摘要: 深度學習的可解釋性研究是人工智能、機器學習、認知心理學、邏輯學等眾多學科的交叉研究課題,其在信息推送、醫療研究、金融、信息安全等領域具有重要的理論研究意義和實際應用價值.從深度學習可解釋性研究起源、研究探索期、模型構建期3方面回顧了深度學習可解釋性研究歷史,從可視化分析、魯棒性擾動分析、敏感性分析3方面展現了深度學習現有模型可解釋性分析研究現狀,從模型代理、邏輯推理、網絡節點關聯分析、傳統機器學習模型改進4方面剖析了可解釋性深度學習模型構建研究,同時對當前該領域研究存在的不足作出了分析,展示了可解釋性深度學習的典型應用,并對未來可能的研究方向作出了展望.
深度學習在很多人工智能應用領域中取得成功的關鍵原因在于,通過復雜的深層網絡模型從海量數據中學習豐富的知識。然而,深度學習模型內部高度的復雜性常導致人們難以理解模型的決策結果,造成深度學習模型的不可解釋性,從而限制了模型的實際部署。因此,亟需提高深度學習模型的可解釋性,使模型透明化,以推動人工智能領域研究的發展。本文旨在對深度學習模型可解釋性的研究進展進行系統性的調研,從可解釋性原理的角度對現有方法進行分類,并且結合可解釋性方法在人工智能領域的實際應用,分析目前可解釋性研究存在的問題,以及深度學習模型可解釋性的發展趨勢。為全面掌握模型可解釋性的研究進展以及未來的研究方向提供新的思路。
摘要:隨著日益劇增的海量數據信息的產生以及數據挖掘算法的廣泛應用,人們已經進入了大數據時代.在數據規模飛速增長的前提下,如何高效穩定的存取數據信息以及加快數據挖掘算法的執行已經成為學術界和工業界急需解決的關鍵問題.機器學習算法作為數據挖掘應用的核心組成部分,吸引了越來越多研究者的關注,而利用新型的軟硬件手段來加速機器學習算法已經成為了目前的研究熱點之一.本文主要針對基于ASIC和FPGA等硬件平臺設計的機器學習加速器進行了歸納與總結.首先,本文先介紹了機器學習算法,對代表性的算法進行了分析和歸納.接下來對加速器可能的著眼點進行了列舉綜述,以各種機器學習硬件加速器為主要實例介紹了目前主流的加速器設計和實現,并圍繞加速器結構進行簡單分類和總結.最后本文對機器學習算法硬件加速這個領域進行了分析,并對目前的發展趨勢做出了展望.
摘要 大數據是經濟發展的新動能, 社會發展的新引擎, 塑造國家競爭力的戰略制高點, 對人民生活 具有重大影響. 然而隨著社會對數據價值認知的提升和大數據平臺建設的蓬勃發展, 大數據安全問題 日益成為阻礙大數據應用推廣的瓶頸. 同時, 由于大數據技術、框架仍在不斷演變當中, 研究人員對大 數據安全內涵的核心認知和關鍵特征理解還存在差異, 尚未形成相對統一的大數據安全框架. 當前亟 需對大數據安全技術發展現狀進行梳理, 為大數據安全重點問題的研究和突破提供參考. 本文結合典 型大數據系統技術框架, 圍繞大數據安全需求, 構建了大數據安全技術框架. 在此框架下, 從大數據安 全共享與可信服務、大數據平臺安全和大數據安全監管 3 個方面系統梳理了大數據安全關鍵技術的 研究現狀, 囊括了大數據業務流程和大數據系統技術框架所涉及的主要安全機制. 最后總結了大數據 安全技術有待解決的核心問題和發展趨勢.
摘要: 大數據時代,數據呈現維度高、數據量大和增長快等特點。如何有效利用其中蘊含的有價值信息,以實現數據的智能化處理,已成為當前理論和應用的研究熱點。針對現實普遍存在的多義性對象,數據多標簽被提出并被廣泛應用于數據智能化組織。近年來,深度學習在數據特征提取方面呈現出高速、高精度等優異性,使基于深度學習的多標簽生成得到廣泛關注。文中分五大類別總結了最新研究成果,并進一步從數據、關系類型、應用場景、適應性及實驗性能方面對其進行對比和分析,最后探討了多標簽生成面臨的挑戰和未來的研究方向。
人機對話系統能夠讓機器通過人類語言與人進行交互,是人工智能領域的一項重要工作。因其在虛擬助手和社交聊天機器人等領域的商業價值而廣受工業界和學術界的關注。近年來,互聯網社交數據快速增長促進了數據驅動的開放領域對話系統研究,尤其是將深度學習技術應用到其中取得了突破性進展。基于深度學習的開放領域對話系統使用海量社交對話數據,通過檢索或者生成的方法建立對話模型學習對話模式。將深度學習融入檢索式系統中研究提高對話匹配模型的效果,將深度學習融入生成式系統中構建更高質量的生成模型,成為了基于深度學習的開放領域對話系統的主要任務。本文對近幾年基于深度學習的開放領域對話系統研究進展進行綜述,梳理、比較和分析主要方法,整理其中的關鍵問題和已有解決方案,總結評測指標,展望未來研究趨勢。