說,ARTUμ "是任務指揮官,是人機團隊的最終決定者"。
甚至在ARTUμ演示之前,美國國防部已經開始了其全域聯合指揮控制(JADC2)計劃的工作。JADC2旨在打造連接五個軍種的傳感器,承諾對作戰環境進行快速分析,以便在幾小時或幾分鐘內做出決策。在未來的JADC2中,人工智能將允許快速處理數據,為目標識別提供信息,并推薦最佳的交戰武器(無論是動能還是非動能)。美國空軍的先進作戰管理系統、美國陸軍的 "聚合項目"(被稱為 "學習運動")和美國海軍的 "超配項目 "都在嘗試使用人工智能與自主性相結合的方式來支持JADC2。
其他國家,包括英國通過英國陸軍的 "Theia計劃"等項目,以及北約也已經開始嘗試使用人工智能來支持C2和決策。然而,這種試驗的規模和范圍仍然有限。與數據挖掘和語言翻譯等領域不同,人工智能在軍事決策中的應用仍處于起步階段。
美國國防部高級研究計劃局目前開展的工作提供了對未來的一瞥。作為其 "AI Next "項目的一部分,該機構的第三波人工智能投資尋求 "將計算機從工具轉變為解決問題的伙伴",并 "使人工智能系統能夠解釋其行動,并獲得常識性知識并進行推理"。
人工智能已經塑造或推動了我們的許多日常決策。在某些情況下,它已經改變了整個行業。在高度交易性的活動中尤其如此,如保險或零售部門。人類已經將關鍵活動的責任交給了人工智能,讓算法在沒有人類干預的情況下做出決定。今天,人工智能塑造了谷歌和Facebook等網絡平臺提供的內容,也決定了哪些內容被刪除或屏蔽。保留了人類因素的人工智能決策支持系統也在激增,被用于從醫療診斷到改善制造工藝的各個方面。
很少有地方像金融業那樣,人工智能從根本上改變了人與機器的關系。人工智能現在負責絕大多數的高頻交易。在幾毫秒內做出的數千項微觀決定有能力改變整個財富,有時會帶來毀滅性的后果,2010年的 "閃電風暴 "證明了這一點。人類的決定對于金融市場的效率不再是必要的,事實上,甚至可能會起到反作用。無形的算法似乎已經超越了無形的手。
至于社會的其他部分,人工智能的潛在軍事用途涵蓋了廣泛的應用范圍。這些可以有效地分為企業、任務支持和業務人工智能應用。人工智能的軍事應用,特別是與任務支持和作戰用途有關的應用,在一些基本方面與日常的民用活動不同。在平民生活中,人工智能有機會利用大量容易獲得的數據,不斷針對現實生活中的例子進行訓練和學習。對于軍隊來說,與對手的接觸是零星的,來自真實行動的教訓或 "數據 "在數量和頻率上都相對較低。除了軍事對抗的偶發性質,國家安全決策通常依賴于一套復雜得多的條件,涉及多個參數和利益相關者(更不用說對手的意圖),而今天的算法沒有能力再現這些條件。最后,也是最重要的一點,在國防和國家安全問題上,面臨風險的不僅僅是財富,還有生命。數學邏輯不足以為決策提供依據;在使用武力時,道德和倫理考慮比任何其他人類活動都要突出。當人類生命的完整性受到質疑時,我們為技術設定的標準將永遠高于我們為容易出錯的人類設定的標準。
除了美國、英國和北約等國的現行政策外,人們普遍認為人類將在決策中保留一個關鍵角色。美國國防部的人工智能戰略指示以 "以人為本的方式 "使用人工智能,有可能 "將人類的注意力轉移到更高層次的推理和判斷"。納入人工智能的武器系統設計應 "允許指揮官和操作人員對武力的使用進行適當的人類判斷",并確保 "清晰的人機交互"。提到人類總是 "在循環中 "和 "完全負責選項的開發、解決方案的選擇和執行"--這是以前對我們日益自動化的未來的評估中的常見說法--已經被一種更細微的觀點所取代。
所謂的有監督的自主系統是指人類坐在 "循環 "上。雖然人類在理論上保持監督,但一些批評者認為,在實踐中,他們可能無法真正控制自動決策,因為他們可能不熟悉為他們提供決策信息的環境和人工智能程序。在這些情況下,人類的干預能力,除了停止機器之外,被降到最低,沒有達到"有意義的人類控制 "的想法。只有在完全自主系統的情況下,人類的干預才會被完全消除。然而,最終,試圖定義自主性水平的做法可能會產生誤導,因為它們假定人類和機器之間的認知活動是簡單分離的。2012年美國國防科學委員會的一份報告描述了如何:
兩個領域的發展揭示了各國政府在國防和國家安全的關鍵決策中信任先進的自動化方面已經走了多遠。一個是導彈防御,另一個是網絡防御。兩者的有效性都取決于反應速度,這通常超過了最有經驗的人類操作員的能力。
大多數防御性武器系統,從短程點防御到反彈道導彈系統,都采用先進的自動化操作,使其能夠在沒有人類干預的情況下探測和摧毀來襲導彈。算法實際上是在發號施令。在這種系統中,人類被稱為 "循環",在事先經過嚴格的人類測試后,在有限的設計空間內運作,因此其控制范圍受到限制。雖然錯誤永遠不可能被完全消除,但在大多數情況下,不做出反應或反應遲緩的風險可能超過偶爾發生事故的風險。雖然事故促使人們對這些自主系統的操作進行審查,并可能導致引入一些進一步的人為檢查,但這種干預也帶來了進一步的復雜性。對越來越快的導彈,特別是高超音速導彈的防御將繼續推動人工智能在導彈防御中的應用。
網絡戰是人工智能相對于人類具有明顯優勢的另一個領域,而這往往需要人類保持置身事外。人類操作員缺乏算法快速檢測和應對網絡事件以及不斷調整系統防御的能力。所謂的認知電子戰(EW)系統應用人工智能技術來自動檢測對EW系統的威脅,而不是依賴人類操作員。
將決策過程中高度耗時、勞動密集型和需要低層次人類推理的部分自動化,有巨大的好處。軍事評估過程是軍事決策過程的一個關鍵部分,一直是參謀學院教授的標準作戰計劃過程。這種方法的一部分涉及收集和處理信息,為一個或多個行動方案提供信息。由于信息時代的決策需要更大的速度和敏捷性,達成決策的過程將需要加速。人工智能已經證明了它在基于明確定義的規則、輸入和假設快速執行理性過程中的效用。只要人類負責設定假設并定義產生替代方案和概率評估的輸入,人工智能就能增強整個決策過程。
可以理解的是,政府內部和外部都不愿意讓人工智能發揮超出決策支持和適當決策的作用。"指揮和控制"的概念在軍隊的心理和結構中根深蒂固,許多人無法接受一個在某種程度上不涉及人類控制軍事行動或指揮任務的未來。人被要求帶著他們對問題的創造性見解,像現代的亞歷山大一樣解開這個死結。沒有什么比對 "翠鳥時刻 "的信念更能體現這種對直覺型指揮官形象的依戀。這種技能,即指揮官藝術的精髓,只限于那些在最苛刻的情況下能夠憑直覺做出決定的少數人。人工智能提供并非基于人類邏輯或經驗的獨特見解的能力,對這種思維提出了深刻的挑戰,并可能在未來改變指揮官的形象。
許多人將人工智能稱為決策支持而不是決策工具,其推論是人類最終仍然是所有決策的仲裁者。這樣的區別造成了一種令人放心的錯覺,即人工智能只是協助實現一種效果。人類根據一套算法挖掘、篩選和解釋的數據做出的致命行動決定,是否比由智能機器完全執行的決定需要更多的人類機構?對 "行動 "的癡迷--更不用說致命行動--作為更廣泛的 "殺傷鏈 "的最后元素,掩蓋了人工智能在整個行動范圍內的一系列C2活動中日益增長的影響。
許多專家對人類是否有能力控制由人工智能促成或驅動的決策持懷疑態度。這種懷疑往往圍繞著所謂的黑盒問題:高級人工智能,如深度學習,在本質上是無法被人類理解的。這不僅僅是由于它的工作速度,也是由于算法網絡相互作用的方式,以及它們所操作的數據的規模和復雜性。我們不能簡單地詢問系統以了解其思維過程。我們可能知道一個模型的輸入和輸出,但卻無法理解這中間發生的事情。一個相關的、更微妙的論點是,算法對人類的認知攝入施加了 "權力"。人工智能可以決定人類處理哪些信息,而不向他們透露哪些信息被遺漏或拒絕。它還挑戰了這樣一個概念,即如果人類的行動受到數據呈現的內容和方式的制約,他們可以行使 "有意義的 "控制。這與人工智能的好處之一正好相反,即它能夠減少人類的認知負荷,使人類能夠集中精力思考和作出最高價值的活動。
對黑盒挑戰的典型解決方案是開發可解釋的人工智能(XAI)。盡管能夠自我解釋的人工智能可能有助于理解,但它并不必然會導致信任。XAI并不等同于可解釋的AI;解釋不是一個決定,而是一個關于決定的敘事。因此,即使是一個令人信服的解釋也不一定是真的。對于許多潛在的用例,我們還遠遠沒有能力開發出足夠的可解釋(Explainability)的人工智能,更不用說可因果解釋(Interpretability)的了。對更先進的人工智能系統進行嚴格的測試可能會證明它們的部署是足夠的,即使是在沒有人類能力遵循其推理過程的情況下。不過,從根本上說,我們對測試的傳統方法需要重新思考。沒有充分的測試和評估,對不可解釋/可解釋的人工智能的信任將是 "盲目的信任"。對于美國前國防部副部長鮑勃-沃克的問題,我們仍然缺乏一個令人滿意的答案:你如何對學習系統進行測試和評估?
當存在不確定性或缺乏知識時,人類會應用啟發式方法來近似解決復雜問題。啟發式方法是驅動直覺思維的因素;它依賴于經驗法則,通常是通過經驗和實驗來了解。因此,它可能存在偏見和盲點,但它也可以作為一種非常強大和有效的快速認知形式。機器缺乏類似人類的直覺,但它們確實依靠啟發式方法來解決問題。與人類推理的關鍵區別在于,機器不需要記憶或 "個人 "經驗就能進行 "直覺 "或推理。它們利用巨大的數據庫和卓越的概率能力為決策提供信息。強大的模擬與先進的計算能力相結合,提供了一個測試和 "訓練 "算法的機會,其重復程度是人類無法想象的。在宣布任務準備就緒之前,ARTUμ在短短一個多月內經歷了超過一百萬次的訓練模擬。
即使在XAI領域取得了重大進展,仍然會有謹慎的理由,特別是在需要復雜決策的情況下。人工智能通常不善于看到 "全局",也不善于根據相關的內容做出決定。像人類一樣,它也會把相關性或偶然事件誤認為因果關系。人類和機器在處理復雜問題時都會遇到 "正常的意外"。創造力是人類通常具有的特質,但一些先進的人工智能可以產生人類無法企及的驚人結果。簡而言之,許多通常被認為是人類特有的屬性,如創造力和直覺,也可以說適用于人工智能系統--盡管方式不同,速度超過人類能力。
目前機器所缺乏的是人類思維的靈活性和關聯感("框架 "的能力)。人類可以橫向思考,通過實用主義得出合理的結果(這一過程被稱為歸納推理),并反思自己的思維過程(這一能力被稱為元認知)。這些心理過程可以產生驚人的適應和創新的壯舉。
人工智能的出現意味著未來的軍事決策將幾乎肯定需要更強大的人機共生關系,就像在已經接受該技術的商業組織中看到的那樣。目前的討論大多是假設人類繼續控制,或尋求將人類的屬性應用于未來的機器。一些人提倡一種新的 "決策演習"概念,將 "人的指揮和機器的控制"結合起來。但更有可能的是,指揮和控制的責任將越來越多地由人類和人工智能系統分擔,其方式可能是目前難以設想的。人類與人工智能的合作提供了利用各自優勢和減少不足的最佳方式,特別是在戰爭方面(目前戰爭的性質仍然沒有改變)有四個連續性:政治層面;人類層面;不確定性的存在;以及戰爭是一場意志的較量。
信任是動態的;它隨時間而變化。它的最初形成是至關重要的,但它的持續發展也是如此。信任是隨著熟悉程度的提高而自然產生的,因此,假設經驗是積極的,即使是在對技術不完全了解的情況下,技術的使用也會擴大信任的范圍。反過來也是如此,不好的經驗會促進不信任。移動電話技術復雜性對大多數用戶來說是未知的,但人們的積極經驗給了他們使用的信心。這種信心導致了與手機使用所形成的決定相適應的信任感。然而,手機一般不會決定生死大事,盡管它們會將盲目聽從指示的不謹慎的司機置于危險之中。在軍事背景下,賭注更大,用戶和策略制定者非常清楚他們的決定的潛在后果--信任門檻很高。
軍隊作為應急組織,不需要定期交付其主要產出,這影響了可以獲得最直接相關經驗的速度。與金融服務業不同的是,在金融服務業中,交易為人工智能決策提供了頻繁的驗證,而國防部門的時間線往往更長,結果在一個單一的因果鏈中也沒有明確的聯系。做出決定和觀察其影響之間的時間間隔更長,并受制于多種干預變量。雖然模擬演習創造了獲得經驗的機會,但它們只是現實的近似值。
建立和維持信任涉及五個主要的 "Trust Points"--在這些點上,擁有適當水平的信任問題是至關重要的。這些點是:
總的來說,這些Trust Points定義了一個整體的信任水平,并且是乘法的:如果對其中一個的信任是 "零",那么整體就是 "零"。只要整體信任是正向的,每個人的信任水平都可以變化--在不同的時間。
部署信任
對在特定情況下使用人工智能的決定的信任是至關重要的。對于人工智能的軍事使用(以及許多民用應用),這在三個層面上運作:社會;組織;和個人。第一個層面考慮的是整個社會是否愿意允許人工智能的使用,這將決定策略制定者如何看待它的使用。組織本身也必須愿意認可這一點。最后,個人必須愿意在這個角色中與人工智能合作。所有這三個層次都需要接受使用人工智能的必要性或其可取性的必然性。可取性可能反映了人工智能在以超過人類操作員的速度或數量(或兩者)處理數據方面的優勢,或在承擔枯燥或危險的工作方面的優勢。而軍方可能會認為,人工智能既實用又要避免將優勢讓給對手,但社會似乎更傾向于將致命的使用視為一個倫理問題,在這個問題上,人類生命的神圣性要求道德行為者決定奪取人的生命。
社會對人工智能使用的接受程度在很大程度上取決于其經驗、有效的溝通和教育,這將有助于為人工智能的使用選擇提供依據。在許多情況下,社會的某些部分可能會比軍方更多地接觸、熟悉和信任人工智能,但致命自主權可能仍然存在問題。雖然沒有致命自主權那么直接的威脅,但在決策中使用人工智能會帶來自己的挑戰,其中最重要的是在一個算法越來越強大、人機協作越來越緊密的世界里,"有意義的人類控制 "究竟意味著什么。
在組織層面,存在關于如何部署作戰和任務支持人工智能的重要問題:是以集中的方式在更高的戰略層面運作,還是以更分散的方式在戰術層面運作。在后一種情況下,人工智能將進一步滲透到組織中,變得更加分散,并用于反應時間可能限制人類干預或驗證人工智能的范圍。組織需要明確決定是否使用人工智能的原則,以及管理其使用的方法(見下文 "過程信任")。關于使用人工智能的決定必須考慮如果系統失敗會發生什么。美國國家航空航天局(NASA)由于擔心系統故障的后果而沒有充分利用其早期火星車的自主能力,對火星車進行微觀管理,并通過大型人類工程師團隊減輕風險。外部組織,如商業技術供應商,的想法也很重要。例如,谷歌的員工迫使該公司在2018年退出一份軍事合同,因為他們擔心軍方對面部識別技術的使用。
個人對人工智能的熟悉程度也將是重要的。目前,從事軍事人工智能工作的人是其使用的倡導者,但隨著接觸人工智能的人群的增加,這種情況將發生變化。與前幾代人相比,接觸技術較多的年輕軍人可能更容易接受人工智能在軍事決策中的應用,但在基礎等級的聯邦結構中,人才幾乎完全來自內部,對其使用的阻力可能來自那些有權力的人;這可能造成機構接受問題。然而,在 "代際特征 "方面,存在著過度簡化的危險。雖然年輕人是在較新的技術中長大的,而且可能更信任它,但技術是可以學習的。代際假設不能成為不使用現代技術的借口。
部署信任是復雜的,因為大多數西方國家的大規模防務活動都是以聯盟行動為前提的,而不是每個盟友或伙伴都對什么是可接受的人工智能的軍事用途有共同的看法。國防部和政府需要更好地傳達他們在使用人工智能方面的方法、用途和保障措施,包括向盟友傳達,而不向對手透露太多信息,因為他們可以制定戰略來抵消(或更糟)人工智能功能的優勢。北約將通過其公共宣傳活動、與成員國在政治層面的聯系以及在不同技術發展階段的軍隊中建立規范,在這方面發揮關鍵作用。
數據信任
這涉及到對人工智能做出判斷的數據的信任程度,這些數據為人類決策提供了依據。雖然測試硬件和軟件相對容易,但測試數據,甚至是準備讓人工智能接受訓練的數據,則更加困難。數據對于人工智能的有效學習至關重要。一些數據將被控制,駐留在現有的國防系統內,或從可靠的外部來源進行驗證,盡管國防部在數據的分類(不一致或不準確)、存儲、訪問和共享方面存在困難,特別是在較高的分類級別。不受控制的數據,如開放源碼數據,是在沒有人類知識或理解的情況下通過聚合產生的,這更具挑戰性。此外,狡猾的對手會試圖注入虛假數據,以破壞決策過程,或用不相關或不準確的數據淹沒決策過程。
武裝部隊需要定義、構建、清理和分析數據的能力,以及開發和維護底層基礎設施(如連接、安全和存儲容量)的能力。這是一個多學科的團隊工作,需要能夠在數據科學生命周期的所有階段工作的 "全棧 "數據科學家。現代戰場將需要更加多樣化的技能,包括心理學家、律師和通信專家。鑒于商業世界對這些技能的需求,吸引和保留這些專家的數量將是困難的。這將需要更靈活的人力資源做法和/或對整個部隊更復雜的理解和使用,包括允許非軍事人員在軍事總部擔任有影響力的職位。
過程信任
過程信任指的是人工智能系統如何運作,包括數據如何處理(匯總、分析和解釋)。目前英國國防部的(狹義的)人工智能決策支持系統吸引了高信任度,因為算法相對簡單且可預測。它們也僅限于參與開發的一小群用戶,或者認識那些開發了人工智能系統的用戶,并且了解該技術。該技術受益于一種源自人們對人類的信任的過渡性信任。雖然不是人工智能,但法國陸軍引進的包裝降落傘的機器導致了降落傘團的信心喪失。堅持要求機器的主管用機器隨機選擇的降落傘打包跳傘,有助于恢復用戶的信心。讓開發人員更接近指揮系統的用戶會有所幫助。法國的采購程序允許某些單位直接與人工智能供應商接觸,以建立對開發商的了解和關系。開發商成為一個關鍵的信任點,如果不是軍隊,他們必須了解和熟悉軍隊的情況。這可能需要加大投資,讓商業伙伴了解軍隊的工作方式,并確保軍事人員了解其文職同事。
要求高水平的可解釋性和透明度并不是一個永久的解決方案,目前限制了英國防部對更強大的、非符號形式的人工智能的訪問。隨著機器學習使技術超越其最初編程的參數,將需要不同的方式來確保對可能看起來是黑盒的信任。隨著這種人工智能系統的使用激增,因了解設計者而產生的過渡性信任將減少,在這個過程中克服最初的信任不足或過度信任將更加困難。應避免過度依賴過程信任,并加強其他信任點,以開發適應能力越來越強的人工智能。
過程信任必須超越技術本身。它需要信任那些為技術提供能量、與技術一起工作并接受技術產出的人類過程。因此,必須同樣重視那些共同構成整體過程的其他活動。這包括培訓和人員的過程,以及如何組建團隊。
輸出信任
對人工智能產出的信任對決策者根據他們收到的信息采取行動至關重要。即使是人類提供的情報,如果原始信息指向不同的方向,指揮官要求新的情報來支持他們的先入之見(一種 "基于決策的證據制作")也不是沒有。而隨著數據的激增,不同的解釋將成為可能,合法的或符合先入為主的解釋。因此,出現了這樣的問題,即人工智能或事實上的人類分析能夠現實地提供什么答案,以及如何驗證輸出。在友軍的部署和對手的物理位置方面,人工智能有可能提供更快的態勢感知。然而,盡管可以從現有的數據中得出更好的推論,但對手的實際意圖是無法可靠地確定的。可預測性通常被視為信任的關鍵因素,但在不穩定的環境中,能夠適應不穩定環境的人工智能輸出會被解釋為不可預測。為了克服這個問題,Bonnie M Muir認為,人類操作員必須具備估計技術可預測性的能力。這種可預測性也會影響整個部署和過程信任點,但在輸出信任方面最為敏感,以反映軍事行動等流動性和不可預測的環境。在這些情況下,數據還必須反映軍事決策者所面臨的大多數情況的離散性和特定對手的獨特文化方式,這加劇了建立大量訓練數據的難度。即使在情況類似于過去的事件時,由于缺乏可比的歷史數據來說明廣泛的變量,使得概率推理變得困難。
用Patricia L McDermott和Ronna N ten Brink的話說,輸出的校準是至關重要的。這可以通過更多地使用企業人工智能和模擬來實現,它擴大了信任的邊界,可以幫助開發輸出信任。如果經驗是積極的,與技術互動并看到它的輸出將產生信任。在作戰環境中,當描述可以知道和檢查的東西時,驗證將是最容易的(例如,關于自己部隊的數據和潛在的對手部隊的布局)。要接近了解對手的意圖是比較困難的,因此需要更高水平的輸出信任。這將包括提高描述的準確性和對從大數據處理中得出的推論進行更多的測試。分享演習和行動的正面敘事,對于實現過渡性信任和緩解從相對不頻繁的行動中積累成功證據的緩慢速度至關重要。
組織系統的信任
生態系統的信任涉及調整更廣泛的組織系統以最大化人工智能的價值所需的信任。C2系統作為一個整體必須被配置為利用人工智能輔助決策的好處,并有適當的檢查和平衡,以在可接受的風險水平內運作。當人工智能的弱點或失敗是在主管的專業知識之外的領域,需要在組織的不同部分進行校準時,這一點尤其重要。如果不在生態系統和組織層面上進行變革,組織將只是將其人類系統數字化。
需要生態系統的信任,以確保結構--包括軍事總部的組織、指揮官的角色以及集中式與更分散或分布式的決策權的平衡--準備好利用人工智能的機會。如果沒有準備好,采用人工智能的漸進式方法往往會鼓勵對結構和整體生態系統的變化采取被動或消極的方法。相比之下,實現人工智能變革力量的專門戰略將迫使人們盡早重新思考支持這種戰略所需的組織。這需要重新思考傳統的軍事結構,但對于走多遠并沒有共識。一些人設想總部變得更扁平,并將非軍事人員納入高級職位,在決策過程中擁有權力。對另一些人來說,生態系統的變化更為深刻;它要求完全取消目前被視為工業時代遺留的工作人員組織系統。這樣做,他們打算消除扼殺理解的信息邊界,并挑戰決策金字塔尖上的獨當一面指揮官的想法。這種轉變需要整個組織生態系統的信任。對于像軍隊這樣的保守組織來說,這將是困難的,在指揮部的激進替代方案被接受之前,需要得到保證。實驗、戰爭游戲和模擬環境提供了低風險的選擇,以測試為特定類型的任務(例如,戰爭、和平行動和能力建設)配置的不同總部結構。
信任是根本,但為技術設定一個不可能高的標準也有風險。幾千年來,指揮官和決策者們一直信任易變的人類。當人工智能開始觀察到輸入數據分布的變化時,技術可以通過自我監測的方式提供幫助,提醒人類 "操作員",或以以前未曾見過的方式進行操作,這樣錯誤輸出的風險會更大。風險容忍度,無論是關于人類還是機器演員,最終都是信任的表達。國防組織需要對自己是否是快速采用者或快速或緩慢的追隨者持誠實態度:商業世界的人工智能發展速度使大多數武裝部隊極不可能成為人工智能決策的 "第一用戶"。漸進派和未來派都是人工智能的支持者,他們之間的差異主要是風險問題,以及針對不同信任點的可實現的信任水平。
通過熟悉產生信任是至關重要的,這可能涉及到將軍事人員嵌入到使用復雜人工智能的商業組織中,或將平民帶入國防。這種變化需要在足夠高的級別上進行,以促進生態系統的信任。模擬、實驗和演習是重要的工具,而且必須足夠廣泛,以便不局限于一小群狂熱者。英國電信公司用人工智能決策支持工具取代英國的電話網絡的項目,當服務時間最長、知識最豐富的工程師與人工智能和數據專家合作時,效果最好,他們可能會對人工智能產生懷疑。將企業人工智能引入改革業務流程,如財務和人力資源,是將熟悉程度擴大到目前直接參與人工智能開發和使用的少數干部之外的另一種方式。
一旦熟悉的東西,信任是人類的天性,但信任的習慣會帶來自身的風險。眾所周知,人類不善于設定正確的目標,當遇到 "專家意見"(無論是人為的還是其他的)時,他們更容易同意而不是懷疑。必須避免 "信任和忘記 "的動態。一個考慮因素是為人工智能系統制定一個 "持續可信性 "的概念,類似于航空平臺的持續適航性,以確保它們仍然適合使用。因此,建立對人工智能的信任(并避免過度信任)的努力必須解決所有的信任點,并包括整個人類-機器團隊,其中人類操作員是其數字對應方的有效合作者和建設性批評者。
人工智能對決策的知情、制定和實施方式的影響將是深遠的。通過以超越目前人類進程的速度處理大量的數據,人工智能可以提高對作戰環境的理解,并減少決策者的認知負擔。這不僅僅是今天工作方式的演變。僅僅加快當前C2系統的速度是不切實際的。一輛設計為以70英里/小時速度行駛的汽車是為以該速度運行而配置的。將發動機調整到每小時100英里的速度也許是可能的,但會給車輛系統和駕駛員帶來無法承受的壓力。由人工智能驅動的決策所代表的不連續性需要一種新的方法。正如多國能力發展運動(MCDC)所述。
無論我們未來的C2模型、系統和行為是什么樣子,它們都不能是線性的、確定的和靜態的。它們必須是靈活的、自主的、自適應的和自我調節的,并且至少與它們形成和運行的環境一樣具有偶然性和突發性。
軍隊必須為明天的C2進行重組,并以不同的方式培養他們的指揮官和工作人員。如果沒有這些變化,"生態系統信任"可能被證明是不可能實現的。
C2包含兩個不同的元素:指揮,通常與創造力、靈活性和領導力相關;以及控制,與規則、可預測性和標準化相關。人工智能將首先影響控制功能,目前,指揮仍主要是人類的活動。人工智能的數據處理能力將消除控制的大量負擔,例如,為指揮官提供對其部隊的更好理解(如部署、狀態、設備和供應水平),目前這需要消耗大量的注意力和時間。它還將改變向指揮官提供信息的方式。目前,這些數據大部分是在 "拉取"的基礎上提供的--根據總部的報告程序要求或零星地收集。然而,人工智能可以持續監測局勢,并通過強調相關變化的活文件將信息推送給指揮官--類似于24小時的新聞編輯部。然而,通過進一步進入控制領域,人工智能將不可避免地影響指揮權的行使,并形成指揮決策;這對上述指揮和控制之間過于整齊的區分提出了挑戰。在未來的C2系統中,可以想象人工智能可以限制指揮權的行使,就像防抱死制動系統、牽引力控制和電子穩定性允許人類駕駛員指揮車輛,直到失去控制,此時系統會接管,直到情況穩定下來。
人工智能給人類指揮帶來了一個悖論。它同時使更多的知識被集中掌握,使總部能夠看到并與 "前線 "發生的事情互動,并將知識擴散到整個指揮系統,使較低級別的編隊能夠獲得以前只有高級指揮官才有的信息。將更多的權力下放給地方指揮官可以提高反應能力,這在事件發展不可預測、需要快速反應的情況下非常重要。西方武裝部隊傾向于采用(或多或少)任務指揮的概念,即指揮官的意圖描述了預期的效果,并允許下級指揮官根據他們面臨的情況自由執行。軍隊的學習和發展系統以及演習嵌入了這種方法--指揮官將需要相信人工智能能夠在其操作中實施這一意圖。鑒于數據和獎勵功能的戰略復雜性和模糊性,人工智能在戰術和作戰層面的使用可能比在戰略層面的指揮更有效,盡管這些層面并不離散,在現實中也不容易被分割開來。人工智能和更大的網絡連接將提供一個結構、流程和技術網絡,連接多個小型、分散的前方總部和分布式(和加固的)后方功能,即使在更透明的戰斗空間,也更難發現和反擊。如果敵人以C2系統為目標,這將增強復原力。
在每個層面上處理更大數據量的能力必須被仔細引導。人們應該能夠獲得與他們的地位和相對能力有關的信息,以影響他們在環境中發展。W-羅斯-阿什比將此描述為 "必要的多樣性 "問題:一個可行的(生態)系統是一個能夠處理其環境變化的系統。行為者應該在適合其任務的抽象水平上運作。一個旅部不能處理也不需要關于單個士兵的詳細信息;它需要對其下屬單位的身體和道德狀況有一個良好的總體了解。在更多的戰術層面上,NCO指揮官應該對他們團隊中的個人狀態保持警惕。戰略和作戰指揮官可能需要放松控制,讓戰術指揮官在更接近戰斗的地方利用新出現的機會。雖然任務指揮已經允許這樣做,但隨著高級別的指揮官獲得關于戰術層面發生的信息的空前機會,"控制"的誘惑會更大。
人工智能也需要使用抽象、近似和校準的杠桿,以避免將總部淹沒在數據洪流中。這需要在使用這些抽象和近似時的 "過程信任"。總部也可能需要使用不同的人工智能系統,其能力更適合或不適合不同時間范圍內的不同場景。決策也可能包括確定在特定情況下信任哪種人工智能模型(部署和過程信任)的因素。
人機聯合系統的自動化將提高人類的表現,在某些情況下,改變任務本身的性質。無論在什么層面上部署,人工智能不僅會影響人類執行任務的方式,也會影響人類執行的任務。目前的方法通常從研究哪些人類過程可以自動化開始,即人類工作的數字化。有可能從使用人工智能的假設開始,只有在人類是必要(出于法律、政策或道德原因)或可取(更適合這項任務)時才將人類放入系統中--決定什么不應該,而不是什么可以被數字化。這種方法挑戰了目前關于總部的規模、組織、人員配置和運作的概念。
聯合概念說明(JCN)2/17指出,C2有可能在不同的戰爭層次(戰略、作戰和戰術)上發生變化,并對作戰環境的變化特征做出反應,因為作戰環境不再僅僅是物理環境。戰爭與和平的模糊性--強調了在 "行動 "和 "作戰 "之間的連續過程中有效的必要性--以及英國向能夠持續參與的部隊結構的轉變,將需要超越戰斗所需的方法。然而,可能沒有單一的總部原型;因此,為戰斗而配置的總部將與處理上游參與和能力建設的總部不同。雖然現在確定人工智能對軍事總部的影響還為時過早,但商業組織已經發現,與傳統的垂直層次結構相比,具有更多橫向信息共享的扁平結構更適合利用人工智能的優勢,因為在垂直層次結構中,每一層都要保證和授權數據才會被發布。因此,軍事總部--無論其具體形式如何--很可能會比現在更小、更扁平,能夠更快地沿著水平線工作。
探索替代的總部概念可以通過更多地使用實驗和模擬來實現。這應該對經典的J1-9參謀部提出挑戰,或許可以用新的分組來反映人工智能取代人類密集型數據處理和共享任務的能力。在J3/5區域尤其如此,這是計劃和行動之間的界限;由更快的決策帶來的更快節奏的沖突使這種界限變得過時。組織總部的替代方法可能包括那些注重結果的方法。JCN 2/17中描述的英國常設聯合部隊總部(SJFHQ)的結構是圍繞著四個職能來組織的:理解;設計;操作;和啟用。SJFHQ后來又恢復了傳統的J1-9人員分支。然而,"聯合保護者2021 "演習是一項復雜的亞門檻行動,其中使用了人工智能決策支持工具,揭示了J1-9架構的弱點。總部開始演習時是為高強度戰爭而配置的,但隨后調整為更適合與其他機構合作的配置。SJFHQ內部正在開展工作,應用2021年聯合保護者的經驗教訓,并確定這對總部結構意味著什么。然而,不太可能有一個完美的總部模式適用于所有行動類型。需要進一步的實驗,不限于SJFHQ。很能說明問題的是,自JCN 2/17發布以來的四年多時間里,在實施其中的一些建議方面幾乎沒有取得進展。即使英國國防部采用技術的速度相對緩慢,但這也超過了國防部探索改變結構的能力,超越了小規模的愛好者群體。"生態系統信任"是至關重要的,需要有機會在模擬或真實的環境中對各種任務類型的替代方法進行測試,并讓更多的人參與進來,這對有效采用新技術、結構和過程至關重要。
現有的程序需要改變以連接和優化新的結構。這可能需要改變構成武裝部隊規劃過程基礎的軍事評估。雖然它是一個復雜的、符合邏輯的規劃工具,但它是相當線性的、確定性的,并且嚴重依賴于指揮官,特別是在 "指揮官領導 "的英國方法中。在其他國家,參謀部在推動解決方案方面發揮了更大的作用,這可能更適合于人工智能的方法。人工智能為更多的迭代和協作過程提供了機會,它能更好地響應軍事和民防資源中心的要求,轉向更敏捷的模式。新的方法應該給指揮官帶來更少的壓力,要求提供信息(指揮官的關鍵信息要求)。人工智能還可以構建、分析和比較作戰行動方案,允許在做出大規模投入部隊的選擇之前對情景進行建模、測試和完善。
英國常設聯合總部(PJHQ)的情報評估過程自動化的思想實驗發現了取代大量工作人員的機會,加快了總部的戰斗節奏,并允許使用自動總結和自然語言處理來橫向共享信息。在一次作戰部署中測試了這一點,英國第20裝甲步兵旅戰斗隊將部分計劃過程縮短了10倍。然而,當人類仍在環路中時,決策環路的速度可能是有限的。在某些時候,人類決策者將無法跟上,成為決策監控者。如果仍然需要人類來做人工智能自己不能做的決定,這將是一個問題,而這可能是最困難的決定。
盡管有明顯的優勢,但總部不太可能在技術允許的范圍內減少。目前的總部通過規模和保證程序的冗余來補償人類的脆弱性,這對于減輕人工智能團隊成員的脆弱性可能仍然是正確的。此外,隨著戰斗節奏演變成連續的24小時規劃周期,節奏的加快可能會推動某些領域的需求上升。這些壓力可能并不局限于總部本身;它可能會推動前線單位的活動增加,他們必須處理數據并對所發出的指令作出反應。人類行為者仍然需要時間來休息,即使技術不需要。此外,與商業組織不同,軍隊需要冗余,以應對競爭對手蓄意破壞或擾亂他們的決策機構,并需要確保固定基礎設施的安全,以建立他們的網絡。簡而言之,對彈性和流動性的需求影響了軍事C2系統的穩健性和效率。因此,軍隊將需要保留不完全依賴人工智能進行有效操作的結構,并確保在人工智能失敗或故意削弱對人工智能信任的情況下,有恢復性程序可用。
傳統上,指揮官是垂直決策結構的頂點,是所有信息的匯集點。雖然不是所有的軍事文化都強調個人的天才,正如 "翠鳥時刻"的概念所體現的那樣,但指揮官獲得信息的特權被總部的低層人員所拒絕。人工智能使信息民主化的潛力將改變這種情況;指揮可能會成為一種更加合議和反復的活動,不僅涉及那些穿制服的人,而且包括情報機構和具有數據科學多方面專業知識的承包商在內的更加折衷的組合--一種 "全部隊"的貢獻。面對一個復雜和適應性強的戰斗空間,另一種鳥也許為未來的指揮提供了一個更好的比喻:椋鳥。它們集體的、高度適應性的雜音為英國的發展、概念和理論中心的C2概念提供了一個更好的形象,即 "為設計和執行聯合行動而配置的動態和適應性的社會技術系統"。
指揮官必須繼續能夠處理動態環境;"沒有計劃能在與敵人的接觸中幸存下來 "這句話仍然是正確的。鑒于技術能夠提高速度(減少反應時間)和復雜性(通過更透明的戰斗空間),處理復雜、快速演變的問題將尤為重要。軍事組織正在試驗人工智能將如何改變C2,包括北約卓越指揮與控制中心、美國JADC2和英國軍隊的數字準備實驗。早期的跡象表明,指揮官將不得不更多地關注問題的框架,并確保在更小、更扁平的結構中的更多不同團隊之間的理解和目標的統一。這表明需要一個不同類型的指揮官和不同類型的工作人員;他們能夠整合由不同學科的成員組成的不同團隊的工作,而且往往是來自軍隊以外的成員。
確保指揮官能夠正確地設定問題的框架是至關重要的。人工智能非常善于在框架內操作,但目前至少在 "閱讀字里行間 "或從定義不明確的數據集中推斷方面很差--這種脆弱性仍然依賴于有人類來設定框架。在確定了問題的框架后,指揮官必須能夠判斷產出在該框架內是否合理。這需要能夠看到大局的人,武裝部隊需要通過在總部的參謀經驗來培養未來的指揮官,使他們熟悉環境和流程,從而能夠在越來越高的級別上進行指揮。模擬可以促進對總部的接觸,同樣可以確保較小的總部仍然保留人們獲得經驗的作用,通過這些經驗可以獲得必要的指揮技能。
雖然指揮官需要知道如何與技術互動,但他們必須繼續關注人工智能所要服務的作戰要求,并對其持適當的懷疑態度,以便他們成為這一過程中的知情者,而不是算法輸出的被動接受者。指揮官需要類似于工業界的 "π型領導人",在軍事專業的同時具有數字和數據意識。他們不需要成為技術專家,但應該有足夠的知識來了解其局限性,能夠與團隊中的專家合作,并有足夠的滿意度來允許對數據、流程和產出的信任。
集體而言,總部團隊需要這些技能,各個團隊成員能夠相互交流和理解。這超出了情報分析員的范圍,包括來自武裝部隊內部和外部的廣泛的行動、技術和數據專家。它還包括對風險更復雜的理解和溝通能力。戰爭從根本上說是一個風險管理的問題,這需要以經驗的方式來理解和溝通風險。因此,了解概率和信心水平是一項關鍵的指揮技能,但諸如沖突中的一次性決定也需要長期的判斷。
軍事教育需要通過在職業生涯中更早地引入數據和技術意識來應對。此外,軍隊對不同能力的評價方式也需要改變。據傳聞,英國陸軍的職業管理流程往往將那些在計算能力上取得好成績的人引向采購等領域,而不是作戰,被選入參謀學院的專業人員往往在計算能力上處于較低的四分之一。這不僅僅是軍隊面臨的挑戰:有望成功競爭的國家需要國家教育系統認識到數據和技術素養技能的價值,并從小培養他們。作者并不主張將教育變成就業前培訓;雖然需要STEM技能(數量比現在多),但人文和社會科學仍然很重要,培養出的畢業生適應性強,能夠解決復雜的問題,并以影響力進行溝通。國家的成功取決于學術和其他形式的多樣性,培養人們在數字世界中茁壯成長,不僅需要技術能力,還需要(人文)特質,如創造力和情商。指揮官和工作人員在未來將需要這兩套技能,也許比今天更需要。
除了分析之外,直覺是信息處理中的一個補充部分。在指揮官需要行使的雙軌制決策方法中,它是人類認知的一個重要部分。有效的決策結合了直覺和分析的優勢。當數據和直覺一致時,決策者可以放心地采取行動。如果它們不一致,則需要在行動前進一步探索。1983年,俄羅斯中校Stanislav Petrov避免了潛在的核戰爭。他的導彈探測系統報告說美國發射了五枚洲際彈道導彈,但他沒有立即報告,而是決定等待,因為這個信息感覺不對。他的(下意識的)雙模式決策使他做出了正確的決定。人工智能更強的數據處理和分析能力可以增強決策過程中的分析要素,但它需要指揮官認識到直覺的價值和局限性。專業軍事教育需要反映出對數據和直覺這兩個組成部分的平衡方法。
未來的指揮官所指揮的團隊必然比今天更加多樣化,領導跨學科團隊為復雜問題帶來新的見解。人類有效構思和發展直覺的能力通過接觸不同的看世界的方式得到加強。這不僅僅是改善受保護特征方面的多樣性,盡管這很重要,還包括確保整個部隊團隊中教育、經驗和觀點的廣泛性。整個部隊的不同元素是這種多樣性的一部分。
越來越多的跨軍事領域的綜合活動要求整個部隊的各軍事部門有效合作。對于正規軍事人員,在 "聯合"方面已經取得了進展,但還需要做更多的工作。在軍事生涯的早期引入聯合訓練是實現這一目標的一種方式;這可能需要重新思考軍事人員何時接受專業軍事教育,目前在英國是在30歲左右。相比之下,澳大利亞國防軍為參加澳大利亞國防軍學院的人員提供了基本的聯合軍事課程,海軍、陸軍和空軍專家也接受了單一軍種培訓。這為未來的指揮官在軍事生涯早期的成長提供了一個跨學科的 "聯合 "模式。正規軍的進展需要擴展到后備軍的整合,因為未來可能會有更多的技術專家駐扎在這里。
事實證明,整合整個部隊的非軍事因素更為困難。Serco研究所的一份報告指出,"盡管在過去十年中,整個部隊的運作取得了進展,但在實現軍事和工業之間的無縫合作方面的努力卻停滯不前。雖然武裝部隊在將非軍事人員帶入其總部方面做得更好,但在場和被納入之間有很大區別。如2021年聯合保護者等演習,經常邀請國際合作伙伴和民間主題專家來幫助規劃過程,但他們往往在軍事規劃人員完成工作后才被邀請對計劃發表意見。許多總部的規劃周期缺乏靈活性,這意味著當規劃被提出來供審查時,可能已經來不及進行修改了。
這不僅僅是對軍隊的觀察;文職專家往往不熟悉軍事進程,等待被邀請做出貢獻,這削弱了他們的影響力。軍事人員沒有本能地理解他們的非軍事同事所能做出的全部貢獻,因此沒有將他們納入其中。人工智能將迫使人們從一開始就需要在規劃過程中建立整個部隊的多樣性,從而使計劃成為真正的合作。
有了人工智能的能力,技術將越來越多地成為整個部隊的一個成員。國際象棋大師加里-卡斯帕羅夫(Gary Kasparov)曾指出,好的技術和好的人類棋手的結合,往往比卓越的技術或更好的人類棋手單獨工作更成功。在某些情況下,人和機器可能在共享任務中緊密結合,以至于他們變得相互依賴,在這種情況下,任務交接的想法就變得不協調了。這在支持網絡感知的工作設計中已經很明顯了,在這種情況下,人類分析員與軟件智能體相結合,以近乎實時的方式理解、預測和回應正在發生的事件。
從這些人機一體的團隊中獲得最大利益,不僅僅是有效的任務分配。它涉及到找到支持和提高每個成員(人或機器)績效的方法,從而使集體產出大于單個部分的總和。正確的行為和創造包容性文化的能力對于從這樣的團隊中獲得最大收益至關重要。指揮官不應專注于試圖管理 "突發事件"--一個試圖描述簡單的事情如何在互動中導致復雜和不可預測的結果概念--或團隊成員的活動,而是需要在塑造團隊和培養團隊內部的關系方面投入更多。
雖然人工智能目前作為一種工具,但隨著技術的發展,它應該被視為團隊的真正成員,擁有影響人類隊友的權利和對他們的責任。然而,無論其最終地位如何,人工智能都可能改變團隊的動態和對人類團隊成員的期望。將人工智能引入一個團隊會改變團隊的動態,而它與人類團隊成員的不同會使團隊的形成更加困難。通過布魯斯-塔克曼(Bruce W Tuckman)的經典階段,即形成、沖刺、規范和執行,需要妥協和適應。人工智能目前不太能做到這一點,需要人類參與者有更大的靈活性,這使得建立人機團隊更加困難,也更難恢復已經失去的信任。
高級人工智能,如果可以說有動機或偏見的話,很可能是以邏輯和任務為導向的(用實力部署清單術語來說,就是綠色和紅色)。一個平衡的團隊將越來越需要能夠維持團隊關系的人類,無論是內部還是跨團隊。因此,人機團隊將是不同的,盡管他們可能與包括神經多樣性同事在內的純人類團隊有一些相似之處,因為對他們來說,感同身受或理解情感線索是困難的。與神經多樣性團隊一樣,人機團隊將受益于團隊成員的多樣性給整體帶來的價值,但也需要進行調整,以最大限度地提高團隊績效的機會。人工智能作為團隊成員的概念究竟會如何發展,目前還不清楚,但有人呼吁組織在更平等的基礎上考慮先進技術的需求。加強企業人工智能在業務支持活動中的使用,將為探索人機團隊如何最有效地合作提供機會,并有可能實現預期運行成本的降低,使人類在價值鏈上從事更有意義的工作。
需要的新的領導風格、新的技能和對技術、數據和風險的進一步理解也需要新的職業管理方法。軍隊的職業管理系統(過于)頻繁地調動人員,但要形成具有必要信任度的有效團隊需要時間。軍隊可能會放慢關鍵人員的流動,甚至可能放慢團隊的流動,從而使總部高級團隊作為一個集體實體而不是個人來管理。然而,目前的人力資源實踐使軍隊或工業界不太可能愿意無限期地保留人們的職位以期待未來的需求。用拉斐爾-帕斯卡爾和西蒙-鮑耶的話說,這就產生了 "混合團隊",即那些成員不固定的團隊,對他們來說,迅速建立團隊信任的能力至關重要。即使是常設總部也會受此影響,特別是當他們成為 "整體部隊 "時。對于'臨時團隊',例如為特定任務而設立的臨時總部,這個問題就更加突出。需要有機制來加速信任的發展,經驗表明,這可以通過早期的行為實踐來實現,包括展示 "技術能力、信息公開、支持互惠和決策中被認為的誠信"。
放慢總部高級職位人員的流動速度將有所幫助,但這還不夠。在無法保證預先建立的團隊在需要時隨時準備好執行任務的情況下,需要有一種方法來減少組建新的部隊團隊的時間。模擬提供了一種方法,通過壓縮任務演練的時間來準備新組建的團隊,并為整個部隊的不同組成部分提供共同工作的經驗。軍隊在這方面做得很好;軍隊的社會化進程創造了強大的紐帶,包括派人到合作伙伴那里進行培訓、演習和任務。對于整個部隊的其他部分來說,這種對跨文化理解的投資是缺乏的。建立對對方的了解,從而建立信任,對文職部門來說同樣重要。軍隊可以做得更多,為其工作人員提供與商業部門合作的經驗,包括與技術專家、數據專家和編碼人員合作,而文職人員也需要更好地了解軍隊、其語言、流程和價值觀。武裝部隊可以通過提供交流任命和模塊化和/或縮短其課程來協助這一進程,使文職人員有可能參加。冠狀病毒大流行引入了新的工作方式,并加速了軍事訓練和教育的變化,這可以為信任提供基礎,在此基礎上可以出現新的團隊和總部類型。
簡而言之,人工智能輔助決策不僅僅是一個技術問題;它需要改變指揮結構、流程和人員技能,才能發揮其潛力,成為武裝部隊在所有任務中運作的一場革命。然而,至關重要的是,在適應不斷變化的戰爭特征時,武裝部隊不能忽視戰爭的持久性:指揮官必須保持領導者和戰士的身份,能夠激勵普通人在最困難的情況下做出非凡的事情,而不僅僅是善于管理戰斗的人。在軍事方面,人工智能是一種工具,可以最大限度地提高武裝部隊在激烈競爭環境中的獲勝機會。
人工智能正迅速成為我們國家安全結構的一個核心部分。軍方和情報機構正在嘗試用算法來理解大量的數據,縮短處理時間,并加速和改善他們的決策。對人工智能越來越多的使用和熟悉可以促進對它的信任,但正如專家們的辯論所表明的那樣,要建立和維持對像人工智能這樣的變革性技術的信任,存在著嚴重挑戰。
本文重點討論了人工智能的作戰和任務支持應用,并探討了不斷發展的人與人工智能關系對未來軍事決策和指揮的重要性和影響。當軍事指揮官的角色從控制者轉變為團隊伙伴時,當我們不能再將輔助功能只賦予人工智能體時,那么我們就需要從根本上重新思考人類的角色和我們的機構結構。簡而言之,我們需要重新評估人機決策中信任的條件和意義。沒有這種信任,人工智能的有效采用將繼續比技術的發展更慢,而且重要的是,落后于我們一些對手采用人工智能的速度。
一個稍加修改的信任概念--一個不需要將意向性或道德性歸于人工智能體的概念--可以而且確實適用于AI。只要我們委托機器做可能對人類產生嚴重甚至致命后果的事情,我們就會讓自己變得脆弱。只要存在人工智能的表現達不到我們預期的風險,對它的任何使用基本上都是一種信任的行為。
除了最罕見的情況,對人工智能的信任永遠不會是完全的;在某些情況下,用戶可能有意識地同意較低的信任水平。這種信任需要考慮五個不同的元素,作者稱之為 "信任點"。我們不應該依賴任何一個單一的點來產生整體的信任。事實上,往往得到最多關注的領域--關于數據質量或人工智能輸出的可解釋性問題--從長遠來看,必然會提供不令人滿意的答案,并有可能對技術產生錯位的放心感。
最常被忽視的是在組織生態系統層面上對信任的需求。這需要重新思考武裝部隊的組織及其C2結構。如果說機器的作用越來越大曾經是官僚軍隊結構興起的關鍵驅動力,以集中管理手段,那么人工智能正在以根本的方式挑戰常備軍的這一特點。如果人工智能的使用不僅僅是模擬工作方式的數字化,國防部必須改變其在 "行動(operate)"和 "作戰(warfight)"方面的決策結構。它還需要與整體部隊的各個方面進行更密切的接觸和參與,包括其未被充分利用的后備部隊以及工業和更廣泛的政府。
領導力作為軍事職業的一個持久要素也需要重新考慮。人們傾向于將領導力視為軍事指揮的一種抽象或不可改變的品質。在人工智能時代,指揮任務或領導團隊既需要新的技能(如 "表達數字(speak digital)"的能力),也需要更多樣化的特質(例如,在數據和直覺發生沖突時,橫向思考的能力,構建問題的框架,并應用批判性的判斷)。與以往相比,人工智能更需要那些能夠理解復雜性、構建問題并根據情況提出正確問題的指揮官。這些 "故意的業余愛好者 "摒棄了早期狹隘的專業化,選擇了范圍和實驗思維;他們可以建立專家團隊,吸取專家的意見,使集體人才既廣泛又深入。這些全軍團隊將包括人類和機器,所有這些人都將根據他們在塑造和決策方面的專長作出貢獻。
在尋求回答信任如何影響軍事決策中不斷發展的人與人工智能關系時,本文提出了幾個需要進一步研究的關鍵問題:
如果我們不從根本上改變如何獲取、培訓和培養領導崗位的人員,以及如何改革他們所處的機構和團隊,我們就有可能在人機關系的信任平衡上出錯,并將無法利用人工智能的全部變革潛力。
克里斯蒂娜-巴利斯是QinetiQ公司的培訓和任務演練的全球活動總監。她在大西洋兩岸有20年的經驗,包括咨詢、工業和公共政策環境,特別關注國防、全球安全和跨大西洋關系。她曾是華盛頓特區戰略與國際研究中心歐洲項目的研究員,Serco公司負責戰略和企業發展的副總裁,以及巴黎Avascent公司的負責人和歐洲業務主管。她擁有華盛頓特區約翰霍普金斯大學高級國際研究學院和意大利博洛尼亞大學的國際關系碩士和博士學位,以及英國和德國的商業學位。
保羅-奧尼爾是RUSI的軍事科學部主任。他在戰略和人力資源方面有超過30年的經驗,他的研究興趣包括國家安全戰略和國防與安全的組織方面,特別是組織設計、人力資源、專業軍事教育和決策。他是CBE,英國特許人事與發展協會的會員,溫徹斯特大學的客座教授,英國后備部隊外部審查小組的成員。