亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

人工智能正在改變戰爭。英國防部如何準備應對未來的變化?

對于人工智能的軍事用途所帶來的接受挑戰,傳統的反應是堅持要求人類保持 "有意義的人類控制",作為一種產生信心和信任的方式。考慮到人工智能和相關基礎技術的普遍性和快速發展,這不再是一個適當的回應。人工智能將在整個軍事行動范圍內廣泛的指揮和控制(C2)活動中發揮重要的、日益增長的作用。雖然在公眾心目中,人工智能的威脅沒有 "殺手機器人 "那么直接,但在軍事決策中使用人工智能會帶來關鍵的挑戰,同時也有巨大的優勢。加強人類對技術本身的監督并不能防止無意的(更不用說有意的)濫用。

本文以各級(作戰操作員、指揮官、政治領導人和公眾)的信任對有效采用人工智能進行軍事決策至關重要這一前提為基礎,探討了關鍵的相關問題。對人工智能的信任究竟意味著什么?如何建立和維持它以支持軍事決策?人類操作員和人工智能體之間的共生關系對未來的指揮需要作出哪些改變?

當人類對人工智能的行為持有某些期望,而不考慮人工智能體的意圖或道德時,可以說存在對人工智能的信任。然而,與此同時,信任不僅僅是技術性能和可靠性的一個功能--它不能僅僅通過解決數據完整性和可解釋性問題來保證,盡管它們很重要。軍事人工智能中的信任建設還必須解決軍事組織和指揮結構、文化和領導力方面的必要變化。實現總體上適當的信任水平需要一個整體的方法。除了信任人工智能的使用目的之外,軍事指揮官和操作人員還需要充分信任--并且在如何信任--支撐任何特定人工智能模型的輸入、過程和輸出方面得到充分的培訓和具有豐富經驗。然而,最困難的,也可以說是最關鍵的層面是組織生態系統層面的信任。如果不改變軍事決策的體制因素,未來人工智能在C2中的使用將仍然是次優的,被限制在一個模擬框架內。有效引進任何新技術,更不用說像人工智能這樣的變革性技術,需要從根本上重新思考人類活動的組織方式。

優先考慮人和制度層面并不意味著對技術進行更多的控制;相反,它需要在不斷發展的人機認知系統中重新思考人的作用和貢獻。未來的指揮官將需要能夠在一個真正的 "整體部隊"中領導不同的團隊,整合來自軍事、政府和民事領域的貢獻。他們必須對他們的人工隊友有足夠的了解,以便能夠與他們合作并挑戰他們。這更類似于海鷗的雜音,而不是個別 "翠鳥"領導人的天才。為了發展新的指揮和領導概念,英國防部必須重新思考其方法,不僅是培訓和職業管理,還有決策結構和程序,包括未來總部的規模、位置和組成。

人工智能已經在改變戰爭,挑戰人類長期的習慣。通過在訓練和演習中接受更多的實驗,以及探索C2的替代模式,國防部可以更好地準備迎接未來不可避免的變化。

前言

人工智能正在改變人類的思維和決策方式。未來,它將越來越多地影響人類如何確定各種認知過程的優先次序,調整他們的學習、行為和訓練,并更廣泛地改造他們的機構。這些變化在整個軍隊中仍不完全明顯。盡管有新的技術和戰爭迅速發展的特點,今天的武裝部隊在組織結構上與后拿破侖時代歐洲的職業軍隊并沒有很大的區別。太多的人仍然參與到軍事任務中,而這些任務技術可以做得更好更快,并且對于重新思考人類對人機團隊的認知貢獻也沒有給予足夠的重視,而這正是解決未來指揮和控制(C2)問題所需要的。

本文以QinetiQ公司早先的一份報告為基礎,該報告將信任視為軍事能力的基本組成部分和2020年代軍事適應性的基本要求。本文探討了在軍事決策中越來越多地使用人工智能的最新趨勢和想法。本文并不直接關注這一趨勢的倫理(或法律)問題,盡管這些問題很重要。相反,本文強調了信任作為人工智能時代軍事指揮的一個因素的重要性和意義。

人工智能對軍事決策和C2的潛在深遠影響很少引起專家團體以外的關注。大多數公眾關注的是技術的優勢和風險,而不是人類認知和制度構建的潛力和限制。20多年前,著名的社會生物學家E-O-威爾遜抓住了人類當前的挑戰。威爾遜說,真正的問題是,"我們有舊石器時代的情感;中世紀的制度;和神一樣的技術。"在過去的幾十年里,技術的發展速度遠遠超過了人類適應它的能力。強調人工智能的技術屬性,而忽略其日益增長使用中的人類和制度層面,只會使挑戰更加復雜。

在許多領域,人工智能的軍事經驗仍然有限,需要做更多的工作來了解人工智能在人類決策中作用日益增長的影響。本文旨在引發一場更廣泛的辯論,討論英國國防企業內部所需的文化和組織變革,包括指揮部和指揮官的作用,以確保人工智能在未來軍事決策中的最佳使用。

本文的見解來自與人工智能、人類認知、軍事決策和信任理論有關的更廣泛的文獻。這項研究在2021年9月至2022年2月期間進行,大大受益于與來自國防、學術界和工業界的廣泛專家和用戶的訪談。

前兩章提供了本文的理論背景。第一章探討了人工智能和信任的概念,第二章則分析了人類機構的作用以及人工智能對人類做出選擇和決定的認知能力的影響。第三章結合信任、人工智能和人類機構的概念,提出了一個在人工智能支持的軍事決策中發展信任的五維框架。第四章擴大了對C2的分析范圍,特別關注人工智能對傳統上支撐武裝部隊行使權力和指導的人和體制結構的影響。最后一章提出了對未來指揮、領導和 "全軍 "團隊的進一步研究領域。

1. 人工智能和信任

對于人工智能或與人工智能有關的信任,并沒有標準的定義。這兩個概念都有不同的解釋,有時也會有激烈的爭論。本章沒有試圖綜合所有關于這兩個術語的文獻,而是建立了一個基準定義,為隨后討論關于人工智能應用于軍事C2的信任作用提供框架。

1.1 人工智能的性質和類型

人工智能的概念起源于1950年著名的圖靈測試,該測試發生在這個詞被創造出來的幾年前。通過關注它做什么而不是它是什么,更容易將人工智能概念化。人工智能 "試圖讓計算機做人類思想能做的各種事情"。在最基本的方面,它可以被理解為追求特定任務的虛擬信息處理能力。正如 "智能"(或 "思想")有許多層面和不同的用途,人工智能也是如此。因此,人工智能從廣泛的學科中汲取不同的想法和技術,不僅包括數學和計算機工程,還包括哲學、經濟學、神經科學、心理學和語言學。

廣義上講,有三種不同層次的人工智能:人工狹義智能,通常被稱為 "狹義人工智能";人工通用智能,有時被稱為人類水平的人工智能;或者更強大的人工超級智能,超過人類的智能水平。在這一點上,有些人認為會出現一個奇點,在這個奇點中,人工智能要么變得有自我意識,要么達到持續改進的能力,使它的發展超出人類控制。后兩種水平被認為仍有一段距離,盡管距離有多遠還存在爭議。不過,就目前而言,狹義人工智能更先進應用的出現,如先進的機器人技術,加上計算能力的爆炸,才是目前關于人工智能的軍事用途辯論的主要動力。本文重點討論狹義人工智能的應用。

圖 1:AI 類型的簡化分類

在狹義的人工智能中,還有更多的類別,盡管這些技術并不完全是離散的,而且經常被結合使用。最常見的區別是符號人工智能和亞符號或非符號人工智能,前者通常被描述為基于邏輯,后者基于自適應或學習。符號人工智能依賴于順序指令和自上而下的控制,使其特別適合于確定的問題和基于規則的過程。非符號人工智能,其中神經網絡是一種常見的方法,涉及并行、自下而上的處理和近似推理;這與動態條件和數據不完整的情況最相關。符號人工智能提供了精確性和可解釋性,而涉及神經網絡的非符號人工智能則不那么脆弱(網絡中缺少一個節點并不會導致整個網絡無法運行),并且能夠在沒有明確規則或一致證據的情況下識別模式。

有三種常見的機器學習類型,根據有助于智能體學習過程的反饋類型進行區分:監督學習;無監督學習;以及強化學習。在監督學習中,系統被訓練來產生假設或采取具體行動,以追求基于特定輸入的目標值或輸出(被稱為標簽)(例如,圖像識別)。無監督學習沒有設定規格或標簽,也沒有明確的反饋;相反,系統通過尋找數據中的模式進行學習(例如,DNA序列聚類)。強化學習依賴于一個反饋回路,通過試錯或獎懲機制穩定地強化系統的學習行為(例如,先進的機器人技術或無人駕駛汽車)。與監督學習不同,強化學習中使用的輸入數據不是預先定義的,這允許更廣泛的探索,但與無監督學習不同,它有一個預期的應用或總體目標(與總體獎勵最大化相關)。

所有三種類型的機器學習,無論監督或自律的程度如何,都提出了重要的信任和值得信賴的問題。所需的信任程度和性質因使用人工智能的目的不同而不同。

1.2 概念:信任(Trust)

信任描述了兩個或多個智能體之間的互動。信任的傳統定義是假設信任者對受托人的能力和善意(或動機)存在合理的信念。對許多人來說,道德誠信(或意圖)的問題是信任與其他概念(如信心)的區別。另一些人認為,信任的范圍和所指比信心更廣,后者被視為與具體事件相關的獨立判斷。大多數信任的定義趨于統一的是一種脆弱的感覺。沒有背叛的可能性,沒有風險的存在,就不可能有信任。

正是因為經典的信任概念中隱含著假定的道德因素,一些人質疑使用該術語來描述人類與人工智能體的關系。他們認為,在目前狹義人工智能的水平上,我們不能將意向性或道德機構歸于人工智能系統,因此使用 "信任 "一詞是不恰當的。另一些人采取了不那么純粹的觀點,并以反映日常使用的方式應用該術語,意味著對系統的可靠性有信心。

信任作為一個術語在計算機科學中被廣泛使用。更重要的是,信任仍然是公眾和用戶接受人工智能的一個基本方面。今天,關于人工智能的國家政策、法規和專家建議經常強調 "值得信賴的人工智能 "的必要性。例如,DARPA的空戰進化計劃正在探索方法,以模擬和客觀地衡量飛行員在斗狗時對人工智能的信任。認識到這些尚未解決的定義問題,作者選擇了略微調整 "信任 "一詞,使之與通常的做法一致。

作者調整后的信任概念需要對人工智能的表現有一定的預期,而不需要假設人工智能方面的特定動機。因此,對人工智能體行為的積極預期可能是信任存在的充分條件,而不考慮意圖。

在目前大多數關于人工智能的討論中,重點往往是人作為信任者,系統作為受托人,盡管任何認知智能體,包括自主機器人和智能機器,原則上也可以履行信任者的角色。這樣理解的話,信任就成了 "系統成員之間互動的促進者,無論這些成員是人類智能體、人工智能體還是兩者的組合(混合系統)"。事實上,在人工智能更成熟的應用案例中,受托人最有可能同時包括人工智能支持的系統(人工智能體)和該系統的提供者(人類智能體)。在目前的人工智能水平上,信任似乎是一種單向的關系,涉及人類 "信任 "人工智能的程度,而不是真正的雙向信任,即人工智能對人類表現的看法。

各種因素決定了(人類)對技術的信任,包括但不限于信任者的能力水平和信任傾向,以及整體環境或背景(包括更廣泛的文化和機構動態)。除了這些針對人類和環境的考慮,決定一個人或組織對人工智能的信任程度的是技術的性能、過程(它如何產生特定的輸出),以及重要的是目的。所有這三者都決定了人工智能系統的設計和部署。

除了技術的穩健性和安全性,隱私、公平、透明度和問責制是一些最常被提出的影響公眾對人工智能信任的問題。然而,主要是由于設計適當的算法、理解復雜軟件系統的內部結構以及為基于算法的決策賦予責任等方面的困難,所以在值得信賴的人工智能的關鍵屬性列表中總是會加入進一步的考慮:這被交替稱為人類機構、監督或有意義的控制。在某些情況下,保持人類對技術使用的監督可能是唯一的保護措施,以防止無意中出現有偏見的、不可捉摸的和/或監管不力的人工智能系統的風險。

1.3 概念:控制(Control)

控制通常被看作是信任的反面。當對智能體執行任務的能力有信任時,就不需要監督。然而,即使在人工智能更適合做決定的情況下,人類也會經常傾向于干預。信任不足可能和過度信任一樣有風險或適得其反。事實上,正如絕對的控制是罕見的,絕對的信任也是如此。在開發和使用人工智能的過程中,有必要在適當的信任水平和適當的控制水平之間取得謹慎的平衡。這是 "校準的信任 "或可適應/適應性自主性等概念的核心。信任是根據人工智能的能力來校準的,對人工智能能做什么或不能做什么的期望將影響信任的水平。同樣,在可適應的自主性的情況下,用戶定制自主性水平的能力可以支持更大的信任水平。這在國家安全決策中尤為關鍵,因為信任或不信任人工智能的影響可能是最大的。

對技術在人類事務中的作用的擔憂并不新鮮。許多人認為關于人工智能的辯論與之前關于技術的爭論沒有什么不同。根據這一論點,人工智能構成了一種進化,而不是對過去活動的徹底背離,即使人類有時可能在背離以前的自動化水平的情況下被從決策圈中移除。雖然信任仍然是一個挑戰,特別是在機構和社會層面,但穩步應用最初仍然有限的人工智能來支持軍事活動,隨著時間的推移,可以培養出熟悉和越來越多的信心。

其他人,通常是政府以外的人,質疑這種漸進式的方法。他們認為人工智能的崛起是一種范式的轉變,與以前的任何技術都有質的不同。以前的技術都沒有將人工智能的雙重用途特性、傳播的便利性和實質性的破壞潛力結合起來。在過去,最具破壞性的技術都在政府的控制之下,或者在軍事領域之外幾乎沒有應用。此外,雖然以前政府主導了大部分新技術的開發,但這種趨勢幾乎完全逆轉;現在大部分投資和創新來自于工業。鑒于軍事和民用界限的模糊,以及我們的對手和競爭者對人工智能的投資,認為我們可以控制人工智能發展和使用的速度和程度是不明智的。在反思算法技術的進步時,一些人甚至進一步聲稱技術和人類之間的角色發生了逆轉,人們正在成為 "人類的人工制品"和"(技術系統的)智能體"。

如果我們接受對人工智能系統在未來如何操作(和運行)進行完全控制的限制,關鍵問題是我們如何在算法超過目前的性能水平后長期確保適當的交互和人類判斷。反應時間是軍事競賽中的一個關鍵優勢;加快OODA(觀察--方向--決定--行動)循環的各個方面,通常會給那些先到者帶來領先優勢。而這樣做只要一方開始使用人工智能來加快他們的決策和反應時間,另一方就會受到壓力。

2. 人工智能和人類機構

2020年12月,美國空軍首次使用人工智能副駕駛飛行了一架軍用飛機。這種被稱為ARTUμ的算法完全控制了傳感器的使用和戰術導航,而其人類隊友則駕駛著U2間諜飛機。這是首次出現人工智能控制軍事系統的情況。用美國空軍前首席采購官員威爾-羅珀的話說,ARTUμ "是任務指揮官,是人機團隊的最終決定者"。

甚至在ARTUμ演示之前,美國國防部已經開始了其全域聯合指揮控制(JADC2)計劃的工作。JADC2旨在打造連接五個軍種的傳感器,承諾對作戰環境進行快速分析,以便在幾小時或幾分鐘內做出決策。在未來的JADC2中,人工智能將允許快速處理數據,為目標識別提供信息,并推薦最佳的交戰武器(無論是動能還是非動能)。美國空軍的先進作戰管理系統、美國陸軍的 "聚合項目"(被稱為 "學習運動")和美國海軍的 "超配項目 "都在嘗試使用人工智能與自主性相結合的方式來支持JADC2。

其他國家,包括英國通過英國陸軍的 "Theia計劃"等項目,以及北約也已經開始嘗試使用人工智能來支持C2和決策。然而,這種試驗的規模和范圍仍然有限。與數據挖掘和語言翻譯等領域不同,人工智能在軍事決策中的應用仍處于起步階段。

美國國防部高級研究計劃局目前開展的工作提供了對未來的一瞥。作為其 "AI Next "項目的一部分,該機構的第三波人工智能投資尋求 "將計算機從工具轉變為解決問題的伙伴",并 "使人工智能系統能夠解釋其行動,并獲得常識性知識并進行推理"。

2.1 人工智能的民事與軍事用途

人工智能已經塑造或推動了我們的許多日常決策。在某些情況下,它已經改變了整個行業。在高度交易性的活動中尤其如此,如保險或零售部門。人類已經將關鍵活動的責任交給了人工智能,讓算法在沒有人類干預的情況下做出決定。今天,人工智能塑造了谷歌和Facebook等網絡平臺提供的內容,也決定了哪些內容被刪除或屏蔽。保留了人類因素的人工智能決策支持系統也在激增,被用于從醫療診斷到改善制造工藝的各個方面。

很少有地方像金融業那樣,人工智能從根本上改變了人與機器的關系。人工智能現在負責絕大多數的高頻交易。在幾毫秒內做出的數千項微觀決定有能力改變整個財富,有時會帶來毀滅性的后果,2010年的 "閃電風暴 "證明了這一點。人類的決定對于金融市場的效率不再是必要的,事實上,甚至可能會起到反作用。無形的算法似乎已經超越了無形的手。

至于社會的其他部分,人工智能的潛在軍事用途涵蓋了廣泛的應用范圍。這些可以有效地分為企業、任務支持和業務人工智能應用。人工智能的軍事應用,特別是與任務支持和作戰用途有關的應用,在一些基本方面與日常的民用活動不同。在平民生活中,人工智能有機會利用大量容易獲得的數據,不斷針對現實生活中的例子進行訓練和學習。對于軍隊來說,與對手的接觸是零星的,來自真實行動的教訓或 "數據 "在數量和頻率上都相對較低。除了軍事對抗的偶發性質,國家安全決策通常依賴于一套復雜得多的條件,涉及多個參數和利益相關者(更不用說對手的意圖),而今天的算法沒有能力再現這些條件。最后,也是最重要的一點,在國防和國家安全問題上,面臨風險的不僅僅是財富,還有生命。數學邏輯不足以為決策提供依據;在使用武力時,道德和倫理考慮比任何其他人類活動都要突出。當人類生命的完整性受到質疑時,我們為技術設定的標準將永遠高于我們為容易出錯的人類設定的標準。

除了美國、英國和北約等國的現行政策外,人們普遍認為人類將在決策中保留一個關鍵角色。美國國防部的人工智能戰略指示以 "以人為本的方式 "使用人工智能,有可能 "將人類的注意力轉移到更高層次的推理和判斷"。納入人工智能的武器系統設計應 "允許指揮官和操作人員對武力的使用進行適當的人類判斷",并確保 "清晰的人機交互"。提到人類總是 "在循環中 "和 "完全負責選項的開發、解決方案的選擇和執行"--這是以前對我們日益自動化的未來的評估中的常見說法--已經被一種更細微的觀點所取代。

所謂的有監督的自主系統是指人類坐在 "循環 "上。雖然人類在理論上保持監督,但一些批評者認為,在實踐中,他們可能無法真正控制自動決策,因為他們可能不熟悉為他們提供決策信息的環境和人工智能程序。在這些情況下,人類的干預能力,除了停止機器之外,被降到最低,沒有達到"有意義的人類控制 "的想法。只有在完全自主系統的情況下,人類的干預才會被完全消除。然而,最終,試圖定義自主性水平的做法可能會產生誤導,因為它們假定人類和機器之間的認知活動是簡單分離的。2012年美國國防科學委員會的一份報告描述了如何:

  • 沒有完全自主的系統,就像沒有完全自主的士兵、水手、空軍或海軍陸戰隊一樣。也許對指揮官來說最重要的信息是,所有的系統在某種程度上都由人類監督,而最好的能力來自于人類和機器的協調和合作。

兩個領域的發展揭示了各國政府在國防和國家安全的關鍵決策中信任先進的自動化方面已經走了多遠。一個是導彈防御,另一個是網絡防御。兩者的有效性都取決于反應速度,這通常超過了最有經驗的人類操作員的能力。

大多數防御性武器系統,從短程點防御到反彈道導彈系統,都采用先進的自動化操作,使其能夠在沒有人類干預的情況下探測和摧毀來襲導彈。算法實際上是在發號施令。在這種系統中,人類被稱為 "循環",在事先經過嚴格的人類測試后,在有限的設計空間內運作,因此其控制范圍受到限制。雖然錯誤永遠不可能被完全消除,但在大多數情況下,不做出反應或反應遲緩的風險可能超過偶爾發生事故的風險。雖然事故促使人們對這些自主系統的操作進行審查,并可能導致引入一些進一步的人為檢查,但這種干預也帶來了進一步的復雜性。對越來越快的導彈,特別是高超音速導彈的防御將繼續推動人工智能在導彈防御中的應用。

網絡戰是人工智能相對于人類具有明顯優勢的另一個領域,而這往往需要人類保持置身事外。人類操作員缺乏算法快速檢測和應對網絡事件以及不斷調整系統防御的能力。所謂的認知電子戰(EW)系統應用人工智能技術來自動檢測對EW系統的威脅,而不是依賴人類操作員。

2.2 人類和人工的局限性

將決策過程中高度耗時、勞動密集型和需要低層次人類推理的部分自動化,有巨大的好處。軍事評估過程是軍事決策過程的一個關鍵部分,一直是參謀學院教授的標準作戰計劃過程。這種方法的一部分涉及收集和處理信息,為一個或多個行動方案提供信息。由于信息時代的決策需要更大的速度和敏捷性,達成決策的過程將需要加速。人工智能已經證明了它在基于明確定義的規則、輸入和假設快速執行理性過程中的效用。只要人類負責設定假設并定義產生替代方案和概率評估的輸入,人工智能就能增強整個決策過程。

可以理解的是,政府內部和外部都不愿意讓人工智能發揮超出決策支持和適當決策的作用。"指揮和控制"的概念在軍隊的心理和結構中根深蒂固,許多人無法接受一個在某種程度上不涉及人類控制軍事行動或指揮任務的未來。人被要求帶著他們對問題的創造性見解,像現代的亞歷山大一樣解開這個死結。沒有什么比對 "翠鳥時刻 "的信念更能體現這種對直覺型指揮官形象的依戀。這種技能,即指揮官藝術的精髓,只限于那些在最苛刻的情況下能夠憑直覺做出決定的少數人。人工智能提供并非基于人類邏輯或經驗的獨特見解的能力,對這種思維提出了深刻的挑戰,并可能在未來改變指揮官的形象。

許多人將人工智能稱為決策支持而不是決策工具,其推論是人類最終仍然是所有決策的仲裁者。這樣的區別造成了一種令人放心的錯覺,即人工智能只是協助實現一種效果。人類根據一套算法挖掘、篩選和解釋的數據做出的致命行動決定,是否比由智能機器完全執行的決定需要更多的人類機構?對 "行動 "的癡迷--更不用說致命行動--作為更廣泛的 "殺傷鏈 "的最后元素,掩蓋了人工智能在整個行動范圍內的一系列C2活動中日益增長的影響。

許多專家對人類是否有能力控制由人工智能促成或驅動的決策持懷疑態度。這種懷疑往往圍繞著所謂的黑盒問題:高級人工智能,如深度學習,在本質上是無法被人類理解的。這不僅僅是由于它的工作速度,也是由于算法網絡相互作用的方式,以及它們所操作的數據的規模和復雜性。我們不能簡單地詢問系統以了解其思維過程。我們可能知道一個模型的輸入和輸出,但卻無法理解這中間發生的事情。一個相關的、更微妙的論點是,算法對人類的認知攝入施加了 "權力"。人工智能可以決定人類處理哪些信息,而不向他們透露哪些信息被遺漏或拒絕。它還挑戰了這樣一個概念,即如果人類的行動受到數據呈現的內容和方式的制約,他們可以行使 "有意義的 "控制。這與人工智能的好處之一正好相反,即它能夠減少人類的認知負荷,使人類能夠集中精力思考和作出最高價值的活動。

對黑盒挑戰的典型解決方案是開發可解釋的人工智能(XAI)。盡管能夠自我解釋的人工智能可能有助于理解,但它并不必然會導致信任。XAI并不等同于可解釋的AI;解釋不是一個決定,而是一個關于決定的敘事。因此,即使是一個令人信服的解釋也不一定是真的。對于許多潛在的用例,我們還遠遠沒有能力開發出足夠的可解釋(Explainability)的人工智能,更不用說可因果解釋(Interpretability)的了。對更先進的人工智能系統進行嚴格的測試可能會證明它們的部署是足夠的,即使是在沒有人類能力遵循其推理過程的情況下。不過,從根本上說,我們對測試的傳統方法需要重新思考。沒有充分的測試和評估,對不可解釋/可解釋的人工智能的信任將是 "盲目的信任"。對于美國前國防部副部長鮑勃-沃克的問題,我們仍然缺乏一個令人滿意的答案:你如何對學習系統進行測試和評估?

當存在不確定性或缺乏知識時,人類會應用啟發式方法來近似解決復雜問題。啟發式方法是驅動直覺思維的因素;它依賴于經驗法則,通常是通過經驗和實驗來了解。因此,它可能存在偏見和盲點,但它也可以作為一種非常強大和有效的快速認知形式。機器缺乏類似人類的直覺,但它們確實依靠啟發式方法來解決問題。與人類推理的關鍵區別在于,機器不需要記憶或 "個人 "經驗就能進行 "直覺 "或推理。它們利用巨大的數據庫和卓越的概率能力為決策提供信息。強大的模擬與先進的計算能力相結合,提供了一個測試和 "訓練 "算法的機會,其重復程度是人類無法想象的。在宣布任務準備就緒之前,ARTUμ在短短一個多月內經歷了超過一百萬次的訓練模擬。

即使在XAI領域取得了重大進展,仍然會有謹慎的理由,特別是在需要復雜決策的情況下。人工智能通常不善于看到 "全局",也不善于根據相關的內容做出決定。像人類一樣,它也會把相關性或偶然事件誤認為因果關系。人類和機器在處理復雜問題時都會遇到 "正常的意外"。創造力是人類通常具有的特質,但一些先進的人工智能可以產生人類無法企及的驚人結果。簡而言之,許多通常被認為是人類特有的屬性,如創造力和直覺,也可以說適用于人工智能系統--盡管方式不同,速度超過人類能力。

目前機器所缺乏的是人類思維的靈活性和關聯感("框架 "的能力)。人類可以橫向思考,通過實用主義得出合理的結果(這一過程被稱為歸納推理),并反思自己的思維過程(這一能力被稱為元認知)。這些心理過程可以產生驚人的適應和創新的壯舉。

人工智能的出現意味著未來的軍事決策將幾乎肯定需要更強大的人機共生關系,就像在已經接受該技術的商業組織中看到的那樣。目前的討論大多是假設人類繼續控制,或尋求將人類的屬性應用于未來的機器。一些人提倡一種新的 "決策演習"概念,將 "人的指揮和機器的控制"結合起來。但更有可能的是,指揮和控制的責任將越來越多地由人類和人工智能系統分擔,其方式可能是目前難以設想的。人類與人工智能的合作提供了利用各自優勢和減少不足的最佳方式,特別是在戰爭方面(目前戰爭的性質仍然沒有改變)有四個連續性:政治層面;人類層面;不確定性的存在;以及戰爭是一場意志的較量。

3. 信任的維度

信任是動態的;它隨時間而變化。它的最初形成是至關重要的,但它的持續發展也是如此。信任是隨著熟悉程度的提高而自然產生的,因此,假設經驗是積極的,即使是在對技術不完全了解的情況下,技術的使用也會擴大信任的范圍。反過來也是如此,不好的經驗會促進不信任。移動電話技術復雜性對大多數用戶來說是未知的,但人們的積極經驗給了他們使用的信心。這種信心導致了與手機使用所形成的決定相適應的信任感。然而,手機一般不會決定生死大事,盡管它們會將盲目聽從指示的不謹慎的司機置于危險之中。在軍事背景下,賭注更大,用戶和策略制定者非常清楚他們的決定的潛在后果--信任門檻很高。

軍隊作為應急組織,不需要定期交付其主要產出,這影響了可以獲得最直接相關經驗的速度。與金融服務業不同的是,在金融服務業中,交易為人工智能決策提供了頻繁的驗證,而國防部門的時間線往往更長,結果在一個單一的因果鏈中也沒有明確的聯系。做出決定和觀察其影響之間的時間間隔更長,并受制于多種干預變量。雖然模擬演習創造了獲得經驗的機會,但它們只是現實的近似值。

3.1 信任點(Trust Points)

建立和維持信任涉及五個主要的 "Trust Points"--在這些點上,擁有適當水平的信任問題是至關重要的。這些點是:

  • 部署信任:使用人工智能的目的
  • 數據信任:正在使用的數據輸入
  • 過程信任:數據如何被處理
  • 輸出信任:由人工智能產生的輸出
  • 組織系統的信任:優化使用人工智能的整體生態系統

總的來說,這些Trust Points定義了一個整體的信任水平,并且是乘法的:如果對其中一個的信任是 "零",那么整體就是 "零"。只要整體信任是正向的,每個人的信任水平都可以變化--在不同的時間。

部署信任

對在特定情況下使用人工智能的決定的信任是至關重要的。對于人工智能的軍事使用(以及許多民用應用),這在三個層面上運作:社會;組織;和個人。第一個層面考慮的是整個社會是否愿意允許人工智能的使用,這將決定策略制定者如何看待它的使用。組織本身也必須愿意認可這一點。最后,個人必須愿意在這個角色中與人工智能合作。所有這三個層次都需要接受使用人工智能的必要性或其可取性的必然性。可取性可能反映了人工智能在以超過人類操作員的速度或數量(或兩者)處理數據方面的優勢,或在承擔枯燥或危險的工作方面的優勢。而軍方可能會認為,人工智能既實用又要避免將優勢讓給對手,但社會似乎更傾向于將致命的使用視為一個倫理問題,在這個問題上,人類生命的神圣性要求道德行為者決定奪取人的生命。

社會對人工智能使用的接受程度在很大程度上取決于其經驗、有效的溝通和教育,這將有助于為人工智能的使用選擇提供依據。在許多情況下,社會的某些部分可能會比軍方更多地接觸、熟悉和信任人工智能,但致命自主權可能仍然存在問題。雖然沒有致命自主權那么直接的威脅,但在決策中使用人工智能會帶來自己的挑戰,其中最重要的是在一個算法越來越強大、人機協作越來越緊密的世界里,"有意義的人類控制 "究竟意味著什么。

在組織層面,存在關于如何部署作戰和任務支持人工智能的重要問題:是以集中的方式在更高的戰略層面運作,還是以更分散的方式在戰術層面運作。在后一種情況下,人工智能將進一步滲透到組織中,變得更加分散,并用于反應時間可能限制人類干預或驗證人工智能的范圍。組織需要明確決定是否使用人工智能的原則,以及管理其使用的方法(見下文 "過程信任")。關于使用人工智能的決定必須考慮如果系統失敗會發生什么。美國國家航空航天局(NASA)由于擔心系統故障的后果而沒有充分利用其早期火星車的自主能力,對火星車進行微觀管理,并通過大型人類工程師團隊減輕風險。外部組織,如商業技術供應商,的想法也很重要。例如,谷歌的員工迫使該公司在2018年退出一份軍事合同,因為他們擔心軍方對面部識別技術的使用。

個人對人工智能的熟悉程度也將是重要的。目前,從事軍事人工智能工作的人是其使用的倡導者,但隨著接觸人工智能的人群的增加,這種情況將發生變化。與前幾代人相比,接觸技術較多的年輕軍人可能更容易接受人工智能在軍事決策中的應用,但在基礎等級的聯邦結構中,人才幾乎完全來自內部,對其使用的阻力可能來自那些有權力的人;這可能造成機構接受問題。然而,在 "代際特征 "方面,存在著過度簡化的危險。雖然年輕人是在較新的技術中長大的,而且可能更信任它,但技術是可以學習的。代際假設不能成為不使用現代技術的借口。

部署信任是復雜的,因為大多數西方國家的大規模防務活動都是以聯盟行動為前提的,而不是每個盟友或伙伴都對什么是可接受的人工智能的軍事用途有共同的看法。國防部和政府需要更好地傳達他們在使用人工智能方面的方法、用途和保障措施,包括向盟友傳達,而不向對手透露太多信息,因為他們可以制定戰略來抵消(或更糟)人工智能功能的優勢。北約將通過其公共宣傳活動、與成員國在政治層面的聯系以及在不同技術發展階段的軍隊中建立規范,在這方面發揮關鍵作用。

數據信任

這涉及到對人工智能做出判斷的數據的信任程度,這些數據為人類決策提供了依據。雖然測試硬件和軟件相對容易,但測試數據,甚至是準備讓人工智能接受訓練的數據,則更加困難。數據對于人工智能的有效學習至關重要。一些數據將被控制,駐留在現有的國防系統內,或從可靠的外部來源進行驗證,盡管國防部在數據的分類(不一致或不準確)、存儲、訪問和共享方面存在困難,特別是在較高的分類級別。不受控制的數據,如開放源碼數據,是在沒有人類知識或理解的情況下通過聚合產生的,這更具挑戰性。此外,狡猾的對手會試圖注入虛假數據,以破壞決策過程,或用不相關或不準確的數據淹沒決策過程。

武裝部隊需要定義、構建、清理和分析數據的能力,以及開發和維護底層基礎設施(如連接、安全和存儲容量)的能力。這是一個多學科的團隊工作,需要能夠在數據科學生命周期的所有階段工作的 "全棧 "數據科學家。現代戰場將需要更加多樣化的技能,包括心理學家、律師和通信專家。鑒于商業世界對這些技能的需求,吸引和保留這些專家的數量將是困難的。這將需要更靈活的人力資源做法和/或對整個部隊更復雜的理解和使用,包括允許非軍事人員在軍事總部擔任有影響力的職位。

過程信任

過程信任指的是人工智能系統如何運作,包括數據如何處理(匯總、分析和解釋)。目前英國國防部的(狹義的)人工智能決策支持系統吸引了高信任度,因為算法相對簡單且可預測。它們也僅限于參與開發的一小群用戶,或者認識那些開發了人工智能系統的用戶,并且了解該技術。該技術受益于一種源自人們對人類的信任的過渡性信任。雖然不是人工智能,但法國陸軍引進的包裝降落傘的機器導致了降落傘團的信心喪失。堅持要求機器的主管用機器隨機選擇的降落傘打包跳傘,有助于恢復用戶的信心。讓開發人員更接近指揮系統的用戶會有所幫助。法國的采購程序允許某些單位直接與人工智能供應商接觸,以建立對開發商的了解和關系。開發商成為一個關鍵的信任點,如果不是軍隊,他們必須了解和熟悉軍隊的情況。這可能需要加大投資,讓商業伙伴了解軍隊的工作方式,并確保軍事人員了解其文職同事。

要求高水平的可解釋性和透明度并不是一個永久的解決方案,目前限制了英國防部對更強大的、非符號形式的人工智能的訪問。隨著機器學習使技術超越其最初編程的參數,將需要不同的方式來確保對可能看起來是黑盒的信任。隨著這種人工智能系統的使用激增,因了解設計者而產生的過渡性信任將減少,在這個過程中克服最初的信任不足或過度信任將更加困難。應避免過度依賴過程信任,并加強其他信任點,以開發適應能力越來越強的人工智能。

過程信任必須超越技術本身。它需要信任那些為技術提供能量、與技術一起工作并接受技術產出的人類過程。因此,必須同樣重視那些共同構成整體過程的其他活動。這包括培訓和人員的過程,以及如何組建團隊。

輸出信任

對人工智能產出的信任對決策者根據他們收到的信息采取行動至關重要。即使是人類提供的情報,如果原始信息指向不同的方向,指揮官要求新的情報來支持他們的先入之見(一種 "基于決策的證據制作")也不是沒有。而隨著數據的激增,不同的解釋將成為可能,合法的或符合先入為主的解釋。因此,出現了這樣的問題,即人工智能或事實上的人類分析能夠現實地提供什么答案,以及如何驗證輸出。在友軍的部署和對手的物理位置方面,人工智能有可能提供更快的態勢感知。然而,盡管可以從現有的數據中得出更好的推論,但對手的實際意圖是無法可靠地確定的。可預測性通常被視為信任的關鍵因素,但在不穩定的環境中,能夠適應不穩定環境的人工智能輸出會被解釋為不可預測。為了克服這個問題,Bonnie M Muir認為,人類操作員必須具備估計技術可預測性的能力。這種可預測性也會影響整個部署和過程信任點,但在輸出信任方面最為敏感,以反映軍事行動等流動性和不可預測的環境。在這些情況下,數據還必須反映軍事決策者所面臨的大多數情況的離散性和特定對手的獨特文化方式,這加劇了建立大量訓練數據的難度。即使在情況類似于過去的事件時,由于缺乏可比的歷史數據來說明廣泛的變量,使得概率推理變得困難。

用Patricia L McDermott和Ronna N ten Brink的話說,輸出的校準是至關重要的。這可以通過更多地使用企業人工智能和模擬來實現,它擴大了信任的邊界,可以幫助開發輸出信任。如果經驗是積極的,與技術互動并看到它的輸出將產生信任。在作戰環境中,當描述可以知道和檢查的東西時,驗證將是最容易的(例如,關于自己部隊的數據和潛在的對手部隊的布局)。要接近了解對手的意圖是比較困難的,因此需要更高水平的輸出信任。這將包括提高描述的準確性和對從大數據處理中得出的推論進行更多的測試。分享演習和行動的正面敘事,對于實現過渡性信任和緩解從相對不頻繁的行動中積累成功證據的緩慢速度至關重要。

組織系統的信任

生態系統的信任涉及調整更廣泛的組織系統以最大化人工智能的價值所需的信任。C2系統作為一個整體必須被配置為利用人工智能輔助決策的好處,并有適當的檢查和平衡,以在可接受的風險水平內運作。當人工智能的弱點或失敗是在主管的專業知識之外的領域,需要在組織的不同部分進行校準時,這一點尤其重要。如果不在生態系統和組織層面上進行變革,組織將只是將其人類系統數字化。

需要生態系統的信任,以確保結構--包括軍事總部的組織、指揮官的角色以及集中式與更分散或分布式的決策權的平衡--準備好利用人工智能的機會。如果沒有準備好,采用人工智能的漸進式方法往往會鼓勵對結構和整體生態系統的變化采取被動或消極的方法。相比之下,實現人工智能變革力量的專門戰略將迫使人們盡早重新思考支持這種戰略所需的組織。這需要重新思考傳統的軍事結構,但對于走多遠并沒有共識。一些人設想總部變得更扁平,并將非軍事人員納入高級職位,在決策過程中擁有權力。對另一些人來說,生態系統的變化更為深刻;它要求完全取消目前被視為工業時代遺留的工作人員組織系統。這樣做,他們打算消除扼殺理解的信息邊界,并挑戰決策金字塔尖上的獨當一面指揮官的想法。這種轉變需要整個組織生態系統的信任。對于像軍隊這樣的保守組織來說,這將是困難的,在指揮部的激進替代方案被接受之前,需要得到保證。實驗、戰爭游戲和模擬環境提供了低風險的選擇,以測試為特定類型的任務(例如,戰爭、和平行動和能力建設)配置的不同總部結構。

3.2 多少信任是足夠的?

信任是根本,但為技術設定一個不可能高的標準也有風險。幾千年來,指揮官和決策者們一直信任易變的人類。當人工智能開始觀察到輸入數據分布的變化時,技術可以通過自我監測的方式提供幫助,提醒人類 "操作員",或以以前未曾見過的方式進行操作,這樣錯誤輸出的風險會更大。風險容忍度,無論是關于人類還是機器演員,最終都是信任的表達。國防組織需要對自己是否是快速采用者或快速或緩慢的追隨者持誠實態度:商業世界的人工智能發展速度使大多數武裝部隊極不可能成為人工智能決策的 "第一用戶"。漸進派和未來派都是人工智能的支持者,他們之間的差異主要是風險問題,以及針對不同信任點的可實現的信任水平。

通過熟悉產生信任是至關重要的,這可能涉及到將軍事人員嵌入到使用復雜人工智能的商業組織中,或將平民帶入國防。這種變化需要在足夠高的級別上進行,以促進生態系統的信任。模擬、實驗和演習是重要的工具,而且必須足夠廣泛,以便不局限于一小群狂熱者。英國電信公司用人工智能決策支持工具取代英國的電話網絡的項目,當服務時間最長、知識最豐富的工程師與人工智能和數據專家合作時,效果最好,他們可能會對人工智能產生懷疑。將企業人工智能引入改革業務流程,如財務和人力資源,是將熟悉程度擴大到目前直接參與人工智能開發和使用的少數干部之外的另一種方式。

一旦熟悉的東西,信任是人類的天性,但信任的習慣會帶來自身的風險。眾所周知,人類不善于設定正確的目標,當遇到 "專家意見"(無論是人為的還是其他的)時,他們更容易同意而不是懷疑。必須避免 "信任和忘記 "的動態。一個考慮因素是為人工智能系統制定一個 "持續可信性 "的概念,類似于航空平臺的持續適航性,以確保它們仍然適合使用。因此,建立對人工智能的信任(并避免過度信任)的努力必須解決所有的信任點,并包括整個人類-機器團隊,其中人類操作員是其數字對應方的有效合作者和建設性批評者。

4. 對指揮部和指揮員的影響

人工智能對決策的知情、制定和實施方式的影響將是深遠的。通過以超越目前人類進程的速度處理大量的數據,人工智能可以提高對作戰環境的理解,并減少決策者的認知負擔。這不僅僅是今天工作方式的演變。僅僅加快當前C2系統的速度是不切實際的。一輛設計為以70英里/小時速度行駛的汽車是為以該速度運行而配置的。將發動機調整到每小時100英里的速度也許是可能的,但會給車輛系統和駕駛員帶來無法承受的壓力。由人工智能驅動的決策所代表的不連續性需要一種新的方法。正如多國能力發展運動(MCDC)所述。

無論我們未來的C2模型、系統和行為是什么樣子,它們都不能是線性的、確定的和靜態的。它們必須是靈活的、自主的、自適應的和自我調節的,并且至少與它們形成和運行的環境一樣具有偶然性和突發性。

軍隊必須為明天的C2進行重組,并以不同的方式培養他們的指揮官和工作人員。如果沒有這些變化,"生態系統信任"可能被證明是不可能實現的。

4.1 指揮和控制

C2包含兩個不同的元素:指揮,通常與創造力、靈活性和領導力相關;以及控制,與規則、可預測性和標準化相關。人工智能將首先影響控制功能,目前,指揮仍主要是人類的活動。人工智能的數據處理能力將消除控制的大量負擔,例如,為指揮官提供對其部隊的更好理解(如部署、狀態、設備和供應水平),目前這需要消耗大量的注意力和時間。它還將改變向指揮官提供信息的方式。目前,這些數據大部分是在 "拉取"的基礎上提供的--根據總部的報告程序要求或零星地收集。然而,人工智能可以持續監測局勢,并通過強調相關變化的活文件將信息推送給指揮官--類似于24小時的新聞編輯部。然而,通過進一步進入控制領域,人工智能將不可避免地影響指揮權的行使,并形成指揮決策;這對上述指揮和控制之間過于整齊的區分提出了挑戰。在未來的C2系統中,可以想象人工智能可以限制指揮權的行使,就像防抱死制動系統、牽引力控制和電子穩定性允許人類駕駛員指揮車輛,直到失去控制,此時系統會接管,直到情況穩定下來。

人工智能給人類指揮帶來了一個悖論。它同時使更多的知識被集中掌握,使總部能夠看到并與 "前線 "發生的事情互動,并將知識擴散到整個指揮系統,使較低級別的編隊能夠獲得以前只有高級指揮官才有的信息。將更多的權力下放給地方指揮官可以提高反應能力,這在事件發展不可預測、需要快速反應的情況下非常重要。西方武裝部隊傾向于采用(或多或少)任務指揮的概念,即指揮官的意圖描述了預期的效果,并允許下級指揮官根據他們面臨的情況自由執行。軍隊的學習和發展系統以及演習嵌入了這種方法--指揮官將需要相信人工智能能夠在其操作中實施這一意圖。鑒于數據和獎勵功能的戰略復雜性和模糊性,人工智能在戰術和作戰層面的使用可能比在戰略層面的指揮更有效,盡管這些層面并不離散,在現實中也不容易被分割開來。人工智能和更大的網絡連接將提供一個結構、流程和技術網絡,連接多個小型、分散的前方總部和分布式(和加固的)后方功能,即使在更透明的戰斗空間,也更難發現和反擊。如果敵人以C2系統為目標,這將增強復原力。

在每個層面上處理更大數據量的能力必須被仔細引導。人們應該能夠獲得與他們的地位和相對能力有關的信息,以影響他們在環境中發展。W-羅斯-阿什比將此描述為 "必要的多樣性 "問題:一個可行的(生態)系統是一個能夠處理其環境變化的系統。行為者應該在適合其任務的抽象水平上運作。一個旅部不能處理也不需要關于單個士兵的詳細信息;它需要對其下屬單位的身體和道德狀況有一個良好的總體了解。在更多的戰術層面上,NCO指揮官應該對他們團隊中的個人狀態保持警惕。戰略和作戰指揮官可能需要放松控制,讓戰術指揮官在更接近戰斗的地方利用新出現的機會。雖然任務指揮已經允許這樣做,但隨著高級別的指揮官獲得關于戰術層面發生的信息的空前機會,"控制"的誘惑會更大。

人工智能也需要使用抽象、近似和校準的杠桿,以避免將總部淹沒在數據洪流中。這需要在使用這些抽象和近似時的 "過程信任"。總部也可能需要使用不同的人工智能系統,其能力更適合或不適合不同時間范圍內的不同場景。決策也可能包括確定在特定情況下信任哪種人工智能模型(部署和過程信任)的因素。

人機聯合系統的自動化將提高人類的表現,在某些情況下,改變任務本身的性質。無論在什么層面上部署,人工智能不僅會影響人類執行任務的方式,也會影響人類執行的任務。目前的方法通常從研究哪些人類過程可以自動化開始,即人類工作的數字化。有可能從使用人工智能的假設開始,只有在人類是必要(出于法律、政策或道德原因)或可取(更適合這項任務)時才將人類放入系統中--決定什么不應該,而不是什么可以被數字化。這種方法挑戰了目前關于總部的規模、組織、人員配置和運作的概念。

4.2 對未來總體結構的影響

聯合概念說明(JCN)2/17指出,C2有可能在不同的戰爭層次(戰略、作戰和戰術)上發生變化,并對作戰環境的變化特征做出反應,因為作戰環境不再僅僅是物理環境。戰爭與和平的模糊性--強調了在 "行動 "和 "作戰 "之間的連續過程中有效的必要性--以及英國向能夠持續參與的部隊結構的轉變,將需要超越戰斗所需的方法。然而,可能沒有單一的總部原型;因此,為戰斗而配置的總部將與處理上游參與和能力建設的總部不同。雖然現在確定人工智能對軍事總部的影響還為時過早,但商業組織已經發現,與傳統的垂直層次結構相比,具有更多橫向信息共享的扁平結構更適合利用人工智能的優勢,因為在垂直層次結構中,每一層都要保證和授權數據才會被發布。因此,軍事總部--無論其具體形式如何--很可能會比現在更小、更扁平,能夠更快地沿著水平線工作。

探索替代的總部概念可以通過更多地使用實驗和模擬來實現。這應該對經典的J1-9參謀部提出挑戰,或許可以用新的分組來反映人工智能取代人類密集型數據處理和共享任務的能力。在J3/5區域尤其如此,這是計劃和行動之間的界限;由更快的決策帶來的更快節奏的沖突使這種界限變得過時。組織總部的替代方法可能包括那些注重結果的方法。JCN 2/17中描述的英國常設聯合部隊總部(SJFHQ)的結構是圍繞著四個職能來組織的:理解;設計;操作;和啟用。SJFHQ后來又恢復了傳統的J1-9人員分支。然而,"聯合保護者2021 "演習是一項復雜的亞門檻行動,其中使用了人工智能決策支持工具,揭示了J1-9架構的弱點。總部開始演習時是為高強度戰爭而配置的,但隨后調整為更適合與其他機構合作的配置。SJFHQ內部正在開展工作,應用2021年聯合保護者的經驗教訓,并確定這對總部結構意味著什么。然而,不太可能有一個完美的總部模式適用于所有行動類型。需要進一步的實驗,不限于SJFHQ。很能說明問題的是,自JCN 2/17發布以來的四年多時間里,在實施其中的一些建議方面幾乎沒有取得進展。即使英國國防部采用技術的速度相對緩慢,但這也超過了國防部探索改變結構的能力,超越了小規模的愛好者群體。"生態系統信任"是至關重要的,需要有機會在模擬或真實的環境中對各種任務類型的替代方法進行測試,并讓更多的人參與進來,這對有效采用新技術、結構和過程至關重要。

現有的程序需要改變以連接和優化新的結構。這可能需要改變構成武裝部隊規劃過程基礎的軍事評估。雖然它是一個復雜的、符合邏輯的規劃工具,但它是相當線性的、確定性的,并且嚴重依賴于指揮官,特別是在 "指揮官領導 "的英國方法中。在其他國家,參謀部在推動解決方案方面發揮了更大的作用,這可能更適合于人工智能的方法。人工智能為更多的迭代和協作過程提供了機會,它能更好地響應軍事和民防資源中心的要求,轉向更敏捷的模式。新的方法應該給指揮官帶來更少的壓力,要求提供信息(指揮官的關鍵信息要求)。人工智能還可以構建、分析和比較作戰行動方案,允許在做出大規模投入部隊的選擇之前對情景進行建模、測試和完善。

英國常設聯合總部(PJHQ)的情報評估過程自動化的思想實驗發現了取代大量工作人員的機會,加快了總部的戰斗節奏,并允許使用自動總結和自然語言處理來橫向共享信息。在一次作戰部署中測試了這一點,英國第20裝甲步兵旅戰斗隊將部分計劃過程縮短了10倍。然而,當人類仍在環路中時,決策環路的速度可能是有限的。在某些時候,人類決策者將無法跟上,成為決策監控者。如果仍然需要人類來做人工智能自己不能做的決定,這將是一個問題,而這可能是最困難的決定。

盡管有明顯的優勢,但總部不太可能在技術允許的范圍內減少。目前的總部通過規模和保證程序的冗余來補償人類的脆弱性,這對于減輕人工智能團隊成員的脆弱性可能仍然是正確的。此外,隨著戰斗節奏演變成連續的24小時規劃周期,節奏的加快可能會推動某些領域的需求上升。這些壓力可能并不局限于總部本身;它可能會推動前線單位的活動增加,他們必須處理數據并對所發出的指令作出反應。人類行為者仍然需要時間來休息,即使技術不需要。此外,與商業組織不同,軍隊需要冗余,以應對競爭對手蓄意破壞或擾亂他們的決策機構,并需要確保固定基礎設施的安全,以建立他們的網絡。簡而言之,對彈性和流動性的需求影響了軍事C2系統的穩健性和效率。因此,軍隊將需要保留不完全依賴人工智能進行有效操作的結構,并確保在人工智能失敗或故意削弱對人工智能信任的情況下,有恢復性程序可用。

4.3 培養指揮官

傳統上,指揮官是垂直決策結構的頂點,是所有信息的匯集點。雖然不是所有的軍事文化都強調個人的天才,正如 "翠鳥時刻"的概念所體現的那樣,但指揮官獲得信息的特權被總部的低層人員所拒絕。人工智能使信息民主化的潛力將改變這種情況;指揮可能會成為一種更加合議和反復的活動,不僅涉及那些穿制服的人,而且包括情報機構和具有數據科學多方面專業知識的承包商在內的更加折衷的組合--一種 "全部隊"的貢獻。面對一個復雜和適應性強的戰斗空間,另一種鳥也許為未來的指揮提供了一個更好的比喻:椋鳥。它們集體的、高度適應性的雜音為英國的發展、概念和理論中心的C2概念提供了一個更好的形象,即 "為設計和執行聯合行動而配置的動態和適應性的社會技術系統"。

指揮官必須繼續能夠處理動態環境;"沒有計劃能在與敵人的接觸中幸存下來 "這句話仍然是正確的。鑒于技術能夠提高速度(減少反應時間)和復雜性(通過更透明的戰斗空間),處理復雜、快速演變的問題將尤為重要。軍事組織正在試驗人工智能將如何改變C2,包括北約卓越指揮與控制中心、美國JADC2和英國軍隊的數字準備實驗。早期的跡象表明,指揮官將不得不更多地關注問題的框架,并確保在更小、更扁平的結構中的更多不同團隊之間的理解和目標的統一。這表明需要一個不同類型的指揮官和不同類型的工作人員;他們能夠整合由不同學科的成員組成的不同團隊的工作,而且往往是來自軍隊以外的成員。

確保指揮官能夠正確地設定問題的框架是至關重要的。人工智能非常善于在框架內操作,但目前至少在 "閱讀字里行間 "或從定義不明確的數據集中推斷方面很差--這種脆弱性仍然依賴于有人類來設定框架。在確定了問題的框架后,指揮官必須能夠判斷產出在該框架內是否合理。這需要能夠看到大局的人,武裝部隊需要通過在總部的參謀經驗來培養未來的指揮官,使他們熟悉環境和流程,從而能夠在越來越高的級別上進行指揮。模擬可以促進對總部的接觸,同樣可以確保較小的總部仍然保留人們獲得經驗的作用,通過這些經驗可以獲得必要的指揮技能。

雖然指揮官需要知道如何與技術互動,但他們必須繼續關注人工智能所要服務的作戰要求,并對其持適當的懷疑態度,以便他們成為這一過程中的知情者,而不是算法輸出的被動接受者。指揮官需要類似于工業界的 "π型領導人",在軍事專業的同時具有數字和數據意識。他們不需要成為技術專家,但應該有足夠的知識來了解其局限性,能夠與團隊中的專家合作,并有足夠的滿意度來允許對數據、流程和產出的信任。

集體而言,總部團隊需要這些技能,各個團隊成員能夠相互交流和理解。這超出了情報分析員的范圍,包括來自武裝部隊內部和外部的廣泛的行動、技術和數據專家。它還包括對風險更復雜的理解和溝通能力。戰爭從根本上說是一個風險管理的問題,這需要以經驗的方式來理解和溝通風險。因此,了解概率和信心水平是一項關鍵的指揮技能,但諸如沖突中的一次性決定也需要長期的判斷。

軍事教育需要通過在職業生涯中更早地引入數據和技術意識來應對。此外,軍隊對不同能力的評價方式也需要改變。據傳聞,英國陸軍的職業管理流程往往將那些在計算能力上取得好成績的人引向采購等領域,而不是作戰,被選入參謀學院的專業人員往往在計算能力上處于較低的四分之一。這不僅僅是軍隊面臨的挑戰:有望成功競爭的國家需要國家教育系統認識到數據和技術素養技能的價值,并從小培養他們。作者并不主張將教育變成就業前培訓;雖然需要STEM技能(數量比現在多),但人文和社會科學仍然很重要,培養出的畢業生適應性強,能夠解決復雜的問題,并以影響力進行溝通。國家的成功取決于學術和其他形式的多樣性,培養人們在數字世界中茁壯成長,不僅需要技術能力,還需要(人文)特質,如創造力和情商。指揮官和工作人員在未來將需要這兩套技能,也許比今天更需要。

除了分析之外,直覺是信息處理中的一個補充部分。在指揮官需要行使的雙軌制決策方法中,它是人類認知的一個重要部分。有效的決策結合了直覺和分析的優勢。當數據和直覺一致時,決策者可以放心地采取行動。如果它們不一致,則需要在行動前進一步探索。1983年,俄羅斯中校Stanislav Petrov避免了潛在的核戰爭。他的導彈探測系統報告說美國發射了五枚洲際彈道導彈,但他沒有立即報告,而是決定等待,因為這個信息感覺不對。他的(下意識的)雙模式決策使他做出了正確的決定。人工智能更強的數據處理和分析能力可以增強決策過程中的分析要素,但它需要指揮官認識到直覺的價值和局限性。專業軍事教育需要反映出對數據和直覺這兩個組成部分的平衡方法。

4.4 管理整個部隊

未來的指揮官所指揮的團隊必然比今天更加多樣化,領導跨學科團隊為復雜問題帶來新的見解。人類有效構思和發展直覺的能力通過接觸不同的看世界的方式得到加強。這不僅僅是改善受保護特征方面的多樣性,盡管這很重要,還包括確保整個部隊團隊中教育、經驗和觀點的廣泛性。整個部隊的不同元素是這種多樣性的一部分。

越來越多的跨軍事領域的綜合活動要求整個部隊的各軍事部門有效合作。對于正規軍事人員,在 "聯合"方面已經取得了進展,但還需要做更多的工作。在軍事生涯的早期引入聯合訓練是實現這一目標的一種方式;這可能需要重新思考軍事人員何時接受專業軍事教育,目前在英國是在30歲左右。相比之下,澳大利亞國防軍為參加澳大利亞國防軍學院的人員提供了基本的聯合軍事課程,海軍、陸軍和空軍專家也接受了單一軍種培訓。這為未來的指揮官在軍事生涯早期的成長提供了一個跨學科的 "聯合 "模式。正規軍的進展需要擴展到后備軍的整合,因為未來可能會有更多的技術專家駐扎在這里。

事實證明,整合整個部隊的非軍事因素更為困難。Serco研究所的一份報告指出,"盡管在過去十年中,整個部隊的運作取得了進展,但在實現軍事和工業之間的無縫合作方面的努力卻停滯不前。雖然武裝部隊在將非軍事人員帶入其總部方面做得更好,但在場和被納入之間有很大區別。如2021年聯合保護者等演習,經常邀請國際合作伙伴和民間主題專家來幫助規劃過程,但他們往往在軍事規劃人員完成工作后才被邀請對計劃發表意見。許多總部的規劃周期缺乏靈活性,這意味著當規劃被提出來供審查時,可能已經來不及進行修改了。

這不僅僅是對軍隊的觀察;文職專家往往不熟悉軍事進程,等待被邀請做出貢獻,這削弱了他們的影響力。軍事人員沒有本能地理解他們的非軍事同事所能做出的全部貢獻,因此沒有將他們納入其中。人工智能將迫使人們從一開始就需要在規劃過程中建立整個部隊的多樣性,從而使計劃成為真正的合作。

有了人工智能的能力,技術將越來越多地成為整個部隊的一個成員。國際象棋大師加里-卡斯帕羅夫(Gary Kasparov)曾指出,好的技術和好的人類棋手的結合,往往比卓越的技術或更好的人類棋手單獨工作更成功。在某些情況下,人和機器可能在共享任務中緊密結合,以至于他們變得相互依賴,在這種情況下,任務交接的想法就變得不協調了。這在支持網絡感知的工作設計中已經很明顯了,在這種情況下,人類分析員與軟件智能體相結合,以近乎實時的方式理解、預測和回應正在發生的事件。

從這些人機一體的團隊中獲得最大利益,不僅僅是有效的任務分配。它涉及到找到支持和提高每個成員(人或機器)績效的方法,從而使集體產出大于單個部分的總和。正確的行為和創造包容性文化的能力對于從這樣的團隊中獲得最大收益至關重要。指揮官不應專注于試圖管理 "突發事件"--一個試圖描述簡單的事情如何在互動中導致復雜和不可預測的結果概念--或團隊成員的活動,而是需要在塑造團隊和培養團隊內部的關系方面投入更多。

雖然人工智能目前作為一種工具,但隨著技術的發展,它應該被視為團隊的真正成員,擁有影響人類隊友的權利和對他們的責任。然而,無論其最終地位如何,人工智能都可能改變團隊的動態和對人類團隊成員的期望。將人工智能引入一個團隊會改變團隊的動態,而它與人類團隊成員的不同會使團隊的形成更加困難。通過布魯斯-塔克曼(Bruce W Tuckman)的經典階段,即形成、沖刺、規范和執行,需要妥協和適應。人工智能目前不太能做到這一點,需要人類參與者有更大的靈活性,這使得建立人機團隊更加困難,也更難恢復已經失去的信任。

高級人工智能,如果可以說有動機或偏見的話,很可能是以邏輯和任務為導向的(用實力部署清單術語來說,就是綠色和紅色)。一個平衡的團隊將越來越需要能夠維持團隊關系的人類,無論是內部還是跨團隊。因此,人機團隊將是不同的,盡管他們可能與包括神經多樣性同事在內的純人類團隊有一些相似之處,因為對他們來說,感同身受或理解情感線索是困難的。與神經多樣性團隊一樣,人機團隊將受益于團隊成員的多樣性給整體帶來的價值,但也需要進行調整,以最大限度地提高團隊績效的機會。人工智能作為團隊成員的概念究竟會如何發展,目前還不清楚,但有人呼吁組織在更平等的基礎上考慮先進技術的需求。加強企業人工智能在業務支持活動中的使用,將為探索人機團隊如何最有效地合作提供機會,并有可能實現預期運行成本的降低,使人類在價值鏈上從事更有意義的工作。

4.5 職業管理

需要的新的領導風格、新的技能和對技術、數據和風險的進一步理解也需要新的職業管理方法。軍隊的職業管理系統(過于)頻繁地調動人員,但要形成具有必要信任度的有效團隊需要時間。軍隊可能會放慢關鍵人員的流動,甚至可能放慢團隊的流動,從而使總部高級團隊作為一個集體實體而不是個人來管理。然而,目前的人力資源實踐使軍隊或工業界不太可能愿意無限期地保留人們的職位以期待未來的需求。用拉斐爾-帕斯卡爾和西蒙-鮑耶的話說,這就產生了 "混合團隊",即那些成員不固定的團隊,對他們來說,迅速建立團隊信任的能力至關重要。即使是常設總部也會受此影響,特別是當他們成為 "整體部隊 "時。對于'臨時團隊',例如為特定任務而設立的臨時總部,這個問題就更加突出。需要有機制來加速信任的發展,經驗表明,這可以通過早期的行為實踐來實現,包括展示 "技術能力、信息公開、支持互惠和決策中被認為的誠信"。

放慢總部高級職位人員的流動速度將有所幫助,但這還不夠。在無法保證預先建立的團隊在需要時隨時準備好執行任務的情況下,需要有一種方法來減少組建新的部隊團隊的時間。模擬提供了一種方法,通過壓縮任務演練的時間來準備新組建的團隊,并為整個部隊的不同組成部分提供共同工作的經驗。軍隊在這方面做得很好;軍隊的社會化進程創造了強大的紐帶,包括派人到合作伙伴那里進行培訓、演習和任務。對于整個部隊的其他部分來說,這種對跨文化理解的投資是缺乏的。建立對對方的了解,從而建立信任,對文職部門來說同樣重要。軍隊可以做得更多,為其工作人員提供與商業部門合作的經驗,包括與技術專家、數據專家和編碼人員合作,而文職人員也需要更好地了解軍隊、其語言、流程和價值觀。武裝部隊可以通過提供交流任命和模塊化和/或縮短其課程來協助這一進程,使文職人員有可能參加。冠狀病毒大流行引入了新的工作方式,并加速了軍事訓練和教育的變化,這可以為信任提供基礎,在此基礎上可以出現新的團隊和總部類型。

簡而言之,人工智能輔助決策不僅僅是一個技術問題;它需要改變指揮結構、流程和人員技能,才能發揮其潛力,成為武裝部隊在所有任務中運作的一場革命。然而,至關重要的是,在適應不斷變化的戰爭特征時,武裝部隊不能忽視戰爭的持久性:指揮官必須保持領導者和戰士的身份,能夠激勵普通人在最困難的情況下做出非凡的事情,而不僅僅是善于管理戰斗的人。在軍事方面,人工智能是一種工具,可以最大限度地提高武裝部隊在激烈競爭環境中的獲勝機會。

5 結論

人工智能正迅速成為我們國家安全結構的一個核心部分。軍方和情報機構正在嘗試用算法來理解大量的數據,縮短處理時間,并加速和改善他們的決策。對人工智能越來越多的使用和熟悉可以促進對它的信任,但正如專家們的辯論所表明的那樣,要建立和維持對像人工智能這樣的變革性技術的信任,存在著嚴重挑戰。

本文重點討論了人工智能的作戰和任務支持應用,并探討了不斷發展的人與人工智能關系對未來軍事決策和指揮的重要性和影響。當軍事指揮官的角色從控制者轉變為團隊伙伴時,當我們不能再將輔助功能只賦予人工智能體時,那么我們就需要從根本上重新思考人類的角色和我們的機構結構。簡而言之,我們需要重新評估人機決策中信任的條件和意義。沒有這種信任,人工智能的有效采用將繼續比技術的發展更慢,而且重要的是,落后于我們一些對手采用人工智能的速度。

一個稍加修改的信任概念--一個不需要將意向性或道德性歸于人工智能體的概念--可以而且確實適用于AI。只要我們委托機器做可能對人類產生嚴重甚至致命后果的事情,我們就會讓自己變得脆弱。只要存在人工智能的表現達不到我們預期的風險,對它的任何使用基本上都是一種信任的行為。

除了最罕見的情況,對人工智能的信任永遠不會是完全的;在某些情況下,用戶可能有意識地同意較低的信任水平。這種信任需要考慮五個不同的元素,作者稱之為 "信任點"。我們不應該依賴任何一個單一的點來產生整體的信任。事實上,往往得到最多關注的領域--關于數據質量或人工智能輸出的可解釋性問題--從長遠來看,必然會提供不令人滿意的答案,并有可能對技術產生錯位的放心感。

最常被忽視的是在組織生態系統層面上對信任的需求。這需要重新思考武裝部隊的組織及其C2結構。如果說機器的作用越來越大曾經是官僚軍隊結構興起的關鍵驅動力,以集中管理手段,那么人工智能正在以根本的方式挑戰常備軍的這一特點。如果人工智能的使用不僅僅是模擬工作方式的數字化,國防部必須改變其在 "行動(operate)"和 "作戰(warfight)"方面的決策結構。它還需要與整體部隊的各個方面進行更密切的接觸和參與,包括其未被充分利用的后備部隊以及工業和更廣泛的政府。

領導力作為軍事職業的一個持久要素也需要重新考慮。人們傾向于將領導力視為軍事指揮的一種抽象或不可改變的品質。在人工智能時代,指揮任務或領導團隊既需要新的技能(如 "表達數字(speak digital)"的能力),也需要更多樣化的特質(例如,在數據和直覺發生沖突時,橫向思考的能力,構建問題的框架,并應用批判性的判斷)。與以往相比,人工智能更需要那些能夠理解復雜性、構建問題并根據情況提出正確問題的指揮官。這些 "故意的業余愛好者 "摒棄了早期狹隘的專業化,選擇了范圍和實驗思維;他們可以建立專家團隊,吸取專家的意見,使集體人才既廣泛又深入。這些全軍團隊將包括人類和機器,所有這些人都將根據他們在塑造和決策方面的專長作出貢獻。

在尋求回答信任如何影響軍事決策中不斷發展的人與人工智能關系時,本文提出了幾個需要進一步研究的關鍵問題:

  • 我們如何建立必要的信任,在戰術、作戰和戰略層面上重新配置指揮部的組織,其規模、結構、位置和組成
  • 我們如何調整軍事教育,使指揮官為人工智能時代做更好的準備
  • 我們如何優化和改造所有領域的集體訓練,以改善涉及與人工智能體更多協作的指揮
  • 我們如何運作 "全軍 "的概念,以更好地利用我們社會、工業和研究機構中的大量人才
  • 我們如何定義人工智能和人類在人機團隊中的需求和目標

如果我們不從根本上改變如何獲取、培訓和培養領導崗位的人員,以及如何改革他們所處的機構和團隊,我們就有可能在人機關系的信任平衡上出錯,并將無法利用人工智能的全部變革潛力。

作者

克里斯蒂娜-巴利斯是QinetiQ公司的培訓和任務演練的全球活動總監。她在大西洋兩岸有20年的經驗,包括咨詢、工業和公共政策環境,特別關注國防、全球安全和跨大西洋關系。她曾是華盛頓特區戰略與國際研究中心歐洲項目的研究員,Serco公司負責戰略和企業發展的副總裁,以及巴黎Avascent公司的負責人和歐洲業務主管。她擁有華盛頓特區約翰霍普金斯大學高級國際研究學院和意大利博洛尼亞大學的國際關系碩士和博士學位,以及英國和德國的商業學位。

保羅-奧尼爾是RUSI的軍事科學部主任。他在戰略和人力資源方面有超過30年的經驗,他的研究興趣包括國家安全戰略和國防與安全的組織方面,特別是組織設計、人力資源、專業軍事教育和決策。他是CBE,英國特許人事與發展協會的會員,溫徹斯特大學的客座教授,英國后備部隊外部審查小組的成員。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

美國海軍部長

托馬斯-W-哈克: 海軍部長(代理)

美國海軍部正在有目的地進行創新和適應新技術,為未來建立一支更具殺傷力和分布式的海軍部隊。為了在一個大國競爭的時代進行競爭并取得勝利,海軍部致力于在先進的自主性、強大的網絡和無人系統方面進行投資,以創造真正的人機一體化團隊,在整個艦隊中無處不在。

這些持續的投資將產生新的能力,遠遠超出獨立的平臺或以人為本的系統的有效性。它們將通過為每一個水手和海軍陸戰隊員提供不對稱的優勢來改變海戰。

美國海軍和海軍陸戰隊現在已經邁出了下一步,調整無人系統愿景,以執行分布式海上作戰(DMO)和有爭議環境中的瀕海作戰(LOCE)。為了確保成功,海軍和海軍陸戰隊正在將需求、資源和采購政策緊密結合起來,以便更快地開發、建造、整合和部署有效的無人系統

美國海軍部的無人駕駛作戰規劃橫跨整個理論、組織、培訓、物資解決方案、領導和教育、人員、設施和政策的構建。這份文件提供了運動計劃的總體框架,并得到了更高等級的詳細實施計劃的支持。它們共同勾勒出一個具體的戰略,其根基是對當今每個領域的現實評估。前進的道路需要一個整體的方法來開發和部署無人系統,確保個別技術可以在一個更廣泛的網絡化作戰系統架構中運行,并得到正確的人員、政策、作戰概念和其他推動因素的支持。

整個海軍企業致力于為美國和每一個水手和海軍陸戰隊員提供人機協作所提供的戰略和戰術優勢,以保證所有人的海洋自由。

美國海軍水手和公務員水手從美國海軍 "赫歇爾 "號上發射一個無人水面飛行器(USV)從USNS赫歇爾 伍迪-威廉姆斯,2019年9月14日。

美國海軍作戰部部長

M. M. GILDAY:美國海軍作戰部長海軍上將

隨著海軍適應日益復雜的安全環境,必須了解未來的部隊在日常競爭和高端戰斗中都需要什么。

無人系統(UxS)已經并將繼續在未來的分布式海上作戰(DMO)中發揮關鍵作用,而且顯然需要部署負擔得起的、致命的、可擴展的和連接的能力。這就是為什么海軍正在擴大和發展一系列無人駕駛飛行器(UAV)、無人駕駛水下航行器(UUV)和無人駕駛水面艦艇(USV),當把重點轉向以更分散的方式運作的小型平臺時,它們將發揮關鍵作用。

一個混合艦隊對于海軍滿足新出現的安全問題來說是必要的。需要平臺在所有領域的多軸上同時提供致命和非致命的效果。UxS將為未來艦隊提供額外的能力--在空中、在水面上和在水下。

該活動計劃將作為實現無人系統作為海軍作戰團隊的一個組成部分的未來的全面戰略。它將是一份活的、反復的文件,闡明愿景,即通過加快技術、流程和伙伴關系中的關鍵使能因素,建立一支更加準備就緒、致命和有能力的艦隊。

注意到過去的缺點,因此其方法是深思熟慮的,但有一種緊迫感。將解決理論、組織、訓練、物資、領導和教育、人事、設施和政策(DOTmLPF-P)的各個方面,確定并消除能力差距,并努力創建和維護未來的海軍部隊。

MQ-25 T1,左翼下有空中加油站,在坡道上。

海軍陸戰隊司令員的致辭

大衛-H-貝格爾:美國海軍陸戰隊將軍 海軍陸戰隊司令員

美國、盟國和敵方部隊獲得無人駕駛技術的速度要求有一個愿景和路線圖來最大化這種能力。海軍陸戰隊需要無人駕駛的空中、水面和地面系統來充分利用固有的遠征性質和能力。與海軍伙伴合作,將提供一個聯合部隊的海上組成部分指揮部,在居住的獨特海域支持聯合部隊。當在惡劣的條件下以小隊形式在前方作戰時,最大限度地利用無人系統為盟友和對手創造巨大的效果的能力是未來成功的一個關鍵因素。

該戰役計劃作為海軍陸戰隊的一個起點,使其了解到無人系統在不久的將來必須而且將具有更大的重要性。諸如一半的航空機隊在近期到中期內實現無人駕駛,或者大部分的遠征后勤在近期到中期內實現無人駕駛的概念不應該讓任何人感到害怕。相反,這些想法應該點燃海軍陸戰隊的創造性和狡猾的天性,以便前沿部署部隊對聯合部隊更加致命和有用。

大衛-H-貝格爾和海軍作戰司令部(CNO)一起,致力于為海軍陸戰隊的無人駕駛系統制定一個審慎但積極的前進路線。這份文件提供了初步的愿景,并取決于與海軍陸戰隊艦隊、艦友、聯合部隊、國會、盟友和工業界的反復討論。大衛-H-貝格爾希望海軍陸戰隊能接受這種未來的戰爭,并將其轉化為他們在戰場上的優勢;從日常競爭到大規模作戰行動。

一架VBAT垂直起降(VTOL)無人機系統準備在飛行甲板上降落。準備在海軍艦艇的飛行甲板上著陸。一艘海軍艦艇的飛行甲板上。

美國海軍作戰架構

無人系統通過解除對有人系統的限制來提供實現任務結果的能力。僅靠搭建平臺是無法實現任務成果的。為了在無人空間提供整體解決方案,DON 將更加關注開發成功擴展投資經驗所需的推動力。其中一些關鍵推動因素包括:網絡、控制系統、基礎設施、接口、人工智能和數據。海軍和海軍陸戰隊正在設計和實施一個全面的作戰架構來支持 DMO。這種架構將為單位、作戰群和艦隊提供準確、及時、分析的信息。

付費5元查看完整內容

美國國防部和空軍領導人認為,人工智能(AI)是一種改變游戲規則的技術,將幫助空軍情報、監視和偵察(ISR)體系克服大國沖突所需的情報分析速度和規模方面的長期挑戰。傳感網格概念(最近更名為傳感器集成)被作為未來框架引入,以整合人工智能和認知建模工具融入空軍ISR,但對于對手的威脅和道德方面的考慮卻很少討論,而這些考慮應該貫穿于系統的設計和功能模塊。為了讓空軍內部的人力和組織做好準備,以整合高度自動化的人工智能情報分析系統,領導人必須倡導以人為本的設計,從歷史上人機協作的成功和失敗中吸取教訓。領導人還必須采取積極主動的方法來培訓空軍的ISR勞動力,以便與革命性的但不完善的人工智能技術進行有效協作。

問題陳述

根據美國空軍作戰集成能力(AFWIC)傳感跨職能小組的說法,空軍情報、監視和偵察(ISR)的現狀是高度專業化、專有化,并且過于依賴人力密集的回傳(reach-back)過程。當規劃人員展望未來的大國沖突時,他們評估目前的硬件和分析過程將不足以建立對同行對手的決策優勢,情報工作在勝利所需的速度和規模方面落后。空軍A2的 "下一代ISR主導地位飛行計劃"對目前的ISR體系也提出了類似的批評,主張擺脫今天的 "工業時代的單一領域方法",以追求 "架構和基礎設施,以實現機器智能,包括自動化、人機合作,以及最終的人工智能。"雖然為空軍人員提供更快更智能的工具來制作和分享評估是空軍高級領導人的優先事項,但引入更高水平的自動化和機器主導的感知為情報界帶來了一系列新問題。考慮到這些工具可能遇到的篡改和故意提供錯誤信息的威脅,依靠算法走捷徑是否安全?追求由自動化武器系統促成的戰爭到底是否合乎道德?如果是這樣,情報界采用自動化工具以更快的速度產生關鍵的情報評估會帶來什么風險?

人工智能(AI)一詞被美國防部聯合人工智能中心定義為 "機器執行通常需要人類智慧的任務能力--例如,識別模式、從經驗中學習、得出結論、進行預測或采取行動。"參議員們希望AI能夠很快為人類分析師用來進行評估的軟件套件提供動力,并使物理系統在更多的自主應用中發揮作用。機器學習(ML)被國防部高級研究計劃局(DARPA)定義為人工智能中的一個領域,"將統計和概率方法應用于大型數據集",并可以將衍生模型應用于未來的數據樣本。利用ML好處的一個流行方法是通過深度神經網絡(DNN),它可以使用歷史數據被訓練成執行一系列的分類和預測任務。雖然在AFWIC或A2的出版物中沒有特別提及,但在模擬人類思維過程的應用中使用AI、ML和DNN是計算機科學和心理學的一個混合領域,稱為認知建模。在AFWIC對未來空軍ISR體系的設想中,AI、ML、DNNs和認知建模概念是向數字化、以網絡為中心的情報方法轉變的關鍵部分。

為了給空軍ISR體系的現代化舉措提供一個框架,AFWIC建立了傳感網的概念,定義為 "傳感器、平臺、人員、設備、內容和服務的組合,為決策者提供整體、準確、預測和及時的作戰環境特征。"該概念的設計者設想了一個具有預測分析、自主傳感和響應、融合多個數據源和邊緣處理的系統,所有這些都是通過利用AI、ML、DNN、數據分析和其他認知建模方法來實現的。盡管沒有公布傳感網格的首次亮相日期,但大多數討論表明,優化的系統簇至少還有十年。同時,美國防部領導層非常迫切地要趕上中國和俄羅斯在軍事人工智能應用方面的投資,鼓勵快速原型設計和實驗,以找到解決方案。人工智能在國防論壇上經常被認為是使以數據為中心的情報任務更快、加快戰術決策的答案,但如果所涉及的系統處于工程的初級階段,并且在國家安全領域仍未得到證實,這僅僅是猜想。

雖然AFWIC和空軍A2專注于人工智能傳感器和工具的研發投資,但很少討論使傳感網格安全和有效所需的人機合作動態。為了使傳感網格成為一個有效的系統,為空軍執行ISR和分析的方式帶來價值和進步,領導人應該在技術中倡導以人為本的設計,培訓和準備一線分析員與新系統有效的協作,并根據人工智能的優勢和劣勢調整組織做法。空軍領導人必須承認將更多的分析任務分配給人工智能工具所固有的對抗性威脅和道德問題,這些問題必須告知感知網格的藍圖。這并不是說正在進行的系統軟件開發應該停滯不前,而是說在情報和物資領導人之間必須同時進行對話,討論人類分析員的作用,因為這對減輕越來越多地依賴人工智能的弊端至關重要。空軍領導人還必須推行一項深思熟慮的計劃,將傳感網格組件整合到當前的傳感、識別、歸屬和共享(SIAS)活動中,使一線分析員為 "更高級別的推理和判斷"任務做好準備,同時承認機器應該增強人類任務,而不是完全取代人類。

接下來本文將提供與人工智能系統相關的脆弱性和道德問題的文獻回顧,以深入了解建設和應用傳感網格可能面臨的挑戰。它還將包括討論在完成和應用這個改變游戲規則的系統之前,情報和物資領導人應該考慮哪些因素。本文最后將就如何為空軍ISR戰斗空間準備傳感網格提出進一步的建議,為空軍人員在數字時代的行動提供必要的場景設置。

文獻回顧

最近關于將人工智能應用于認知任務的相關弱點的研究大多強調了對抗性樣本的危險性,這些樣本修改了DNN的輸入,導致它們控制的系統以各種方式發生故障。對抗性輸入可以是物理的或非物理的,可以影響各種數據分類器分類媒體,包括圖像、音頻文件和文本。最常提到的物理欺騙樣本是一個實驗,工程師通過將停車標志調整成不同的角度來愚弄自動駕駛汽車上的光學傳感器,導致車輛錯過停車。物理欺騙在國防應用中不是一個新穎的計劃,但將邊緣處理和自動化納入像傳感網格這樣的系統可能排除了人類分析師第一手識別這些戰術。在非物理領域,訓練算法以類似于人腦的方式來識別模式是一項具有挑戰性的任務。計算機視覺(CV)算法對圖像的分類與人類分析人員非常不同,當只有幾個像素不合適時,很容易對物體進行錯誤分類。在不太直接的情況下,工程師無法解釋模型的錯誤,刺激了DARPA等組織對可解釋人工智能的倡議。 在最好的情況下,對抗性輸入被識別為異常值,并被具有強大訓練樣本的CV模型所忽略;在最壞的情況下,它們可能會破壞現實世界的輸入,并在人類分析師不知情的情況下從樣本中數字化地刪除物體或活動。如果對抗性輸入導致分析師錯過他們通常會在沒有協助的情況下捕捉到的重要活動,就會產生災難性的后果。

如果將AI、ML和DNN應用于情報數據集背后的目標是以更高的速度分析和傳播更多的信息,那么自然語言處理(NLP)也可能是感知網格架構的一部分。NLP模型今天被廣泛用于個人和商業用途,像Siri和亞馬遜Alexa這樣的工具使用語音提示來啟動其他應用程序。NLP模型也可用于大量文本或其他媒體的理解任務,使用衍生數據回答問題。這種技術在融合多種數據源的SIAS任務中可能非常有用,但也可能容易受到干擾。NLP中的對抗性輸入可以引入錯誤的句子或用文本文件中的反義詞替換關鍵詞,導致模型在沒有時間或能力進行人工審查的情況下錯誤描述數據集。

與任何分層模型的方案一樣,CV和NLP模型是否能像預測的那樣有效地協同工作還是個未知數,更不用說檢測像Deepfakes這樣在非保密領域進入DNN的偽造數據了。人類分析員離通常可以檢測錯誤信息的源數據流越遠,SIAS就越容易受到錯誤輸入的影響。盡管有這種擔憂,但空軍A2的指導意見表明,人們對分層模型利用非保密的公開信息(PAI)進行無縫傳感器提示寄予厚望,使ISR體系能夠更有效地找到相關目標。如果沒有一種強大的方法來檢測提示傳感器的PAI樣本中的偽造媒體,這個過程可能難以安全地實現。

技術的復雜性和自動化、人工智能系統對篡改的潛在脆弱性,引發了關于在軍事行動中應用這類技術是否符合道德的討論。雖然傳感網格的設計不是為了直接使用武器,但來自該系統的情報數據很可能為關于多個領域的關鍵決策提供信息。關于AI/ML的倫理學文獻通常對采用自主運作、人類干預窗口有限的系統持批評態度,其邏輯與反對地雷等傳統自動化武器的倫理學論點相似。雖然傳感網格及其前驅系統將具有比壓力板裝置高得多的認知行為屬性,但一些人認為,人類對黑盒系統的控制同樣很少,這些系統在向人類操作者提出選擇或結論之前,會執行層層的算法通信。

幸運的是,人工智能系統可能也能夠在人類容易出現道德失誤的情況下進行補償,因為機器不會經歷像恐懼或驚慌這樣的情緒,而這些情緒可能會引發危險的決定或違反LOAC。盡管利用人類與認知模型合作的這一潛在優勢是謹慎的,但美國防部的指導意見將速度作為人工智能最有用貢獻的具體價值,這引入了更多道德難題。對個人決策的測試表明,人類在復雜環境中的風險評估能力已經很差,而引入人工智能,使人類判斷的價值邊緣化,只會導致更快的、風險更高的結論。當人工智能帶來的錯誤評估或草率決定導致災難性錯誤時,問責也是美國防部領導人必須準備解決的混亂道德問題。

大多數文獻中隱含的減輕對手篡改和道德失誤威脅的解決方案,是在人類控制器和自主的人工智能系統之間進行最佳分工。不足為奇的是,對于這應該是什么樣子,以及它如何適用于像傳感網格這樣的系統,有許多觀點。一些人認為,在國際協議框架中沒有雇用自動武器系統的空間,并將其缺乏責任感與兒童兵相比較。其他人認為,如果像聯合目標定位這樣的程序以同樣的嚴格和參與規則進行,人工智能工具將不會導致不可接受的失控。雖然人們認為迫切需要通過購買現有的商業軟件向聯合情報界提供傳感網格的能力,但如果美國防部領導人希望減少前面討論的風險,工程師、需求所有者和分析師必須致力于仔細討論人工智能應用在ISR體系中最有幫助的地方以及它們有可能造成傷害的地方。

討論結果

當涉及到投資建設由人工智能和認知建模應用驅動的未來ISR體系的項目時,美國防部和空軍除了需要快速投資并與大學和國家實驗室合作外,提供的指導有限。除了系統 "事故風險較低;對黑客和對手的欺騙行為更有彈性和表現出較少的意外行為"之外,對該部門在人工智能投資方面所期望的指導也是有限的。缺乏特殊性可能是人工智能在國防部戰略中首次出現的癥狀,但自滿和滿足于為投資而投資的情況并沒有遠遠超過這種情況。使用該技術的社區有責任決定與認知模型建立哪種類型的協作關系將提供最大的利益,但戰略指導似乎將責任交給了實驗室和行業合作伙伴,責成外部人士確定人工智能將解決的問題和解決方案。如果空軍ISR領導人在討論如何最好地將人類分析員與人工智能工具協作方面不發揮積極作用,他們將如何評估開發人員是否在提供資金的情況下取得足夠的進展?美國防部如何相信由非業務伙伴開發的解決方案能夠充分解決安全和道德問題?在什么時候,人工智能會從一個脆弱的研究項目過渡到改善SIAS的速度和準確性的可行解決方案?

討論人工智能及其在情報工作中的預期功能的一個更有成效的方法是,不要把它當作一個神奇的子彈,因為它的定義太不明確,根本無法研究。雖然將認知模型應用于情報過程可能是新的,但在戰爭中實現自動化的技術已經存在了幾十年。領導人必須考慮現代戰爭中已經存在的人機合作結構,以獲得設計和整合傳感網格的經驗。對于空軍ISR來說,分析當前和歷史上人類分析員、機載傳感器和戰區決策者的團隊合作是一項有益的工作。機載ISR傳感器的性能衡量通常通過傳感器輸出的響應性和準確性等因素來評估,但了解傳感器數據引發的分析和決策過程也很重要。例如,光譜成像傳感器可以被用作異常檢測器,突出不尋常的物體或活動,供人類分析員審查和報告。報告可以傳播給行動領導人,然后他根據情報做出決定,命令對異常活動的來源進行空襲。如果這一連串的事件在行動過程中習慣性地發生,那么傳感器和人類在循環中的互動可能會開始改變,而傳感器被潛意識地重新歸類為威脅探測器。在這種情況下,傳感器的性能規格并沒有改變,但隨著時間的推移,團隊關系中的人類開始對傳感器的輸出應用不同的價值,這可能是外部激勵因素的影響。雖然大多數分析家都知道,假設所有的異常情況都是威脅是不正確的,也是危險的,但人機協作關系演變為扭曲人類判斷的微妙方式是值得關注的。為了確保人機協作以道德方式進行,領導者必須反思協作結構如何在無意中抑制組織的價值觀。對新作戰技術的準確性和穩健性的要求是合理的,但了解技術煽動的組織行為和習慣對有效和道德地使用是最重要的。

除了在ISR體系內應用現有的人機合作經驗外,人工智能感應網格的設計也應以人為本。雖然在建立一個由人類分析員使用的系統時,這似乎是顯而易見的,但在復雜的系統工程項目中,人因工程和人機協作的考慮往往是一個低優先級的問題。這部分是由于傳統的組織障礙,將軟件工程師和人因專家放在不同的部門,尤其是后者專門研究認知心理學、神經科學和機器人學等學科,這些學科在一些項目中可能發揮有限的作用。未能在復雜系統中適當整合人的因素的后果是可怕的,這在波音公司的737 Max飛機上可以看到,該飛機在2018年和2019年發生了兩起致命事故。兩份事故報告都提到高度自動化的機動特性增強系統(MCAS)軟件是導致飛機失事的一個重要因素。 雖然MCAS被設計為使用傳感器輸入來協助飛行安全,但糟糕的人為因素考慮使得該系統在觸發自動程序后,飛行員很難覆蓋。雖然培訓用戶與新系統合作是入職的自然部分,但由于缺乏人為因素工程而導致的陡峭學習曲線是一種風險,可以通過對人類和機器行為進行建模來減輕,因為它們與手頭的任務相關。 在這種情況下,建模將幫助系統架構師確定在特定的團隊合作關系中造成誤解的溝通差距,也許可以提供關于機器如何在緊急情況發生前向人類操作員充分披露其局限性的洞察力。

當我們推測如何最好地促進人機互動,充分解決與人工智能和自動化相關的安全和倫理問題時,尋求視覺分析專家的咨詢可以提供有價值的設計見解。"視覺分析是一個科學領域,它試圖通過交互式可視化增加人機對話來提高自動化、高容量數據處理的透明度。 為分析師提供一個團隊結構,讓他們選擇如何可視化數據集,可以在自動化、機器輔助的數據精簡和人類判斷之間取得有利的平衡。在傳感網格的可視化分析的最佳應用中,分析師將以高度的信心理解數據集的重要性,這得益于調整基礎分析過程的能力。 理想情況下,可視化分析使用戶能夠通過向系統提出關于數據的假設和問題來利用他們的學科專長,使他們能夠通過對話得出結論。視覺分析中的一種被稱為語義互動的方法也可能是有幫助的,創建的模型可以將分析師與視覺數據的對話轉化為模型的調整,推斷和學習人類伙伴執行常規任務的原因,如突出、復制等。考慮到前面詳述的學科有多新,建立明確的測試和評估標準將是準備將這些和其他團隊技術納入SIAS任務的重要步驟。

美國空軍研究實驗室(AFRL)內的各局無疑面臨著許多挑戰,在這個概念正式確定之前,他們一直致力于建立傳感網格的組成部分。將人工智能整合到智能架構和軟件中的工程師和開發人員主要在羅馬實驗室AFRL信息局(AFRL/RI)工作,分為多個核心技術能力(CTC)團隊。特別是處理和開發(PEX)CTC將深入參與開發實現傳感網的DNN,其任務是"為空軍、國防部和情報界提供快速感知,以提高對形勢的認識和對抗的洞察力"。在PEX CTC中,項目按功能分為特征化、極端計算、理解和預測項目,涵蓋了從數據提取到高級感知的一系列步驟。人因工程方面的專業知識來自位于兩個州外的萊特-帕特森空軍基地的飛行員系統(RH),一個跨學科局。下一步,PEX CTC的項目可能會與AFRL的其他部門(如傳感器(RY)或航空航天系統(RQ))的開發項目相結合,將RI的SIAS部分與新的機載收集傳感器和車輛聯系起來。目前,RI的工程師使用來自實際聯合和國家情報來源的樣本數據流,逐步解決在大量非結構化數據中進行分類的計算挑戰。尋找解決方案以保持物理系統的尺寸、重量和功率要求可控,也是一個持續關注的問題,特別是在像Agile Condor這樣尋求在機載系統上提供高水平邊緣處理的項目。

正如前面的文獻調查所示,在DNN中建立穩健性和安全性,以防止ML中的對抗性干擾,是任何網絡開發者都關心的問題,RI內部的團隊也不例外。DNN已經在實驗室環境中以意想不到的方式學習或失敗,引入與人類感知相矛盾的對抗性輸入,可能會使開發有用工具的進展受挫。如果系統繼續隨著新數據集的發展而發展,那么可能很難確定技術成熟度的基準,在這種情況下,AFRL將維持責任轉移給空軍生命周期管理中心(AFLCMC)是合適的。雖然這一點與建立人工智能傳感網格組件的測試和評估標準的重要性有關,但它也應該引發關于復雜系統在開發和維持組織之間的移交是否適合這種技術的討論。理想的情況是,在DNN上擁有最多專業知識的團隊建立模型,并在其整個生命周期內維護它們。一個更有可能和更少破壞性的行動方案是建立具有可升級底盤和外形尺寸的傳感網組件,允許在可用時用替換設備進行簡化升級。考慮到國家實驗室、DARPA、麻省理工學院、卡內基梅隆大學和其他機構的大量人工智能研究投資,空軍領導人應該考慮如何在研究結果公布后,整合部門的投資回報,以改善感知網的設計和功能。

對于美國防部和空軍領導人來說,為未來傳感網的整合創造條件,還有其他獨特的倫理挑戰需要協調。如果 "傳感網格"及其組件能夠提供該概念所承諾的快速和強大的傳感功能,那么期望所有使用該系統的一線分析員都能理解其工作原理是否合理?在發生災難性錯誤的情況下,初級分析員是否需要了解該技術,以便對涉嫌疏忽的錯誤負責?"將邊緣處理納入傳感網設計也是一個有道德爭議的話題。雖然自動數據處理可以節省SIAS的時間,但分析師如何知道邊緣計算程序是否出現故障,或者他們是否被對手欺騙?從傳感器的邊緣去除人類的認知勞動可以更快地提供數據,但結果的準確性可能會有所不同。那些認識到這些問題,但卻因為要比中國或俄羅斯更快地投入技術的壓力而推遲解決的領導人,應該仔細思考這一立場背后的原因。雖然中國和俄羅斯的政府形式與美國根本不同,但事實是,這兩個國家都有等級制度,對國防事務中的錯誤和不精確性的責任也很重視。以類似于核計劃的方式,美國政府應該領導國際社會與競爭對手分享安全、設計良好的人工智能算法的傳統技術,確保沒有國家因為糟糕的態勢感知工具而引發誤解導致的沖突。最好的國際人工智能軍備控制可能來自于對人工智能研究結果的盡可能透明,并倡導負責任地使用該技術。

建議

盡管完整形式的傳感網格還需要幾年時間才能實現,但最終系統的組成部分可能會在未來十年內逐步投入使用。在為下一代人機協作做好技術、人員和組織的準備方面,還有大量的工作要做。美國防部和空軍ISR領導人不應等到正式的系統首次亮相時才開始倡導在傳感網格技術中采用以人為本的設計,將人工智能的培訓目標納入對一線分析員的指導,并為組織接受該技術和與之合作做好準備。當涉及到設計和構建這個復雜的系統時,物資領導人在考慮采購商業的、現成的軟件以獲得更快的數據匯總解決方案時,應該謹慎行事。在沒有為傳感網格及其系統如何運作建立測試、評估和安全標準的情況下,過早地整合多用途商業軟件可能會給傳感網的人工智能互動帶來不確定性和風險

此外,找到更快解決方案的愿望不應該先于對人的因素的考慮,因為這對安全和富有成效的人機合作至關重要。美國防部領導人還應該認真審視在整個傳感網中整合邊緣處理的計劃,將其作為一個安全和道德問題,并應仔細思考在哪些地方將人類感知與傳感器輸出分離才是真正合適的。雖然培訓人類分析員是ISR體系可以采取的最明顯的措施之一,以減輕來自外部干預和道德失誤的威脅,但物資領導人也必須考慮他們在采購精心設計的、以人為本的技術方面的作用,作為一個同樣重要的保障。

正如美國國防創新委員會的AI原則。雖然年輕的分析員在快速學習數字應用和程序方面表現出很強的能力,但初級人員也傾向于以令人驚訝的方式信任技術。因此,這些分析員必須繼續接受情報分析基礎知識的培訓,使他們善于識別傳感網格中的算法錯誤和遺漏。空軍領導人在2018年為促進AI和ML素養邁出了務實的第一步,啟動了一項試點計劃,以確定具有計算機語言經驗的空軍人員,希望在各種舉措中利用那些具有編碼專長的人。雖然這項措施將有助于區分具有較高數字熟練度的分析員,但教導勞動力如何運作計算機模型可能是一個更有用的技能組合,以準備在傳感網中進行人機合作。"為傳感網就業準備一線分析員的最壞方法是依靠及時培訓來彌補勞動力對技術知識的差距,從而為SIAS活動引入更大的錯誤率。

為了讓組織準備好接收和整合傳感網格,美國防部和空軍領導人必須首先解決人力需求。盡管像傳感網格這樣的系統被設計成模仿人類的認知勞動,但分析人員的勞動對于質量控制和任務管理仍然是至關重要的,更不用說作為識別DNN內潛在篡改或系統故障的保障。現在還不是為預期的技術進步做出任何急劇的力量結構調整的時候,而這種技術進步離投入使用還有好幾年的時間。此外,到目前為止,關于傳感網將如何整合來自聯合部隊的數據,或者是否允許作戰司令部像今天一樣擁有自己獨特的數據戰略和情報資源的討論很少。如果傳感網由于來自一個服務部門或地理作戰司令部的人為縫隙而無法為分析人員提供更多的情報來源,那么該系統是否真正做到了其設計者所宣傳的?這些問題必須在聯合參謀部層面加以解決和調和。最后,利用來自傳感網的情報的組織必須認識到,當他們與機器合作時,他們很容易受到偏見和捷徑的影響。了解外部壓力和交戰規則如何導致對機器輸出的質疑失敗,對于改善人機伙伴關系,真正使SIAS更加有效至關重要。

結論

美國防部和空軍對人工智能在情報中的應用所進行的研究投資,對于確定部隊應如何準備與傳感網格進行人機合作是至關重要的。對領導人和一線分析人員進行培訓,讓他們了解在自動化、人工智能支持的SIAS中存在的道德難題和對手攻擊的可能性,這對保護組織不傳播錯誤信息至關重要。幸運的是,美國防部和空軍ISR領導人主張在傳感網格系統中采用以人為本的設計和培訓模式還為時不晚,因為AFRL的工程師們正在繼續努力為部隊提供一個安全、務實的解決方案。領導人必須認識到以速度換取精確性的組織傾向,并理解精心設計的系統分階段整合將是值得等待的。

付費5元查看完整內容

美國人工智能國家安全委員會在2021年1月提交給國會的最終報告中建議國防部在2025年前做好人工智能準備。這一建議源于美國同行之間的人工智能軍備競賽,以及近年來在開發用于持續監視、指揮和控制以及武器化代碼的算法方面所取得的進展。雖然美國防部內有旨在利用各部門人工智能的戰略舉措,但戰術能力的發展和部署之間存在嚴重的脫節。作為美國防部的領導機構,聯合人工智能中心負責為美國防部的所有部門創造可行的解決方案,因此,如果所有單位都試圖在2025年之前做好人工智能準備,將不堪重負。本文強調了人工智能發展過程中的一個主要缺陷,并認為應將能力發展授權給空軍機群,并提供必要的資金和資源以真正將人工智能作為一種武器。此外,本文確定了通過基因操縱、智能灰塵納米技術和COVID-19機器學習過程發現成功的人工智能概念,以幫助戰術領導人了解人工智能革命如何幫助他們的特定任務領域,并激勵他們進行自我教育

當涉及到利用人工智能(AI)時,美國空軍還沒有準備好與同行對手作戰,而且美國處于一場未宣布的軍備競賽中,可能會看到對手在未來十年內占據領先地位,因此需要迅速采取行動以扭轉局勢。更令人不安的是,這一威脅并沒有被該領域的戰術專家完全理解,或者即使他們理解,他們也可能沒有意識到(或在官僚上沒有能力)提供競爭所需的能力。對手在人工智能的研究和開發工作中正在取得進展。情報界的專業人士可以做些什么來解決這個問題。本文將嘗試定義中隊可以解決的戰術相關問題,并確定高層行動的不足之處。

人工智能國家安全委員會在其最終報告中建議美國防部采取行動,以便各部門為十年后的競爭做好準備。委員會的核心建議是美國防部遵循兩條努力路線:在2025年前為廣泛的人工智能整合奠定基礎,在2025年前實現軍事人工智能的準備狀態。這些項目在委員會報告發表前幾年就已經在進行了,這表明了對我們為有效競爭而需要的未來現實的戰略理解和承諾。然而,如前所述,開發人工智能支持的能力需要多年時間。為了有廣泛的人工智能整合,各級領導人需要了解人工智能的基本復雜性,以及如何在他們的任務空間內納入人工智能能力,以便他們能夠在2025年之前迎來人工智能革命。所提到的三大舉措從戰略角度縮短了傳感器和射手之間的差距,但處于邊緣的元素如何為這些努力作出貢獻?此外,如何授權給前線,讓他們根據任務的具體需要進行必要的組織、訓練和裝備?本文的目的是介紹人工智能的基本概念,并闡明應采取的行動,以推動空軍進入由人工智能驅動的持久性監視狀態。以下段落將討論智能能力、經過驗證的分析概念,以及展示未來的需求

有幾個定義需要提到,以便在本文的其余部分提供背景,并幫助教育下級領導了解基礎概念。首先,人工智能需要三樣東西:數據集、算法和函數。數據集是一個數值表,算法是計算機用來解析數據的過程,而函數是 "從一組輸入值到一個或多個輸出值的確定性映射 "這些構成人工智能的基礎。總的來說,我們可以把人工智能看作是一類努力,它試圖采用計算機算法,并允許人類以合乎邏輯的方式解釋其結果。作為人工智能類別的一個子集,"機器學習(ML)涉及開發和評估使計算機能夠從數據集中提取(或學習)的算法。DL "專注于創建能夠做出準確的數據驅動決策的大型神經網絡模型",而DL的重點舉措是圍繞著從神經網絡的特定神經元中貢獻特定功能的想法。對DL的理解對指揮官使用人工智能的能力至關重要,因為科幻小說中的想象力會認為這是可能的。

從情報、監視和偵察(ISR)的角度來看,DL可以推動多種數據來源的綜合(例如,多情報融合和分析)。通俗地說,ML可以幫助將幾種情報功能以一種共同的形式結合起來。然而,鑒于適當的數據集、算法和功能(或指揮官的意圖),理論上DL有可能允許對收集的信息進行分析、理解、反駁為錯誤信息、接受為事實、重新分配任務進行額外的收集,或推動新的收集任務,就像人可以做的那樣,但在機器處理信息和得出關于可用數據的結論所需的幾秒鐘內,是自主的。雖然戰略和作戰指揮官正在努力實現一種反映類似于上述DL潛力的能力的最終狀態,但他們仍然必須考慮法律、道德和倫理困境,以及開發完整的人工智能基礎設施的安全性和可靠性。如果戰術領導人不與高級領導人同步利用這些機會,我們注定無法與當前的任務集進行任何形式的整合,并注定無法實現國家安全委員會對人工智能規定的 "到2025年人工智能就緒的軍隊 "的姿態。那么,我們的部隊如何才能變得更有人工智能效率?幸運的是,人工智能驅動的能力、分析技術以及政府和商業案例研究可供探索。

人類基因編輯曾經似乎是難以想象的事情,但通過使用機器學習,它正逐漸成為現實。有關規則間隔短回文重復群(CRISPR)的研究已經進行了多年。作為一種生物技術,人們可以推斷出CRISPR技術的意圖是讓科學家有能力 "改變基因或創造DNA以改變植物、動物或人類。"此外,很難像前國家情報局局長詹姆斯-克拉珀在2016年所做的那樣,將基因編輯作為一種強大的大規模殺傷性武器來爭論。由于基因編輯為裝備精良的對手提供了機會,情報專業人員應該了解有關基因操縱的指標如何通過機器學習表現出來,以達到與美國戰略利益相悖的目的,并幫助指揮官了解他們如何能夠迅速打擊這些威脅。這一現實離所需的科學并不遙遠,如果分析人員知道如何識別必要的因素,他們可以將其納入計算。

如果分析員不能通過DL技術獲得分析所需的數據,也有一些創造性的解決方案來獲得信息。一個提供巨大潛力的創新是被稱為微電子機械系統的微小無線網絡的出現,被親切地稱為智能灰塵。"智能灰塵的大小為立方毫米,包含電源、通信和計算。"這是整個傳感器網絡的一個單一節點。研究還表明,智能灰塵粒子將能夠達到微觀水平,能夠作為傳統醫療護理方法的替代品進行注射。比隱身的尺寸更令人敬畏的是這個設備子集預計能提供的能力。它們可以容納攝像頭、環境傳感器和通信機制,以傳輸數據,并進一步處理。與ML工作、與存儲設備甚至互聯網的連接相結合,人們可以設想出一種檢測概率很低的收集資產,一種維護需求很低的系統,如果計劃得當,這種系統能夠降低前沿部署資產的風險,并限制其進入目標收集區域。

到此為止,本文已經討論了分析師如何將人工智能視為一種威脅,如何將其視為一種收集資產,但分析的過程呢?不妨看看COVID-19大流行病。雖然2020年的大流行病充滿了不確定性,但在大約一年的時間里,病毒被相對快速地分析、追蹤和抗擊。醫學界與DL專家合作,開發了COVID篩查和診斷方法、藥物發現以及最終的疫苗創新。這需要大量的數據輸入,這些數據來自社交媒體、基于文本的數據、病人數據、被稱為omics的科學數據的集合,以及圖像和視頻數據。這個分析系統是一個里程碑,表明人類可以與機器合作,在一個非常有效的時間窗口內從獨特的數據集中創建一個解決方案。應用于多源數據融合和分析的標準情報實踐中,如果有資源,沒有理由相信分析師不能利用DL的能力來制定準確的評估。

正如人們所看到的,人工智能在多個國家安全問題上具有巨大的潛力,如果戰術分析員有能力的話,他們可以將其應用于自己的任務領域。美國防部在人工智能方面最重要的代理人是聯合人工智能中心(JAIC),該中心于2019年2月12日根據行政命令13859的要求啟動,作為國防部人工智能戰略的執行者。有一個組織負責確保人工智能的需求得到滿足是一個有價值的目標,但如果各部門要在2025年之前做好人工智能準備,他們就不可能處理整個國防部的能力發展需求量。各級指揮部需要有一個共同的承諾,以避免因優先事項不一致而錯過機會。就目前的人工智能能力發展進程而言,戰術解決方案是不可用的。

自身的官僚主義阻礙了快速、分散的能力發展。為了確保人工智能驅動的能力,人們必須證明有足夠大的需求需要使用人工智能(如僅用五名分析師對數百萬個數據點進行排序),并通過多層官僚機構提交所謂的 "緊急行動需求",以達到主要司令部的要求。一旦獲得批準,該請求將被轉發到JAIC進行裁決。一旦被裁定并在國防部的其他要求中被優先考慮,可能需要幾個月的時間才能找到一個開發者,并開始解決這個問題。在最好的情況下,這個過程可能會看到從需求提交到開發的6個月周轉期,這是不令人滿意的,如果服務要在2025年之前做好人工智能準備。這不是JAIC的錯,因為他們應該向國防部領導人和國會倡導人工智能,所以各部門有資金從外部尋求人工智能,同時學習如何在人工智能、ML和DL能力發展方面變得靈巧。筆者建議領導們認真考慮賦予機翼必要的預算、培訓要求,并與經批準的開發者名單(由全軍委員會批準)協調,以追求人工智能的努力。這項建議并沒有將JAIC完全從流程和能力發展中移除,因為該組織將繼續承擔正式的領導地位,制定政策并獲取最佳實踐,以便在整個國防部共享。

人工智能革命就在這里。本文確定了人工智能為部隊的每項任務提供的機會的縮影。人工智能、ML和DL為可能的事情打開了大門,并且應該讓ISR分析員以不同的方式思考問題及其解決方案。從基因突變到自動分析再到自主武器,可能性只限于可用的數據--或如何解釋可用數據。美國的對手已經具有威脅性,并且很可能在未來十年內增加。國家安全不僅需要提高對人工智能的認識,還需要開發和整合基于人工智能的武器系統。依靠簽約組織來開發機器算法,在未來是不可持續的。必須根據任務的需要調整任務算法,否則就會在一系列的能力中遭受失敗。

付費5元查看完整內容

摘要

軍事決策在不同的領域--陸地、海洋、空中、太空和網絡--以及不同的組織層面--戰略、作戰、戰術和技術上發揮著關鍵作用。建模和仿真被認為是支持軍事決策的一個重要工具,例如,生成和評估潛在的行動方案。為了成功地應用和接受這些技術,人們需要考慮到整個決策 "系統",包括決策過程和做出決策的指揮官或操作員。

人工智能技術可以以各種方式改善這個決策系統。例如,人工智能技術被用來從(大)數據流中提取觀察結果,自動建立(物理/人類/信息)地形模型,產生對未來事件和行動方案的預測,分析這些預測,向人類決策者解釋結果,并建立人類決策者的用戶模型。

對于所有這些應用,人工智能技術可以在不同的情況下被使用,并且已經開始被使用,因此有不同的要求。在本文中,我們概述了人工智能技術和模擬在決策"系統"中的不同作用,目的是在我們的社區中促進對人工智能的綜合看法,并為用于軍事決策的各種人工智能研發奠定基礎。

1.0 引言

軍事決策有多種形式。它發生在不同的領域--陸地、海洋、空中、太空、網絡--以及不同的組織層次[7]。例如,在戰略層面上,決策是否以及何時在一個特定的作戰區域內開始一項軍事任務。在作戰層面上,聯合部隊指揮官決定為某項行動分配哪些軍事要素,并指定在具體行動中尋求的預期效果。在戰術層面上,例如,海上任務組的反空戰指揮官決定由哪艘護衛艦來應對來襲的威脅。最后,在技術層面上,要決定在什么范圍內使用什么武器來消滅對手。

建模和仿真被認為是支持這些現場決策過程的一個重要工具(例如,見[3]的清單)。它提供了一種理解復雜環境和評估潛在行動方案有效性的手段,而不必使用現場測試。因此,借助于建模和模擬可以更安全、更便宜、更快速,而且可以更容易地測試不同的操作方式。此外,對于戰場上的軍事行動來說,廣泛地試驗軍事行動應該如何進行,甚至可能在道德上不負責任。因為,在指揮官可以決定不繼續按照同樣的戰術行動之前,就已經產生了意想不到的效果。

現代建模和仿真經常得到人工智能(AI)技術的支持。例如,用于仿真單個節點、組織和社會行為模型(見一些背景資料[13][4]),以獲得對對手合理和可能行為的洞察力。在這種行為洞察力的基礎上,可以為許多決策層面的軍事行動設計提供智能分析和決策支持。此外,人工智能技術被用來構建這些模型,與這些模型互動,并迅速分析大量的模擬結果數據。這里的技術進步非常多,例如,使用機器學習來構建更真實的行為模型[11],改善人機協作[5],對大量的模擬數據進行理解[10]。然而,人工智能技術只有在對決策者有用的情況下才能也應該被用于軍事決策。這意味著,只有在決策質量提高或決策過程變得更容易的情況下,才應將人工智能技術(在建模和仿真中)整合起來。

成功應用和接受用于決策支持的模擬仿真--可能建立在人工智能技術之上--取決于與主要軍事決策過程的互動和不斷學習([1])。決策者和分析員應該知道如何提出正確的輸入問題,以便通過建模和仿真來回答。然后,這些問題應該通過建模和仿真研究轉化為正確的輸出答案。因此,在各種互補的人工智能技術的支持下,應該對軍事決策過程和軍事模擬之間的互動有一個廣泛、全面的看法,并服從不同的功能要求。在本文中,我們概述了由人工智能技術支持的軍事仿真在決策"系統"中的不同作用,目的是在我們的社區內促進對人工智能的綜合看法,并為軍事決策的各種人工智能研發奠定基礎。

2.0 基于仿真的軍事決策

如引言所述,決策發生在不同的領域和不同的組織層面。在這里,我們提出了一個決策系統的示意圖,以提供一個關于如何通過仿真來支持決策的一般見解。這一觀點(圖1)來自于對多個決策過程的分析,如聯合定位[5]、作戰計劃[7]、海上反空戰[1],并與著名的OODA環[8]相結合。該觀點中的元素解釋如下。

圖1:由建模和仿真支持的軍事決策周期的系統觀點。

觀察:OODA循環的第一步是觀察,從廣義上講,就是觀察現實世界中正在發展和出現的事件和情況。觀察包括,例如,來自傳感器的(原始)數據,包括我們自己的眼睛和耳朵,以及來自報告、報紙和社會媒體的符號數據。還收集了來自高層指揮和控制實體的指導意見。這些數據由分析員處理,對鏡頭中的個體進行命名,計算某些Twitter標簽的出現次數,驗證某個事件是否真的發生,等等。根據[9],這可以被稱為情境意識的第一級:對當前情況下的元素的感知。

世界模型:在OODA環的觀察步驟中,已經開始了構建世界模型的過程,無論是隱性的還是顯性的。符合軍事決策觀點的世界模型的另一個名稱是共同行動圖。所有相關的概念都在世界模型中得到體現,包括不確定因素和假設。請注意,世界模型可以被仿真,即個體、平臺、團體或社會的行為可以隨著時間的推移而被預測,即使是在用戶的頭腦中隱含完成。

定位:在OODA循環的第二步,分析者使用他的專業知識,對觀察結果進行推理,形成假設,例如對手的意圖。通過這樣做,實現了對真實世界的深入理解[12],這反映在世界模型中(仍然是顯性或隱性的)。在態勢感知方面,這被稱為第2級(對當前形勢的理解)和態勢感知能力第3級(對未來狀態的預測)。在任何時候,推理的結果可能是世界模型結構是不充分的,例如,現實世界的一個方面被認為是不相關的,但最后發現是相關的。因此,世界模型需要被更新。

決定:決策者,可能是與分析員相同的人,將根據對現實世界的理解,考慮如何采取行動的選項。世界模型的預測能力被用來演繹各種情景,讓人了解什么是理想的行動方案,什么不是,或者讓人了解空間和/或時間上的關鍵點,這樣就可以對這些關鍵點給予額外考慮。當然,如果世界模型是隱含的,這都是決策者的精神努力。此外,對于感興趣的現實世界系統的預測行為,可以得出的結論的精確性和/或確定性有很大不同:從精確的路線,到可能的戰略和理論的廣泛指示。

行動:在OODA-環的這一步,行動被執行。這些行動發生在真實世界中,然后一個新的OODA-環開始觀察是否需要重新考慮已經做出的決定。另一個行動可以是向 "較低層次"的決策過程下達命令,例如,讓下屬單位計劃和執行他們所得到的任務。這就是不同組織層次的決策過程的互動方式。還要注意的是,盡管每個組織層面的世界模型都與真實世界相聯系,但這些世界模型的結構(即被認為是相關的)可能是不同的。

從概念上講,在上述的決策過程中引入模擬(實際上首先是建模的巨大努力)是很直接的。在第一步和第二步中,建立了世界相關部分的模型,在以后的時間里,它被用來評估許多不同的情景,分析由此產生的結果,并根據其結論做出決定。正如后面將顯示的那樣,人工智能技術的作用與建模和模擬的使用有很大關系。

雖然從概念上來說,納入仿真模擬和人工智能技術是很簡單的,但為了給行動提供真正的附加值,它需要被嵌入到具體的決策過程中。而每個決策過程都是不同的,有不同的時間限制,不同的行動者,在不同的操作環境中。這將對開發使用的解決方案,包括人工智能技術,提出不同的功能要求。此外,根據具體的作戰決策環境,應用人工智能技術的附加值(或缺乏附加值)將是不同的。在下一節中,我們將對一個具體的案例進行進一步的探索,盡管肯定不是詳盡的努力,以允許對這種系統在這個過程中可能具有的不同角色進行更通用的識別。

3.0 案例研究:聯合目標定位周期

本節提供了一個關于如何利用仿真和人工智能技術來支持作戰層面上的(蓄意)聯合目標定位決策的案例研究。對于每個想法,都有以下描述:被加強的行為者(決策者)和/或產品,人工智能如何提供支持,以及使用這種形式的支持的附加值是什么。請注意,這個案例研究的目的是為了更好地了解人工智能技術應用的廣度,因此,目標不是完全涵蓋所有的可能性,也不是過于詳細。這種類型的案例研究已經確保了可以得出初步的功能要求,人工智能技術和智能建模與仿真應該應用于此。

圖2顯示了北約盟國聯合出版物3.9中的聯合瞄準決策周期,其中強調了五個想法。

圖2--來自北約盟國聯合出版物3.9的聯合目標定位周期,JFC=聯合部隊指揮官,JTCB=聯合瞄準協調委員會,JTL=聯合瞄準清單,TNL=目標

想法1--基于AI的目標系統分析的所有來源分析。第一個想法是支持目標小組的成員在聯合目標定位周期的第二階段參與目標系統分析,進行目標開發。例如,假設從第一階段開始,就打算通過瞄準對手的石油生產來擾亂其資金能力。在第二階段,分析人員將研究石油生產的目標系統,以確定油井、煉油廠、管道、重要的道路,也許還有相關的關鍵人物,等等,基于他們擁有的所有來源(圖像、信號情報、人類情報,等等)。

人工智能技術可以協助人類分析員建立 "目標系統模型",即通過采用模式識別算法來處理大量的所有來源的信息,通過使用推理算法將信息碎片組合成一個結構化和連貫的整體。分析傳入信息的算法可能--經過增量的人工智能驅動的創新--也能夠識別尚未反映在目標系統模型中的新概念,然后可以自動添加到模型中。另一種可能性是創建一個 "虛擬分析師"(見圖3),通過不斷挑戰假設、假說和人類偏見來協助人類分析師,這需要額外的用戶建模和可解釋的AI技術。

圖3:人類和虛擬分析員,一起解釋數據,推理信息和知識,以建立一個目標系統模型。

這個想法的潛在附加值首先體現在完整性上,更多的目標可以呈現給人類分析員--它仍然可以為交叉檢查的目的做最后一步的目標審查。因為所有來源的情報都被整合到目標識別決策中,所以可以得出更具體的目標信息。識別算法經過訓練后,與基于人眼從數據中識別目標時相比,可以更快更及時地進行識別。最后,該算法可以明確地轉向識別不同類型的目標,這些目標可能并不都在人類分析員的經驗或觀察能力范圍內。

想法2--通過算法識別來自目標系統分析的優先目標。第二個想法是支持從一個給定的目標系統分析中識別優先目標。這有助于目標支持小組成員得出一個聯合的優先目標清單,該清單是在聯合目標定位周期的第二階段,即目標開發階段制定的。人工智能技術的支持始于將目標系統分析(如果還沒有的話)轉化為計算機可理解的形式,該形式由功能關系連接的實體組成,并由目標任務的目標支持。然后,在相關的時間范圍內計算直接或間接瞄準不同實體所產生的效用(例如,效果和效果的持續時間)。

然后,最終結果可以由人類分析員檢查,該分析員可能會重新引導算法的某些部分,以確保最終結果選擇的優先目標盡可能地滿足和平衡任務目標。另一種可能性是,分析表明,對目標系統的某些部分還沒有足夠的了解,無法做出某種決定,然后發出新的情報請求,以減少這種不確定性。

在這種情況下,使用人工智能技術的附加價值首先體現在通過完整地確定優先事項,包括最大限度地實現任務目標,同時最大限度地減少負面問題,從而更好更快地確定優先次序。這種全面的分析可能會導致原始的目標選擇,在這種情況下,會發現反直覺但非常有效的目標。目標優先級的可追溯性增加了,因為目標選擇問題的算法規范以及積極和消極的相關功能迫使決策者在激發他們的偏好時完全明確。

想法3--能力和優先目標的自動映射。與目標開發(第二階段)密切相關的是第三階段的能力分析。第三個想法是協助,仍然支持目標支持小組的成員,找到最適當的(致命和非致命)能力的最佳同步組合,可以應用于產生所需的物理和心理效果。使用模擬和人工智能技術來自動生成和播放高水平和低水平的行動方案,可以獲得對計劃的優勢、機會、弱點和威脅的深刻理解。當然,只有在與人類分析員和決策者密切合作的情況下,建立這樣的理解才是有用的,這就需要有人類意識的 "虛擬分析員 "技術。

想法4--計算機輔助的穩健和適應性部隊規劃和分配。在聯合定位的第四階段,能力分析的結果被整合到進一步的行動考慮中,推動聯合部隊指揮官對目標的最終批準。仿真和人工智能優化技術可用于尋找稀缺資源對目標或其他任務的最佳分配。什么被認為是 "最好的 "可以是不同的,例如,爭取最大的效果、安全、穩健、靈活,或這些和更多因素的任何組合。這可能會提供原始的規劃和分配方案,從人類分析者的角度來看,這些方案部分是反直覺的,但卻富有成效。智能優化算法可以幫助確定時間和/或空間上值得監測的關鍵點。而且,如果可以實時跟蹤進展,在事件或機會實際發生之前就可以立即生成重新分配方案,在時間緊迫的情況下減少決策時間。

想法5--自動評估軍事行動績效措施。在聯合定位的最后階段,收集和分析數據和信息,以確定計劃的行動在多大程度上得到執行(績效的衡量),以及達到預期的效果(效果的衡量)。因為這種類型的分析與其他階段的分析基本相似(即需要觀察和理解),所以在這里采用的模擬和人工智能技術可以被重復使用。例如,"目標系統模型"可以用來事先確定哪些措施或措施的組合最能說明性能和/或成功,也許還要考慮到其他因素,如效果的可測量性和延遲性。這些見解可用于指導例如戰斗損失評估工作。算法可以自動產生多種假設,當數據/信息可用時,"虛擬分析師"可以協助對這些假設和信息進行推理,幫助人類分析師以結構化的方式更好地解釋復雜的情況。

4.0 討論:人工智能在軍事決策中的作用

在本節中,我們將討論人工智能技術在軍事決策中可以發揮的作用,并將這些作用與前面介紹的軍事決策系統聯系起來。這些作用是由上面的案例研究綜合而成的。不同的作用是沿著兩個層次結構的,從上到下:在 "過程"層面,不同但連貫的步驟/階段被執行;在 "個體"層面,人類(或團隊)負責執行決策過程的特定步驟。

在整個決策過程的層面上,有多個步驟可以區分。在前面介紹的決策系統觀點中,這些步驟是觀察、定位、決定和行動。在聯合定位案例研究中,這些對應于六個階段,由不同的人在不同的時間執行。在這個層面上,我們為人工智能技術定義了四個功能角色,以支持決策過程。

  • 感知:這個角色中的人工智能技術,主要以模式識別的形式,幫助處理大量的數據,如在圖像中尋找人,檢測數據流中的異常情況等。

  • 態勢理解:這個角色的功能是實現對當前或假設的作戰環境的理解[12],從而描述所有相關實體、它們之間的關系以及不可觀察的屬性,如它們的野心和目標。例如,對關于最近敵對活動的現有信息進行推理,結合關于他們的理論的一般知識,可以用來產生關于他們最可能的意圖的假設。

  • 計劃生成:在這個角色中,人工智能技術,例如搜索和優化,被用來生成旨在達到(或避免)某種目標情況的計劃、策略和行動方案。處理元標準,如計劃的穩健性或情況的實用性也是這個作用的一部分。顯然,在許多情況下,不確定性是行動環境所固有的,因此不能被忽視。盡管如此,對當前形勢的理解越好,預測能力就越強。

  • 學習:扮演這一角色的人工智能技術被用來更新有關作戰環境的知識。例如,在某個時間點,人們可能會發現一個被認為是正確的關于敵人理論的假設不再有效了。為了能夠保持正確的理解,這種新知識應該反映在所有其他決策步驟中。

在單個節點層面上,決策過程的單一步驟被執行,通常由一個或一組人類分析員和/或決策者負責。無論這一步需要什么,人工智能技術都可以在不同的合作角色中被使用,以支持人類。

  • 專家系統支持:在這個角色中,支持的形式就像一個經典的專家系統,以知識和優化結果的形式向人類決策者或分析員提供建議。重要的考慮因素是,例如,如何以人類能夠接受的方式向其提供建議。對可解釋人工智能的研究可能是一個方向。

  • 虛擬團隊成員:在這個角色中,人工智能技術被用來在人類和支持系統之間創造一種更平等的互動關系,積極為一個共同的目標工作。例如,虛擬團隊成員可以通過提出問題使假設明確化或挑戰偏見來幫助做出決定的(認知)過程。人類-人工智能的研究可能是一個追求的方向。

  • 自主決策:決策過程中的其他步驟的互動,專家系統和虛擬團隊成員支持的考慮同樣有效。例如,在其他決策中的人類需要能夠推斷出一個自主系統。

圖4顯示了在軍事決策系統視圖中繪制的人工智能的七個角色。當使用模擬和人工智能來支持決策過程時,應該始終考慮這些不同的角色是如何互動的,無論是在過程層面還是在個人層面。例如,在聯合目標定位的過程層面上,第二階段包括定位(目標系統分析)和決定(為達到預期效果而瞄準什么)。第三階段也包括定位(自身能力)和決定(如何實現預期效果)。這些階段共享相同的世界模型,在這個過程中引入人工智能支持將推動這些步驟的合并,這不是不可想象的。在個體層面上,例如再次考慮第2階段,分析員可以得到綜合態勢理解、規劃生成和學習技術的支持,以及虛擬團隊成員和專家系統支持技術的任何組合。

圖4:由建模和仿真支持的軍事決策周期的系統視圖,其中人工智能技術的功能(黃色)和協作(綠色)作用被描繪出來。

5.0 結論和進一步研究

在本文的第一部分,我們介紹了軍事決策的系統觀點,主要基于OODA循環,其中我們介紹了世界模型,作為向整個決策周期提供建模和仿真支持的核心手段。接下來,從我們的聯合目標定位案例研究中,我們推斷出人工智能可以為軍事決策做出貢獻的七個功能性和協作性角色。這些角色對應于決策步驟,或者對應于如何向負責該過程步驟的人提供支持。最后,我們將這些人工智能角色整合到決策系統視圖中。

本文的目標是為我們社區內人工智能的綜合觀點做出貢獻,并為軍事決策的人工智能各種研發奠定基礎。在開發支持軍事決策的模擬和人工智能時,我們建議同時考慮過程層面和單個節點層面。在過程層面上,通過使用建模和仿真可以獲得好處。在單個節點層面上,為人類分析員和決策者提供實際支持,人工智能技術可以通過不同的角色組合對此作出貢獻。鑒于決策過程的各個步驟都是不同的,并且提出了不同的要求,履行這些不同角色的人工智能技術需要作為一個整體來開發。

我們相信,隨著對這一主題的更多研究,軍事決策的速度和質量都可以得到改善。然而,非常重要的是,要持續關注特定的未來人工智能應用的附加值,以及研究這些應用可能對,例如,負責該過程的人的所需技能,甚至該過程本身的影響。最后需要的是一個系統,它的存在是因為它可以建立,而不是有人幫助。對于這一點,應該更普遍地回答如何限定然后量化應用人工智能進行具體軍事決策應用的附加價值的問題。這樣的見解反過來又會成為關于人工智能用于軍事決策的集體技術路線圖的寶貴基礎。

6.0 參考文獻

[1] Bloemen, A., Kerbusch, P., van der Wiel, W., Coalition Force Engagement Coordination, TNO Report TNO-2013-R12117, 2015.

[2] Connable B, Perry W, Doll A, et al. Modeling, Simulation, and Operations Analysis in Afghanistan and Iraq. Santa Monica, CA: RAND, 2014.

[3] Davis P., Kulick J., Egner M. Implications of Modern Decision Science for Military Decision-Support Systems. Santa Monica, CA: RAND, 2005.

[4] Kunc, M., Malpass, J., White, L.(2016). Behavioral Operational Research, Theory, Methodology and Practice. Palgrave Macmillan, London.

[5] Langley, P., Meadows, B., Sridharan, M., Choi, D. (2017). Explainable Agency for Intelligent Autonomous Systems. Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications (IAAI-17).

[6] NATO Allied Joint Doctrine For Joint Targeting AJP 3.9(B), 2015.

[7] NATO Allied Command Operations. Comprehensive Operations Planning Directive Interim V2.0.

[8] “OODA loop.” Wikipedia, The Free Encyclopedia. 10 Mar. 2018.//en.wikipedia.org/wiki/OODA_loop

[9] “Situation Awareness.” Wikipedia, The Free Encyclopedia. 17 Mar. 2018.

[10] Smit, S., Veldhuis, G., Ferdinandus,G., et al. KaV Advanced Visual Analytics, TNO Report DHWELSS-, 2016.

[11] Toubman, A., Poppinga, G., Roessingh, J. (2015). Modeling CGF Behaviour with Machine Learning Techniques: Requirements and Future Directions. Proceedings of Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015.

[12] “Understanding.” Wikipedia, The Free Encyclopedia. 18 Apr. 2018.

[13] Zacharias, G., MacMillan, J., van Hemel, S. (2008). Behavioral modeling and simulation: From individuals to societies. National Research Council, National Academies Press.

付費5元查看完整內容

斯考克羅夫特戰略與安全中心致力于制定可持續的、無黨派的戰略,以應對美國及其盟友和伙伴面臨的最重要的安全挑戰。該中心支持美國在與盟國、伙伴的合作中發揮領導作用,以及對培養下一代領導人提供指導。

執行摘要

在過去的幾年里,世界各地的軍隊對發展人工智能(AI)的興趣和投資有所增加,以支持一系列多樣化的國防和國家安全目標。然而,對于什么是人工智能,它如何影響美國和中國之間的戰略競爭,以及如何為這個部署軍事人工智能的新時代優化國防工業基礎,仍然缺乏普遍的理解。現在已經到了在人工智能方面見仁見智的時候了,在政策界和技術界之間建立對現代人工智能的共同理解,并在國防部(DoD)和其工業伙伴之間統一觀點和優先事項。因此,本文討論了以下核心問題。

(1)什么是人工智能,為什么國家安全政策制定者應該關心?

人工智能的能力有可能為美國國家安全和國防帶來改變游戲規則的優勢,包括

  • 大大加快和改善決策。
  • 加強軍事準備和作戰能力。
  • 提高人類的認知和身體能力。
  • 設計、制造和維持軍事系統的新方法。
  • 具有能打破微妙的軍事平衡的新能力。
  • 創造和檢測戰略網絡攻擊、虛假信息運動和影響作戰的能力。

對人工智能作為威懾和贏得未來戰斗所必需的關鍵能力,在美國防部內部得到了重視,美國防部在過去五年里對人工智能進行了顯著的投資。但是,五角大樓以外的政策制定者,以及公眾和正在開發人工智能技術的公司,都需要更好地了解當今人工智能的能力和局限性,并清楚地認識到人工智能對國家安全的積極影響和潛在的破壞性影響。

(2)為什么人工智能對戰略競爭至關重要?

五角大樓對人工智能的興趣也必須從與中國--以及在較小程度上與俄羅斯--的戰略競爭加劇的角度來看待,人們越來越理解在人工智能和相關新興技術方面的落后可能會損害美國軍隊自冷戰結束以來所保持的戰略、技術和行動優勢。一些國防領導人甚至認為,美國已經在軍事技術競爭中輸給了中國。

雖然本文不贊同這種宿命論的觀點,但本文認為軍事人工智能競爭的賭注很大,而且時間很短。

(3)美國防部采用人工智能的障礙是什么?

五角大樓臭名昭著的官僚主義、陳舊的采購和合同制度以及規避風險的組織文化,繼續抑制著美國防部引進外部創新和更快地走向廣泛的人工智能整合和采用的能力。解決這種系統性問題是一個很高的要求。但是,為促進美國防部與商業技術部門和創新初創企業的接觸,已經在進行重要的變革,而且似乎有一種共同的緊迫感,即鞏固這些公私伙伴關系,以確保美國持續的技術和軍事優勢。然而,在統一美國防部及其行業伙伴對人工智能發展最具影響力領域的看法,以及闡明和實施共同的技術標準和測試機制以實現可信賴和負責任的人工智能方面,仍有許多工作要做。

主要收獲和建議

國防部必須迅速行動起來,從對人工智能重要性的廣泛認可過渡到創建路徑、流程、實踐和原則,以加速采用人工智能技術所帶來的能力。如果沒有有意的、協調的和立即的行動,美國有可能在利用主導未來動能和非動能戰場的制勝技術方面落后于競爭對手。本報告為美國防部確定了三個行動方案,這些方案可以幫助確保美國軍隊保持其在人工智能領域的全球領先地位,促進更迅速地采用人工智能所需的內部變革,并利用充滿活力和多樣化的美國創新生態系統,包括

  • 優先考慮安全、可靠、可信和負責任的人工智能開發和部署
  • 調整人工智能發展的關鍵優先事項,加強美國防部和行業合作伙伴之間的協調,以幫助縮小人工智能能力的差距;以及
  • 促進領先的國防技術公司和非傳統供應商之間的協調,以加快美國防部人工智能的采用

本報告是在美國防部采用人工智能努力過程中和全球地緣政治的未來軌跡方面既合適又充滿不確定性的時候發表的。正在進行的烏克蘭沖突使限制獨裁者控制領土、人口、標準和言論的重要性變得非常明顯,而致力于維護長期國際行為規范的聯盟可以在這一努力中發揮作用。因此,作者敦促美國防部在政府層面,并在可能的情況下在工業層面與美國的盟友和可信賴的伙伴進行接觸和整合,以更好地實施本文的三項主要建議。

1 簡介

人工智能為國防政策制定者提供了一個重要的機會。人工智能處理和融合信息的能力,以及將數據提煉為增強決策的能力,可以在一個混亂的、有爭議的環境中撥開 "戰爭的迷霧",在這個環境中,速度是王道。人工智能還可以釋放出新型可損耗和一次性無人系統的可能性,從而增強威懾力。例如,它可以幫助保障美國軍人的生命,為指導沖突地區自主補給卡車的導航軟件提供動力。雖然人類仍然負責對目標做出最終決定,但人工智能算法在幫助情報專業人員識別和追蹤惡意行為者方面正日益發揮作用,目的是 "縮短殺戮鏈,加快決策速度"。

由于美國所處的更廣泛的地緣戰略背景,特別是與中國的戰略競爭,人工智能的發展和整合也勢在必行。中國人民解放軍(PLA)在人工智能方面的預算似乎與美國軍隊相當,而且解放軍正在為同樣廣泛的應用和能力開發人工智能技術,包括訓練和模擬、蜂群自主系統和信息操作,以及其他許多方面,所有這些都可能取代美國的軍事技術優勢。

正如美國國防部長勞埃德-奧斯汀在2021年7月指出的那樣,"中國的領導人已經明確表示,他們打算在2030年之前在人工智能方面成為全球主導。北京已經談及將人工智能用于一系列任務,從監視到網絡攻擊到自主武器"。美國不能落后于中國或其他競爭對手。

為了加快人工智能的采用,五角大樓必須面對它的弊端:一個孤立的官僚機構,它阻礙了有效的數據管理努力,并阻礙了大規模利用美國防部數據所需的技術基礎設施;陳舊的采購和合同流程,抑制了國防部引進外部創新和將成功的人工智能技術原型過渡到生產和部署;以及一種規避風險的文化,與已知的促進創新的開放、實驗和容忍失敗的類型不一致。

目前正在進行一些努力來解決其中的一些問題。直接向美國防部副部長報告的首席數據和人工智能官(CDAO)角色最近被宣布,以合并首席數據官辦公室、聯合人工智能中心(JAIC)和國防數字服務(DDS)。這一重組將美國防部的數據和人工智能工作置于一個屋檐下,以消除重疊的權力,原來的這種權力重疊性使得人工智能項目的規劃和執行變得困難。擴大使用替代性收購方法,像國防創新單位(DIU)和空軍的AFWERX正在彌合與商業技術部門的差距,特別是初創企業和非傳統供應商。盡管如此,一些技術領導人認為這些努力還不夠,警告說 "時間不多了"。

隨著美國國防部轉向大規模采用人工智能,本報告試圖提供有關現代人工智能未解決問題的見解,總結中國、俄羅斯在軍事人工智能發展方面的關鍵進展,并強調整個美國防部一些最引人注目的人工智能使用案例。報告還簡要評估了美國防部與其行業伙伴之間的不協調,這些不協調繼續阻礙五角大樓獲得美國軍隊所需的改變游戲規則的技術,以阻止對手的侵略并主導未來的戰場。

然而,競爭的緊迫性決不能掩蓋對指導美國軍隊進入人工智能時代的道德準則。因此,報告重申,有必要將美國防部的人工智能道德準則有效地轉化為評估可信度的共同技術標準和評估指標,并加強與國防部的行業合作伙伴--特別是初創企業和非傳統供應商在這些關鍵問題上的合作和協調。

在本報告的最后,為政策制定者和整個國家安全生態系統的其他人工智能利益相關者提出了一些考慮。具體而言,敦促美國防部優先考慮安全、可靠、可信和負責任的人工智能開發和部署,調整國防部和行業之間的人工智能發展的關鍵優先事項,以幫助縮小美國防部的人工智能能力差距,并促進領先的國防技術公司和非傳統供應商之間的協調,以加快國防部的人工智能采用進程。

2 人工智能創新和應用中的軍事競爭

推動美國防部人工智能開發和采用工作的緊迫性在很大程度上源于確保美國及其盟國在軍事技術競爭中超過中國,這種競爭已經主導了兩國之間的關系。俄羅斯的技術能力遠沒有那么發達,但其侵略行為破壞了全球安全,并威脅到美國和北約的利益。

中國

中國已將對人工智能的投資優先用于國防和國家安全,作為其努力成為 "世界級軍隊"的一部分,并在未來的 "智能化"戰爭中獲得優勢--人工智能(與其他新興技術一起)通過 "網絡化、智能化和自主系統和設備 "更完全地融入軍事系統和行動。

雖然中國人工智能相關活動的全部范圍并不廣為人知,但美國安全與新興技術中心(CSET)在2021年10月對343份與人工智能相關的中國軍事合同的審查估計,解放軍 "每年在人工智能相關的系統和設備上花費超過16億美元"。美國國家人工智能安全委員會(NSCAI)的最終報告評估說,"中國的計劃、資源和進展應該引起所有美國人的關注。它在人工智能的許多應用領域處于全球同等水平,而在一些應用領域是人工智能的領導者"。

CSET的審查和其他開源評估顯示,中國的人工智能發展的重點領域,就像美國的一樣廣泛,包括:

  • 智能和自動駕駛汽車,特別關注蜂群技術。
  • 情報、監視和偵查(ISR)。
  • 預測性維護和后勤。
  • 信息、網絡和電子戰。
  • 模擬和訓練(包括兵棋推演)。
  • 指揮和控制(C2);以及
  • 自動目標識別。

這些領域中的每一個進展都對美國在與中國的軍事技術競爭中保持同步的能力構成了挑戰。然而,值得研究的是,中國在兩個領域的進步能力可能對軍事平衡產生特別有力的影響

(1)整合

首先,人工智能可以通過人為地加強軍事整合和跨域作戰,幫助解放軍彌補作戰準備方面的差距。許多觀察家指出,解放軍缺乏沖突中的作戰經驗是一個關鍵的弱點。盡管從技術角度來看,中國不斷推進的軍事現代化令人印象深刻,但在過去二十年里,解放軍的人員都沒有像美國軍隊那樣在高端沖突中接受過火力考驗。解放軍繼續努力從組織和理論的角度提高其"聯合性",這也是剛剛起步,沒有經過測試。

使用人工智能來提高模擬和兵棋推演的質量、保真度和復雜性,是解放軍糾正這一關切領域的一種方式。新美國安全中心2019年的一份報告指出,"對中國軍事戰略家來說,從AlphaGo的勝利中學到的教訓之一是,人工智能可以在一場可以比作兵棋推演的游戲中創造出優于人類玩家的戰術和策略。"這可以更艱巨地考驗解放軍的決策者,改善指揮決策。事實上,CSET報告發現,在所調查的343份合同中,有百分之六是在模擬和訓練中使用人工智能,包括使用人工智能系統對臺灣突發事件進行戰爭演練。

圖:在美國國防部高級研究計劃局(DAPRA)的AlphaDogfight試驗中,一名作戰的F-16飛行員在虛擬現實模擬器中與Heron系統公司開發的冠軍F-16人工智能代理進行飛行。Heron人工智能代理在連續五場斗狗比賽中擊敗了人類飛行員,結束了試驗。資料來源:DARPA, //www.darpa.mil/news-events/2020-08-26

注重人工智能整合以減少經驗中的感知漏洞也適用于作戰和戰術訓練。2021年7月,中國出版物《環球時報》報道說,解放軍空軍(PLAAF)已經開始在飛行員的空戰訓練中部署人工智能作為模擬對手,以 "磨練他們的決策和戰斗技能,對抗快速計算的計算機"。

除了虛擬模擬,中國還旨在利用人工智能來支持飛行員在真實世界飛機上的訓練。在2020年11月播出的中國中央電視臺(CCTV)節目中,中國L-15教練機的總設計師張弘指出,訓練飛機上的人工智能可以 "識別每個飛行員在飛行中的不同習慣。通過管理它們,我們將讓飛行員更安全地成長,在未來獲得更多的戰斗能力"。

值得注意的是,解放軍空軍2021年7月的人工智能與人類的斗狗類似于美國國防部高級研究計劃局(DARPA)2020年9月的AlphaDogFight挑戰賽,在一系列五次模擬斗狗中,一個人工智能代理擊敗了人類飛行員。 同樣,美國在2021年9月宣布與訓練和模擬公司Red 6簽訂合同,將該公司的機載戰術增強現實系統(ATARS)--該系統允許飛行員駕駛真實世界的飛機,使用增強現實耳機與人工智能生成的虛擬飛機進行訓練--整合到T-38 "塔隆"訓練器中,并計劃最終在第四代飛機上安裝該系統。由于中國軍隊正在利用人工智能來提高戰備水平,美國防部不能落后。

(2)自主性

中國人工智能發展的第二個重點領域是自主系統,特別是蜂群技術,其中幾個系統將獨立運行或相互配合,以混淆和壓倒對手的防衛系統。中國對發展蜂群技術的興趣和能力已經得到了很好的證明,包括2017年6月創紀錄地發射了118架小型無人機組成的互聯蜂群。

據報道,2020年9月,中國電子信息研究院(CAEIT)從一輛改裝的東風猛士輕型戰術車上發射了200枚固定翼CH901徘徊彈藥群。2022年2月在阿布扎比舉行的2022年無人駕駛展的調查顯示,不僅中國的參展陣容強大--中國航空技術進出口總公司(CATIC)和中國北方工業公司(NORINCO)都有大型展館,而且還將重點放在 "協作"行動和智能蜂群。

圖:2月在阿布扎比舉行的UMEX 2022展會上展示的協作式蜂群無人機的一個例子。

對蜂群的興趣并不限于無人駕駛飛行器(UAVs)。據《環球時報》報道,中國也在發展部署自主無機組人員水面飛行器(USVs)群的能力,以"攔截、圍攻和驅逐入侵目標"。 2021年11月,中國公司云洲科技--它在2018年進行了一個由56個USV組成的蜂群的演示--發布了一段視頻,顯示六個USV進行了 "合作對抗",作為將一艘有船員的船只從中國水域移走的一部分。不難想象,這種合作對抗可以如何針對美國或盟國的海軍船只,甚至商業船只進行部署,以發展或維持海上控制。這種能力在灰色地帶的突發事件中尤為強大,在這種情況下,升級的擔憂可能會限制反應的選擇。

俄羅斯

在人工智能的投資和能力方面,俄羅斯落后于美國和中國。因烏克蘭戰爭而實施的制裁也可能給俄羅斯的科技部門帶來巨大損失。盡管如此,美國國家決策者不應低估俄羅斯以不對稱的方式使用人工智能技術來破壞美國和北約利益的潛力。俄羅斯國防部有許多自主性和人工智能相關的項目,處于不同的開發和實驗階段,涉及軍事機器人、無人系統、蜂群技術、預警和防空系統、ISR、C2、后勤、電子戰和信息操作。

俄羅斯軍事戰略家認為,在未來的戰場上,更大的自主權和人工智能具有巨大的潛力,可以加快信息處理,增強決策,提高態勢感知,并保障俄羅斯軍事人員的生命安全。自主和人工智能系統的發展和使用也在俄羅斯軍事理論的更廣泛背景下進行討論。其理論重點是利用這些技術來擾亂和破壞對手的指揮和控制系統以及通信能力,并利用非軍事手段在戰爭初期建立信息優勢,從俄羅斯的角度來看,這包括與美國和北約等對手的非軍事沖突時期。

俄羅斯人工智能的發展軌跡是不確定的。但是,由于持續的制裁,俄羅斯很可能會在微電子方面越來越依賴中國,并在與美國的技術競爭中進一步落后。

3 美國在人工智能方面的軍事進展概述

五角大樓對人工智能的興趣和緊迫性既是由于技術發展的速度加快,也是由于它所能帶來的變革性能力越來越強。事實上,人工智能正準備從根本上改變軍隊思考、準備、執行和維持行動的方式。根據大西洋理事會以前的報告大綱,"五次革命 "框架對人工智能在五個廣泛的能力領域的潛在影響進行了分類,下面的圖3說明了人工智能可以通過不同的方式增強人類的認知和身體能力,融合網絡和系統以獲得最佳效率和性能,并在信息空間中迎來一個網絡沖突和混亂的新時代,以及其他影響。

圖3:跨越未來軍事能力發展的五個廣泛目標的人工智能優先發展項目概述。

  • 邁向完美的態勢感知:感知、處理和認知

  • 即將到來的設計時代:制造、供應鏈和物流

  • 超能力平臺和人員:人機性能增強

  • 連接性、致命性和靈活性:通信、導航、目標定位和打擊

  • 監控、操縱和武器化:網絡和信息作戰

美國防部目前有六百多項與人工智能相關的工作正在進行中,其愿景是將人工智能融入國防部任務的每一個要素--從作戰行動到支持和維持功能,再到支撐龐大的國防部企業的商業運作和流程。美國政府問責局(GAO)2022年2月的一份報告發現,國防部正在追求人工智能的作戰能力,主要集中在"(1)通過情報和監視分析識別目標,(2)向戰場上的作戰人員提供建議(如在哪里移動部隊或哪種武器最適合應對威脅),以及(3)增加無人駕駛系統的自主性。 "國防部的大多數人工智能能力,特別是與作戰有關的努力,仍處于開發階段,尚未與具體的系統接軌或整合。而且,盡管在實驗中取得了明顯的進展,并在作戰行動中部署人工智能能力方面取得了一些經驗,但在廣泛采用方面仍然存在著重大挑戰。

2021年9月,空軍第一任首席軟件官尼古拉-沙伊蘭辭職,以抗議官僚主義和文化挑戰,這些挑戰減緩了技術的采用,阻礙了美國防部以足夠快的速度與中國有效競爭。在沙伊蘭看來,20年后,美國及其盟友 "將沒有機會在一個中國擁有巨大人口優勢的世界中競爭。"后來,他補充說,中國基本上已經贏了,他說,"現在,這已經是一筆交易了。"

沙伊蘭關于美國與中國進行無用競爭的評估肯定不是整個美國防部都認同的,但它反映了許多人認為在該部門規避風險和深思熟慮的文化中缺乏緊迫感。

JAIC的負責人Michael Groen中將同意,"在國防部內部,必須發生文化變革。"然而,他也吹捧了美國的創新能力,并強調建立了一個人工智能加速器,并最終確定了一個聯合共同基金會(JCF),用于人工智能的開發、測試和在國防部各實體之間共享人工智能工具。"支持云的JCF是向前邁出的重要一步,將允許基于共同標準和架構的人工智能開發。這應有助于鼓勵各軍種和國防部各部門之間的共享,并且根據JAIC的說法,確保 "國防部一個人工智能倡議的進展將在整個國防部企業中形成勢頭。"

雖然取得的進展值得贊揚,但仍然存在障礙,這些障礙延緩了人工智能能力的采用,而這種能力對于在不久的將來遏制威脅,以及應對中國在這十年及以后的競爭挑戰至關重要。

下面的三個案例研究提供了美國防部人工智能工作中出現的技術、官僚主義和采用方面的進步的例子。這些案例還強調了阻礙美國在與中國以及在較小程度上與俄羅斯的軍事技術競爭加劇的情況下,充分運用其國家創新生態系統的能力的持久性問題。

圖4:聯合人工智能中心(JAIC)的人工智能采用階段。

用例1:JADC2的不可逆轉勢頭、遠大目標和集成挑戰

五角大樓最重要的現代化優先事項之一是聯合全域指揮與控制(JADC2)計劃,該計劃被描述為 "將所有軍種的傳感器連接到一個單一網絡的概念。"根據美國國會研究服務部的說法,"JADC2打算通過從眾多傳感器收集數據,使用人工智能算法處理數據以識別目標,然后推薦最佳武器(包括動能和非動能武器)來對付目標,使指揮官能夠做出更好的決策。 "如果成功的話,JADC2有可能消除各軍種C2網絡之間的孤島,這些孤島以前減緩了整個部隊的相關信息傳輸。因此,產生更全面的態勢感知,指揮官可以據此做出更好和更快的決定。

2021年12月,有報道稱JADC2跨職能小組(CTF)將成立一個 "AI for C2 "工作組,該工作組將研究如何利用負責任的AI來加強和加速指揮和控制,這加強了負責任的AI對該項目的核心作用。

2022年3月,美國防部發布了其JADC2實施計劃的非保密版本,用參謀長聯席會議主席馬克-米利將軍的話說,此舉代表了實施JADC2 "不可逆轉的勢頭"。

然而,觀察家們強調,在按照保持(或恢復)感知、處理和認知方面的優勢所需的緊迫時間表實施JADC2方面,有幾個持續的挑戰。特別是相對于中國而言。

圖5. JADC2的邏輯圖反映了與國防部JADC2實施計劃相關的復雜性和雄心。資料來源:美國國防部。

數據安全和網絡安全、數據管理和共享問題、與盟友的互操作性以及與軍方網絡整合相關的問題,都被認為是認識到JADC2方法的宏偉前景所面臨的挑戰。一些人還強調,這種包羅萬象的雄心也是一種挑戰。哈德遜研究所的布萊恩-克拉克和丹-帕特認為,"當今威脅的緊迫性和新技術帶來的機遇要求五角大樓領導人將JADC2的重點從美國軍事部門的需求轉向作戰人員的需求。

可以肯定的是,在人工智能開發和整合項目中,不一定要避免宏偉的野心。然而,采用的途徑將需要在難以實現的、官僚主義的、耗時的和昂貴的目標與開發能夠在美國部隊面臨的更直接的威脅時限內提供能力和優勢的系統之間取得平衡。

用例2:脆弱的人工智能和將人工智能納入目標的道德和安全挑戰

2021年9月,空軍部長弗蘭克-肯德爾宣布,空軍已經 "首次將人工智能算法部署到實際作戰的殺傷鏈中,這表明部署人工智能的時代確實已經到來。"根據肯德爾的說法,將人工智能納入目標定位過程的目的是 "大大減少人工識別目標的人力密集型任務--縮短殺傷鏈并加快決策速度。" 成功使用人工智能支持目標定位是人工智能發展的一個里程碑,盡管在更全面地采用人工智能的作用方面仍然存在道德、安全和技術挑戰。

例如,2021年美國防部的一項測試強調了人工智能的脆弱性問題。根據Defense One的報道,測試中使用的人工智能目標定位在人工智能不得不從不同角度破譯數據的環境中只有大約25%的時間是準確的,盡管它認為它有90%的時間是準確的,這表明缺乏 "適應一套狹窄的假設之外條件"的能力。"這些結果說明了今天的人工智能技術在安全關鍵環境中的局限性,并加強了在一系列條件下對人工智能進行積極和廣泛的現實世界和數字世界測試和評估的必要性。

人工智能目標定位的道德和安全也可能構成對進一步采用的挑戰,特別是隨著對人工智能算法的信心增加。空軍的行動涉及自動目標識別的輔助作用,協助 "情報專家"--即人類決策者。當然,國防部有一個嚴格的目標定位程序,人工智能的目標定位算法將是其中的一部分,再往前想,自主系統將必須通過這一程序。然而,即使它們是這一程序的一部分,并被設計用來支持人類的決定,高錯誤率加上對人工智能輸出的高度信任,有可能導致不理想或嚴重的結果。

用例3:人工智能在信息領域應用的局限性

與中國和俄羅斯日益激烈的競爭正在信息和網絡領域上演,對美國安全以及美國經濟、社會和政體具有真實、持久和破壞性的影響。

對于網絡和信息行動來說,人工智能技術和技能是未來進攻和防御行動的核心,突出了人工智能在信息領域的危險性和前景。

人們對智能機器人、合成媒體的威脅越來越關注,例如描述沒有發生過的事件或聲明的逼真視頻或音頻制品,以及能夠創造出令人信服的散文和文本的大型語言模型。雖然虛假信息是一個需要社會和整個政府應對的挑戰,但國防部無疑將在管理和應對這一威脅方面發揮關鍵作用--由于其在美國政治和社會中的突出地位,其職能作用的性質,以及其持續活動的影響。

人工智能在五角大樓和其他美國政府檢測機器人和合成媒體的努力中處于領先地位。例如,DARPA的MediaForensics(MediFor)項目正在使用人工智能算法來 "自動量化圖像或視頻的完整性"。

然而,鑒于合成媒體通過社交媒體的傳播速度,人們對這種檢測的速度表示擔憂。正如聯合參謀部首席信息官丹尼斯-克拉爾中將所觀察到的,"機器和人工智能贏得其中一些信息運動的速度改變了我們的游戲......數字化轉型、預測分析、ML、人工智能,它們正在改變游戲......如果我們不匹配這種速度,我們將使其達到正確的答案,而這種正確的答案將完全不相關。"

4 加快美國防部AI的應用

正如上面的討論所示,美國防部在成功部署人工智能信息管理和決策支持工具的基礎上,有一系列廣泛的人工智能相關舉措,處于不同的發展和實驗階段。隨著重點轉向整合和擴展,加快這些采用工作對于保持美國在與中國的戰略競爭中的優勢以及有效遏制俄羅斯至關重要。

在這一節中,本文強調了美國防部與其工業伙伴之間關系的一些不協調,這些不協調可能會導致失去創新和有影響力的人工智能項目的機會,擴大使用替代采購方法的積極影響,以及日益緊迫的調整過程和時間表,以確保美國軍隊能夠獲得未來戰爭的高水準技術能力。此外,本節還討論了國防部實施道德人工智能原則的方法,以及與可信和負責任系統的標準和測試有關的問題。

4.1 美國防部和工業界的伙伴關系:統一觀點、流程和時間安排

盡管國防部已經發布了一些高級別文件,概述了人工智能發展和部署的優先領域,但市場滿足,甚至理解這些需求的能力還遠遠不夠。最近,IBM對來自全球國防組織的250名技術領導人進行了調查,揭示了國防技術領導人和國防部如何看待人工智能對組織和任務的價值的一些重要差異。例如,只有約三分之一的受訪技術領導人表示,他們認為人工智能對軍事后勤、醫療和健康服務以及信息操作和深層假想有重大的潛在價值。當被問及人工智能支持的解決方案對商業和其他非戰斗應用的潛在價值時,不到三分之一的人提到了維護、采購和人力資源。

這些觀點與國防部在人工智能方面的目標有些不一致。例如,包括設備維護和采購在內的軍事后勤和維持職能是國防部實施人工智能的首要任務之一。Leidos與退伍軍人事務部的合作也說明了人工智能在醫療和健康服務方面的潛力。最后,隨著人工智能在虛假信息運動中的使用已經開始,正如上一節的討論所強調的那樣,迫切需要開發技術措施和人工智能支持的工具,以檢測和反擊人工智能驅動的信息行動。

國防部及其行業伙伴基于各自的問題集和任務,有不同的優先事項和激勵措施。但是,對人工智能發展的有價值和關鍵領域的不同觀點可能會導致失去有影響力的人工智能項目的機會。也就是說,即使五角大樓和它的工業伙伴在人工智能方面意見一致,有效的合作也常常被一個笨拙的官僚機構所阻撓,這個機構常常被傳統的流程、結構和文化束縛。

國防部的預算規劃、采購、收購和簽約流程,總的來說,不是為購買軟件而設計的。這些 這些體制上的障礙,再加上復雜而冗長的軟件開發和合規條例,對小型初創企業和非傳統供應商來說尤其困難,因為他們缺乏資源、人員和事先的知識,無法像國防部的主要部門那樣駕馭這個系統。

國防部清楚地意識到這些挑戰。自2015年以來,國防部長辦公室和各軍種已經建立了幾個實體,如DIU、AFWERX、NavalX和陸軍應用實驗室,與商業技術部門,特別是初創企業和非傳統供應商對接,目的是加速提供同類最佳的技術解決方案。同時,國防部還采取了其他值得注意的措施,以促進使用替代性的采購和合同,這為構建和執行協議提供了比傳統采購更大的靈活性。這些包括 "其他交易授權、中間層采購、快速原型設計和快速投入使用以及軟件采購的專門途徑"。

DIU一直處于使用其中一些替代性采購途徑的前沿,從商業技術部門采購人工智能解決方案。空軍的AFWERX還與空軍研究實驗室和國家安全創新網絡合作,創新地利用小企業創新研究(SBIR)和小企業技術轉讓(STTR)資金,以 "提高項目的效率、有效性和過渡率"。例如,在2021年6月,美國空軍SBIR/STTR人工智能投標日向關于 "可信人工智能,這表明系統是安全、可靠、強大、有能力和有效的 "主題的提案提供了超過1800萬美元。

這些都是朝著正確的方向邁出的步伐,而且確實變得更容易獲得國防部的研究、開發和原型制作資金。然而,及時獲得生產資金仍然是一個重大挑戰。這個 "死亡之谷 "的問題--研究和開發階段與一個既定的、有資金記錄的項目之間的差距--對于非傳統的國防公司尤其嚴重,因為風險資本對初創企業的資助周期與將一個項目納入國防部預算所需的時間之間存在差異。

五角大樓明白,彌合 "死亡之谷 "對于推進和擴大創新至關重要,并在最近啟動了快速國防實驗儲備,以處理這些問題。然而,使預算規劃、采購和簽約流程與私人資本的步伐相一致所需的系統性變化,需要國會采取行動,并可能需要數年時間來實施。在實施這些改革方面的延誤正在損害國防部獲得尖端技術的能力,而這些技術在未來的戰場上可能是至關重要的。

4.2 建立可信賴和負責任的人工智能系統

確保美國軍隊能夠使用安全可信的人工智能和自主系統,并按照國際人道主義法律使用這些系統,將有助于美國保持其競爭優勢,以對抗俄羅斯等對人工智能的道德使用承諾較少的專制國家。強調值得信賴的人工智能也是至關重要的,因為國防部的大多數人工智能項目都需要人機合作和協作的元素,它們的成功實施在很大程度上取決于操作者對系統的足夠信任和使用。最后,國防部和行業伙伴之間就可信和負責任的人工智能的共享標準和測試要求進行更密切的協調,對于推進國防部人工智能的采用至關重要。

除了國防部現有的武器審查和目標程序,包括自主武器系統的協議,該部門還在尋求解決倫理、法律和政策的模糊性,以及人工智能更具體的風險。2020年2月,五角大樓通過了五項道德原則來指導人工智能的發展和使用,呼吁人工智能是負責任的、公平的、可追溯的、可靠的和可治理的。為了將這些原則付諸實踐,國防部副部長凱瑟琳-希克斯發布了一份備忘錄,指示采取一種 "整體的、綜合的和有原則的方法 "來整合負責任的人工智能(RAI),包括六個原則:管理、作戰人員的信任、產品和采購生命周期、需求驗證、負責任的人工智能生態系統和人工智能勞動力。

同時,2021年11月,DIU發布了其負責任的人工智能指導方針,響應了備忘錄中對 "工具、政策、流程、系統和指導 "的呼吁,將道德的人工智能原則納入該部門的采購政策。這些指導方針是在國防部人工智能項目中操作和實施道德的具體步驟,建立在DIU在預測健康、水下自主、預測性維護和供應鏈分析等領域的人工智能解決方案的經驗上。它們的目的是可操作的、自適應的和有用的,同時確保人工智能供應商、國防部利益相關者和DIU項目經理在人工智能系統生命周期的規劃、開發和部署階段考慮到公平、問責和透明度。

國防部人工智能項目的成功將在很大程度上取決于確保人類發展并保持對其智能機器隊友的適當信任。因此,國防部對可信人工智能的強調越來越多地體現在其一些旗艦人工智能項目中。例如,2020年8月,DARPA的空戰進化(ACE)項目吸引了大量的關注,因為一個人工智能系統在模擬的空中斗犬比賽中擊敗了空軍的一名頂級F-16戰斗機飛行員。 ACE的一個關鍵問題是 "如何讓飛行員足夠信任人工智能并使用它",而不是讓人類與機器對決。ACE選擇了斗狗場景,很大程度上是因為這種類型的空對空戰斗包含了許多成為戰斗機飛行員群體中值得信賴的伙伴所必需的基本飛行動作。讓人工智能掌握作為更復雜任務基礎的基本飛行動作,如壓制敵方防空系統或護送友軍飛機。根據ACE項目經理的說法,AlphaDogfight試驗是 "關于增加對人工智能的信任"。

人工智能的發展速度很快,因此很難設計和實施一個足夠靈活的監管結構,以保持相關性,同時又不至于限制性太強而扼殺創新。與國防部合作的公司正在尋求符合國防部人工智能道德原則的人工智能系統的開發、部署、使用和維護的指導方針。這些行業伙伴中的許多人已經采用了他們自己的可信和負責任的人工智能解決方案的框架,強調了安全、安保、穩健、彈性、問責制、透明度、可追溯性、可審計性、可解釋性、公平性和其他相關質量等屬性。

圖:2021年10月19日,在亞利桑那州尤馬試驗場,一名美國陸軍士兵使用戰術機器人控制器來控制遠征模塊化自主車輛,作為準備 "聚合項目 "的練習活動。在 "聚合項目21 "期間,士兵們試驗了使用這種車輛進行半自主偵察和再補給。無論是在戰場上還是在戰場之外,對自主和半自主車輛等人工智能能力的信任對于成功至關重要。

目前,對于什么是道德或值得信賴的人工智能系統,沒有共同的技術標準,這可能會使非傳統的人工智能供應商難以設定預期,并在官僚機構中穿梭。國防部不直接負責制定標準。相反,2021年國防授權法案(NDAA)擴大了國家標準與技術研究所(NIST)的任務,"包括推進人工智能的合作框架、標準、指導方針,支持開發人工智能系統的風險緩解框架,并支持開發技術標準和指導方針,以促進值得信賴的人工智能系統"。2021年7月,NIST在制定其人工智能風險管理框架時,向利益相關者發出了信息請求,旨在幫助組織 "將可信性考慮納入人工智能產品、服務和系統的設計、開發、使用和評估"。

對這一挑戰沒有簡單的解決方案。但是,讓政府、行業、學術界和民間社會的利益相關者參與進來的合作過程可以幫助防止人工智能的發展走上社交媒體的道路,在社交媒體上,公共政策未能預測到虛假信息和其他惡意活動在這些平臺上造成的風險和損失,而且反應緩慢。

與標準相關的是與測試、評估、驗證和確認(TEVV)相關的挑戰。測試和驗證過程是為了 "幫助決策者和操作者了解和管理開發、生產、操作和維持人工智能系統的風險",對于建立對人工智能的信任至關重要。國防部目前的TEVV協議和基礎設施主要是針對主要的國防采購項目,如船舶、飛機或坦克;它是線性的、順序的,而且一旦項目過渡到生產和部署,最終是有限的。然而,對于人工智能系統,"開發從未真正完成,所以測試也是如此。"因此,像人工智能這樣的適應性強、不斷學習的新興技術需要一個更加敏捷和迭代的開發和測試方法,正如NSCAI建議的那樣,"將測試作為需求規范、開發、部署、培訓和維護的持續部分,包括運行時監測操作行為。"

建立在開發、安全和運營(DevSecOps)的商業最佳實踐基礎上的綜合和自動化的開發和測試方法,更適合于人工智能/ML系統。雖然JAIC的聯合基金有可能實現真正的人工智能DevSecOps方法,但在整個國防部擴大這種努力是一個重大挑戰,因為它需要對當前的測試基礎設施進行重大改變,以及更多的資源,如帶寬、計算支持和技術人員。也就是說,如果不開發更適合人工智能的新測試方法,不調整當前的測試基礎設施以支持迭代測試,將阻礙大規模整合和采用可信和負責任的人工智能的努力。

上述關于標準和TEVV的討論概括了現代人工智能系統對現有國防部框架和流程的獨特挑戰,以及商業技術公司和國防部對人工智能開發、部署、使用和維護的不同方法。為了加速人工智能的采用,國防部及其行業伙伴需要在具體的、現實的、與操作相關的標準和性能要求、測試過程和評估指標上更好地保持一致,并納入道德的人工智能原則。一個以可信和負責任的人工智能為導向的國防技術生態系統可以促進最佳做法的相互交流,并降低非傳統供應商和初創公司所面臨的官僚主義和程序性障礙。

5 主要收獲和建議

充分發揮人工智能推動成本和時間效率的能力,支持人類決策者,并實現自主性,將需要更多的技術進步或開發新的作戰概念。下面,我們概述了優先努力的三個關鍵領域,以更成功地將人工智能納入整個國防部事業,并確保美國能夠阻止威脅,并保持對其競爭對手和潛在對手的戰略、戰役和戰術優勢。

5.1 優先考慮安全、可靠、受信任和負責任的人工智能開發和部署

與中國日益激烈的戰略競爭,精湛的技術和強有力作戰能力,以及與私營部門快速的技術開發和整合速度的比較,都給國防部帶來了壓力,使其更快地走向人工智能系統的實戰。在人工智能發展中鼓勵更大的風險容忍度,以便在大規模采用人工智能方面取得進展,這有很多好處。但是,僅僅為了 "超越 "中國而匆忙部署容易受到一系列對手攻擊的人工智能系統,并且很可能在作戰環境中失敗,這將被證明是適得其反。

指導美國軍隊的道德準則反映了對遵守戰爭法則的基本承諾,而此時,一些獨裁國家對人權和人道主義原則很不重視。同時,國防部對新能力的測試和保證采取了嚴格的方法,旨在確保新武器的使用是負責任的和適當的,并盡量減少事故、誤用和濫用系統和能力的風險,因為這可能會產生危險,甚至是災難性的影響。美國與許多盟友和伙伴共享的這些價值觀和原則,在與專制國家競爭時是一種戰略資產,因為它們正在部署人工智能軍事系統。為了鞏固國防部在這個領域的優勢,我們建議采取以下步驟。

  • 美國防部應將DIU的“負責任的人工智能指南”納入相關的提案請求、招標和其他材料中,要求承包商展示他們的人工智能產品和解決方案是如何實施國防部的人工智能道德原則。這將設定一套共同和明確的期望,幫助非傳統的人工智能供應商和初創公司在五角大樓的提案過程中游刃有余。最近有國防部為項目制定收購類別的先例,要求工業界調整其開發過程,以滿足不斷變化的國防部標準。例如,在2020年9月,美國空軍為所有采購工作制定了e系列采購指定,要求供應商使用數字工程實踐--而不是原型--作為他們激勵行業接受數字工程的一部分。

  • 美國防部的行業合作伙伴,特別是非傳統的人工智能供應商,應積極與NIST合作,因為該機構繼續努力制定標準和指導方針,以促進可信賴的人工智能系統,以確保他們的觀點為后續框架提供信息。

  • 本文提到的有效采用人工智能的挑戰包括人工智能的脆弱性和對手旨在破壞人工智能算法的網絡攻擊可能性。克服這些挑戰將需要國防部繼續致力于提高國防部人工智能系統測試和評估的速度、種類和能力,以確保這些系統在更廣泛的不同環境下發揮預期功能。其中一些測試需要在真實世界的環境中進行,但基于模型的模擬的進步可以使人工智能系統的性能在數字/虛擬世界中得到越來越多的驗證,減少與這種測試相關的成本和時間。

圖:人工智能可以極大地重塑未來的戰場。為了實現這一愿景,美國防部必須采取關鍵步驟,有效利用人工智能。資料來源:美國陸軍。

  • 此外,美國防部還應該利用國防部研究與工程副部長(USDR&E)的測試實踐和優先事項,以確保計劃和部署的人工智能系統能夠抵御對手的攻擊,包括數據污染和算法損壞。

  • 美國防部應利用盟友和外國合作伙伴來開發、部署和采用可信的人工智能。這種性質的參與對于協調人工智能發展和使用的共同規范至關重要,這些規范遏制并對抗中國和俄羅斯的獨裁技術模式。擴大現有合作模式和建立新的伙伴關系的途徑可以包括以下內容:

i. 加強對道德、安全和負責任的人工智能的重視,將其作為全日空防務伙伴關系的一部分,通過評估成員方法的共同點和差異,確定未來聯合項目和合作的具體機會。

ii. 與 "五眼"、北約和AUKUS伙伴交叉分享和實施聯合道德項目。除了支持互操作性,這將增加視角和經驗的多樣性,并有助于確保人工智能發展工作限制各種形式的偏見。正如本項目所采訪的一位前將軍所指出的,"多樣性是我們確保可靠性的方式。它是必不可少的。"

iii. 擴大與不同能力和地域的盟友和合作伙伴的聯系,包括印度、南非、越南,以探索雙邊和多邊研發工作和技術共享計劃的機會,解決可信和負責任的人工智能的技術屬性。

5.2 調整人工智能發展的關鍵優先事項,加強國防部和工業伙伴之間的協調,以幫助縮小國防部人工智能能力的差距

如果不與廣泛的技術公司建立密切的伙伴關系,國防部將無法實現其在人工智能方面的雄心壯志,并與中國通過軍民融合采購技術創新的模式進行有效競爭。這包括與五角大樓有長期聯系的國防工業領導人,處于全球創新前沿的技術巨頭,尋求擴大其政府投資組合的商業技術參與者,以及處于人工智能發展前沿的初創企業。但是,國防部的預算規劃、采購、收購、簽約和合規流程可能需要從根本上進行重組,以有效地與這個充滿活力和多樣化的技術生態系統的整體接觸。

系統性變革是一個緩慢而艱巨的過程。但是,拖延這一過渡有可能使美國軍隊在利用人工智能承諾提供的優勢方面落后,從作戰速度到決策主導權。同時,以下行動可以幫助改善與行業伙伴的協調,以加快國防部采用人工智能的努力。

  • 國防部應評估其溝通和外聯戰略,以澄清和精簡圍繞該部門在人工智能方面的優先事項的信息。

  • 國防部應與技術公司合作,重新審查他們對某些類別的人工智能解決方案的潛在價值的評估,包括但不限于后勤、醫療和健康服務以及信息操作。

  • 國防部應實施NSCAI的建議,加快對采購專業人員的培訓,使其了解采購和簽約的全部可用選擇,并激勵他們使用人工智能和數字技術。" 此外,這種采購人員培訓舉措應確保采購專業人員充分了解國防部的人工智能倫理原則以及可信和負責任的人工智能的技術層面。國防部的道德準則可以作為這種培訓的基礎。

5.3 促進領先的國防技術公司和非傳統供應商之間的協調,以加快美國防部人工智能的采用

在中短期內,美國防部將不會建立全新的人工智能系統,而是將人工智能整合到一系列現有的軟件和硬件系統中--從網絡防御架構到戰斗機到C2。因此,實施人工智能的進展也將取決于簡化國防部一直在爭取的創新和尖端技術的初創公司和非傳統人工智能供應商與負責將新能力整合到傳統系統的國防部門之間的合作。

NSCAI建議確定 "國防部門與非傳統公司合作的新機會,以便在現有平臺上更快地采用人工智能能力。"我們贊同這一建議:改進國防部門與非傳統公司之間的協調可以幫助確保人工智能解決方案是強大的,有彈性的,與作戰相關的,以及引導有前途的原型穿過 "死亡之谷"。

毫無疑問,從概念到實踐可能是很棘手的。本文的研究顯示,在將創新的新技術從實驗室轉移到記錄項目中采用的主要挑戰在哪里,人們的觀點存在著很大的分歧。初創企業傾向于認為系統集成商抗拒參與,而初創企業可能被認為缺乏對收購過程的理解,以及開發的技術難以整合到記錄項目中,或難以擴大規模。

彌補這一差距將需要政府采取新的方法來解決非傳統供應商對知識產權的擔憂。大多數人不愿意放棄敏感技術的所有權,這些技術主要是賣給國防市場以外的客戶。這也將涉及到國防部幫助小企業通過加快網絡認證和運營授權(ATO)過程等步驟來瀏覽聯邦采購流程,以及幫助有興趣的公司為國防部的不同組成部分開發使用案例。這種積極的促進作用將幫助那些通過研究和開發撥款與國防部合作的非傳統供應商更有準備地與系統集成商達成合作。

最重要的是,優化大型系統集成商和小型創新者的利益,將需要國防部在連接小型公司和那些正在運行的項目方面發揮更積極的對話者作用。目前,國防部在要求公司合作方面存在一些可以理解的猶豫,主要是擔心觸犯聯邦采購條例(FAR)。但是,正如本項目采訪的一位行業專家所認為的,國防部可以更積極地了解《聯邦采購條例》所允許的內容,并幫助公司建立聯系,特別是為了滿足特定的采購優先權或計劃。

6 結論

在過去的幾年里,對人工智能的興趣和投資已經獲得了動力。這在國家安全和國防界尤其如此,因為戰略家、政策制定者和行政人員在不斷上升的地緣戰略競爭中尋求決定性的優勢,并為以復雜性、不確定性和最重要的速度為特征的未來操作環境做準備。人工智能現在是美國和中國之間軍事技術競爭的中心,這兩個國家以及世界上其他國家的軍隊都已經在部署人工智能系統,目的是為了主導未來的戰場。

美國不能冒落后于中國的風險--在人工智能的創新方面,在人工智能的采用方面,在人工智能全面融入國防事業方面,都不能。迫切需要解決一系列技術和官僚程序以及文化問題,迄今為止,這些問題已經抑制了國防部采用人工智能的步伐。具體來說,國防部應優先考慮以下問題。

  • 建立對人工智能的信任:國防部的人工智能努力主要集中在增強人類理解、決策和效能的技術上,而不是取代人類。因此,在人類和他們的智能機器隊友之間建立信任和信心是成功開發和部署軍事人工智能的一個關鍵方面。

  • 制定和實施可信和負責任的人工智能標準:目前,對于什么是可信和負責任的人工智能,還沒有共同的標準或系統性能要求。因此,五角大樓及其行業伙伴必須與NIST等機構合作,制定和實施與作戰相關的標準、測試流程和評估指標,其中包括道德的、可信賴的和負責任的人工智能原則。這將有助于將成功的人工智能研究原型推進到可投入生產的解決方案中。

  • 促進美國創新生態系統和國防工業基地的優化。將尖端的人工智能技術引入國防部還需要五角大樓減少國防部采購過程中經常出現的官僚主義挑戰,特別是對于那些在傳統國防工業基地之外的創新公司。開發新的手段來支持和激勵這些公司的參與,并促進領先的國防技術公司與初創公司和非傳統供應商之間的行業內伙伴關系將是至關重要的。

  • 吸引盟友和合作伙伴。正如本文開頭所述,烏克蘭戰爭加強了盟友和合作伙伴在執行地緣政治規范和標準方面的重要性。未來人工智能的發展和采用也可能是如此。國防部不僅將受益于工業界和國家安全界的合作,還將受益于與盟友和外國伙伴的合作,以確保建立和頒布規范和標準,從而實現可信、負責和可互操作的人工智能開發和部署。

關于本報告

本報告是在對人工智能的國家安全和國防影響進行為期八個月的研究項目的最終成果。

關于作者

瑪格麗特-科納耶夫(Margarita Konaev)是大西洋理事會斯考克羅夫特戰略與安全中心前沿防御業務的非常駐高級研究員。此外,她還擔任喬治敦安全與新興技術中心(CSET)的分析副主任和研究員,對人工智能的軍事應用和俄羅斯軍事創新感興趣。她也是新美國安全中心的兼職高級研究員。在此之前,她是西點軍校現代戰爭研究所的非駐地研究員,弗萊徹法律和外交學院的博士后研究員,以及賓夕法尼亞大學佩里世界之家的博士后研究員。在加入CSET之前,她曾在Gartner公司的營銷和溝通部門擔任高級負責人。

科納耶夫博士對國際安全、武裝沖突、非國家行為者和中東、俄羅斯和歐亞大陸的城市戰爭的研究已經在《戰略研究雜志》、《全球安全研究雜志》、《沖突管理與和平科學》、法國國際關系研究所、《原子科學家公報》、《法律戰》、《巖石上的戰爭》、現代戰爭研究所、外交政策研究所以及其他一系列機構和組織發表。她擁有圣母大學的政治學博士學位,喬治敦大學的沖突解決碩士學位,以及布蘭代斯大學的學士學位。

泰特-努爾金(Tate Nurkin)是OTH情報集團的創始人,也是大西洋理事會斯考克羅夫特戰略與安全中心的高級研究員。

在2018年3月建立OTH情報集團之前,努爾金在IHS Markit的簡氏公司工作了12年,擔任各種職務,包括管理簡氏國防、風險和安全咨詢業務。從2013年到他離開,他擔任戰略評估和未來研究(SAFS)中心的創始執行主任,該中心提供有關地緣政治、未來軍事能力和全球國防工業的全球競爭的思想領導和定制分析。

實質上,努爾金的研究和分析特別關注中美競爭、國防技術、未來軍事能力和全球國防工業及其市場問題。他還擅長設計和提供替代性未來分析活動,如情景規劃、紅色團隊和兵棋推演。

他曾在聯合管理服務公司、SAIC的戰略評估中心以及博思艾倫公司的建模、模擬、兵棋推演和分析團隊工作。2014-2018年,他在世界經濟論壇的核安全全球議程委員會和國際安全未來委員會連續任職兩年,該委員會的成立是為了診斷和評估第四次工業革命的安全和防御影響。

努爾金擁有佐治亞理工學院薩姆-納恩國際事務學院的國際事務科學碩士學位,以及杜克大學的歷史和政治學學士學位。

付費5元查看完整內容

作者

  • 加拿大陸軍陸戰中心的Geofrey Priems少校
  • 加拿大國防研究與發展--作戰研究與分析中心的Peter Gizewski

引言

全世界對人工智能(AI)軍事應用的興趣正在增長。事實上,與其他一些技術進步一樣,人工智能越來越被視為軍事效力的潛在重要推動力。

毫不疑問,人們對人工智能對加拿大陸軍(CA)的影響以及其采用人工智能的可能性的興趣正在上升。關于如何以及在多大程度上可以利用人工智能來潛在地幫助實現緊密作戰應用的問題:加拿大陸軍的頂點作戰概念--"不確定性時代的陸地力量 "的實現,以及加強陸軍的五項作戰功能的實施,這些問題尤為突出。有關有效采用人工智能可能面臨的挑戰以及克服這些挑戰所需措施的問題也同樣突出。

本文對這些問題進行了初步研究。它源于加拿大陸軍陸戰中心正在進行的關于人工智能的工作,以研究和確定人工智能對加拿大陸軍和有效實現陸軍頂點作戰概念的影響。

文章概述了人工智能在軍隊采用和開展軍事行動方面所帶來的潛在好處和挑戰。然后,文章研究了人工智能對實現密切交戰的潛在影響,確定了人工智能的應用有望提高軍隊的作戰效率的領域。文章最后概述了一些必要的關鍵前提條件和做法,以確保這些工作是負責任的和有效的。

人工智能

人工智能的定義有很多,而且在不斷發展。然而,按照國防部目前的定義,人工智能是 "計算機執行與人類邏輯有關功能的能力,如推理、學習和自我改進"。 雖然沒有被普遍接受,但這樣的表述為在CA背景下討論人工智能提供了一個體制上熟悉和充分的基礎。

潛在利益

軍事組織探索、開發和采用人工智能的激勵措施是引人注目的。鑒于高速計算機(網絡速度和處理能力)和人工智能算法處理和分析大量數據的能力,其速度和準確性遠遠超過人類,聲稱人工智能系統有可能全面改變國防,這并不令人驚訝。通過作為一種提高人類和機器分析速度的手段,人工智能有希望提高數據使用、管理和態勢感知能力。對于軍隊來說,其結果很可能轉化為成本節約、改進控制系統、加快決策、新的作戰概念和更大的行動自由。

由人工智能支持的信息和決策輔助系統有可能促進在 "復雜的、時間緊迫的戰地環境 "中做出更好的決策,允許更快地識別威脅,更快、更精確地確定目標,并根據戰地條件的變化為指揮官創造靈活的選擇。應用范圍可以從指揮和控制以及情報、監視和偵察到訓練和后勤。此外,作為機器人和自主系統的骨干技術,人工智能為武器裝備的創新提供了前景,使具有相當大的軍事潛力的先進自主系統(如機器人系統和無人機)得以發展。人工智能甚至可能在部隊結構和作戰概念方面產生巨大的變化,有可能減少人員的負擔和軍事硬件的成本,同時提高戰爭本身的效率和效力。

這些技術無處不在,而且越來越多的盟軍和對手都可以使用,這一事實進一步刺激了對人工智能軍事技術的追求。就前者而言,盟國對人工智能日益增長的興趣突出表明,需要有足夠的人工智能能力來確保未來盟國的互操作性和軍事有效性。至于后者,有證據表明,對手(如俄羅斯、中國)對人工智能的軍事應用進行了持續的探索和投資,這增強了追求此類技術的動力,以檢測和防御未來越來越多的人工智能軍事威脅。

采用的限制和挑戰

然而,有效引進人工智能的先決條件是相當多的,很可能對軍事組織充分實現人工智能應用所帶來的一些可能性的能力造成限制。此外,軍隊可能不完全愿意追求人工智能技術本身所固有的一些可能性。

事實上,目前的能力僅限于執行離散的功能和學習具體的任務(如狹義的人工智能)。人工智能技術的脆弱性令人擔憂。脆弱性是指任何算法不能泛化或適應狹窄的假設集以外的條件。例如,在添加了一些位數后,一個停車標志可以被讀成一個45英里/小時的限速標志。應用于涉及過度不確定性的情況實際上可能特別危險。例如,錯誤地選擇和起訴友軍目標,如友軍戰士或民用車輛。因此,在軍事環境中,特別是在軍事行動中,對人工智能的使用限制是相當大的。面對傳來的信息可能不可靠、不完整或甚至被對手故意偽造的環境,相信這些技術提供的解決方案仍然很脆弱。

除此之外,即使在這種技術被普遍認為是可靠的領域,其開發和應用也可能是苛刻的。要求包括確保有足夠數量的數據可供開發用于啟用軍事系統的算法。它們還包括確保算法本身的質量,這一要求取決于在將人工智能納入軍事系統之前提供和有效地準備和編碼訓練數據,以及確保來自現實世界數據的有效性,其中包括邊緣案例(不常見的使用案例)。而且,它們包括確保開發和集成到軍事系統中的人工智能是可靠的(即它以預定的方式工作)。

這些要求中的每一項都可能涉及相當大的挑戰。獲取大量的訓練數據可能會遇到基于政治和法律限制的數據共享阻力,從而降低待訓練算法的質量和使用這些算法的系統的可靠性。獲得的數據可能包含種族、性別和其他源于數據準備和編碼的偏見。此外,隨著算法變得更加復雜,通過對手在訓練數據集中注入不良數據而被操縱的可能性會增加。只要存在這些挑戰,對人工智能的信任及其在軍事領域的應用就可能受到影響。

這些風險可以通過仔細的人工監督和強大的測試得到控制。也就是說,真正有效的監督需要操作者熟悉人工智能技術的細節,以及重要的系統整合和社會化,這可能很難實現。由于對技術本身的理解存在困難,有效監督挑戰就更大了。機器推理的過程不等同于人類,人工智能系統采用的邏輯也不容易理解。對于負責使用這些能力的指揮官和系統操作者來說--其中一些能力可以很好地決定生命和死亡--相信那些決策過程不透明的技術,可能是一座太遙遠的橋梁。

對加拿大陸軍的影響

這些現實表明,加拿大陸軍采用人工智能,雖然有希望,但必須謹慎行事,并對限制有一個現實的認識。無論是加拿大還是加拿大陸軍,都無法避免遇到上述挑戰。例如,人工智能技術在沒有適當人類監督的情況下越接近殺戮鏈,可能發生災難性后果的風險就越大。因此,必須注意研究或采用能夠幫助人類決策的技術。一個指示人類做什么的 "黑盒"人工智能將是不可接受的。人工智能顧問必須能夠解釋其建議/結論,以便人類能夠理解并對所提出的建議有信心。人類決策者必須能夠對人工智能所提供的解決方案向領導作出清晰和可理解的解釋。

然而,如果謹慎地追求和應用,人工智能的大部分內容通常與《近距離接觸,不確定時代的陸地力量》中詳述的陸軍要求非常吻合。緊密的作戰應用目的是應對以快速變化為特征的作戰環境的挑戰,以及廣泛的復雜的人道主義挑戰和技術能力越來越強的對手,他們能夠使用一系列機動性越來越強的致命和非致命系統以及精心設計的反措施。應對這些挑戰在很大程度上取決于確保獲得必要的信息和分析的能力,以便比對手更快地了解和調整不斷變化的條件。作為一種先進的信息處理方法,人工智能可以提供一種重要的手段,通過提供比人類更快、更準確地處理和分析來自越來越多來源的數據來幫助滿足這些需求。因此,人工智能可以作為一個重要的決策輔助工具,使個人和共同的理解得到發展,這對于確定潛在的作戰方案,優先獲得、處置和使用軍事資產,以及提供及時開展行動所需的數據、信息和可操作的情報至關重要。

除此之外,人工智能甚至可能有助于加強陸軍所依賴的網絡安全。"能夠遠距離運行的高容量網絡為軍隊行動的開展提供了顯著的優勢。事實上,一個安全和強大的網絡是確保快速、安全地分發有效開展軍隊作戰所需的數據和分析的核心。通過開發能夠防范網絡故障、電子戰和網絡攻擊的算法,人工智能可以更充分地確保軍隊能夠 "獲得網絡的優勢",從而以更安全、協調和協作的方式開展行動。在諸如互操作性、力量生成、力量投射和維持以及開展分散行動等方面的改進,都可能因此而受益。

自始至終,隨著人工智能技術被推向戰術邊緣,將有必要確保有足夠的電力(能源)來支持它。除了網絡,先進的電源管理和電池技術將是至關重要的。

圖:加拿大國防研究與發展部-瓦爾卡蒂爾項目的數據收集工作,該項目被稱為聯合算法戰機傳感器。該項目是較大的加拿大陸軍科學和技術組合的一部分,即數字時代的授權分布式作戰。

付費5元查看完整內容

摘要

人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。

引言

縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。

人工智能的進展

幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
 雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。

付費5元查看完整內容

摘要

當代和新出現的安全威脅以及從最近的軍事行動中吸取的教訓已經證明,為了在傳統的物理領域(陸地、空中、海上、太空)實現作戰目標,確保在非物理領域的主導地位至關重要,即網絡空間、電磁環境(EME)和信息環境。因此,除了物理作戰領域之外,在非物理領域取得優勢的能力對于實現戰役的軍事和非軍事目標具有決定性意義。

作戰人員將面臨消除沖突,協作,同步和整合行動的挑戰,以實現并發揮協同效應以應對多種威脅,其中可能還包括來自每個作戰領域對手的武裝沖突閾值以下的行動,包括非物質的。

本文探討了作戰環境聯合情報準備 (JIPOE) 作為支持聯合作戰規劃、執行和評估的主要工具的作用和意義,從而有助于多域作戰 (MDO) 的同步和協調。在這方面,基于政治、軍事、經濟、信息、基礎設施-物理、時間(PMESII-PT)方法,不可能將對當代作戰環境(OE)的分析局限于物理領域及其與非物理領域的關系。相反,作者們相信,確定一種合適的方法來關注在非物理領域單獨或聯合進行的活動影響,它們在PMESII-PT所有領域的相互融合和實際操作領域的相關性,將大大有助于友軍識別和評估對手的重心(COG)、關鍵弱點、意圖和行動路線(COAs)的能力,包括各自的指標。JIPOE將為聯合部隊指揮官(JFC)提供OE的整體視圖,將與戰術層面密切合作、共享和開發,通過結合不同領域的能力,應該能夠壓倒對手的部隊。這種集中控制和分散執行的方法將有助于在作戰和戰術層面之間產生協同效應。

引言

未來的軍事行動將以物理和非物理層面的融合為特征,眾多不同的行為者將在其中運作。任何部隊都需要適應極其復雜的作戰環境和大量的作戰變量,需要適應性地使用一系列武器系統來產生致命和非致命的效果。因此,除了物理作戰領域(即陸地、空中、海上和太空),在非物理領域(網絡空間、EME、信息環境)取得優勢的能力將對實現戰役的軍事和非軍事目標具有決定性意義[1, p.280]。

OE是影響能力運用和影響指揮官決策的條件、環境和影響因素的綜合體[2, p.3]。了解OE的因素和條件不僅是所有計劃活動,特別是行動設計的關鍵前提,也是友軍保護和許多其他相關任務的關鍵前提[3, p.41]。

JIPOE代表了一種系統的方法,用于分析有關OE和對手的信息。它可以應用于全部的軍事行動。指揮官和參謀部在危機背景、根本原因和具體動態方面,對戰區形成共同的理解和整體的看法。它使指揮官能夠直觀地看到問題的程度,以及他們如何塑造和改變OE,使之成為他們的優勢,這將為他們的決策提供信息[2, p.3-5]。

JIPOE產品極大地促進了聯合(即作戰)層面的軍事行動的規劃和執行。現代軍隊,特別是北大西洋公約組織(NATO)內的軍隊,幾十年來在討論跨領域(陸、海、空)的協調行動時一直使用聯合這一術語。如今,由于全球安全環境的巨大變化以及俄羅斯和中國日益增長的野心,為了挑戰潛在的同行對手,需要采取多領域的方法。在傳統的戰爭門檻下,盟國及其合作伙伴已經受到了跨越物理和非物理領域的持續攻擊[4, p.2]。MDO一詞不同于聯合行動,因為它旨在關注跨越多個領域的行動,而不考慮服務的歸屬,不一定是由多個部門進行的行動[5,p.49]。

圖1:支持聯合行動的當前JIPOE流程的可視化。

圖2:提出支持MDO的JIPOE過程方案。

付費5元查看完整內容
北京阿比特科技有限公司