亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

社會對人工智能(AI)的信任以及可信任的人工智能系統和生態系統的發展,對于人工智能技術在醫學領域的進步和實施至關重要。隨著人工智能在各種醫療和成像應用領域的應用日益廣泛,使這些系統更加可靠和值得信賴變得比以往任何時候都重要。本文考慮了14個核心原則,旨在將針更接近于準確、有彈性、公平、可解釋、安全和透明的系統:面向可信的AI//pubmed.ncbi.nlm.nih.gov/34809860/ 問題不再是人工智能(AI)是否會影響醫學的未來,而是“由誰、如何、在何處以及何時感受到這種有益或有害的影響”。基于人工智能的新技術和增強技術的發展速度正在加快,并滲透到每個行業。人工智能在改善人類生活和我們周圍的環境方面有著巨大的潛力;但是,我們必須小心地向前走,以便認識到它提供的機會和避免潛在的陷阱。

付費5元查看完整內容

相關內容

 是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。 人工智能是計算機科學的一個分支。

報告總結

近四十年來,美國國防部(DoD)首次制定了旨在對抗先進軍事對手--特別是中國和俄羅斯--的聯合作戰概念。上一次這樣的努力發生在20世紀70年代末和80年代初的冷戰高峰期,以應對蘇聯在歐洲中央戰線的常規優勢所帶來的戰略和行動挑戰。現在,正如2018年國防戰略(NDS)所強調的,聯合部隊必須 "優先考慮備戰",這包括為軍事優勢制定 "創新作戰概念"。由于作戰概念從根本上說是指導未來部隊設計和未來戰爭的愿景,聯合部隊首先必須回答它打算如何打未來戰爭的問題,然后再試圖回答它需要用什么打仗的問題。

然而,如果國防部要轉向 "聯合概念驅動的、洞察威脅的能力發展",它面臨著相當大的挑戰,因為它的聯合概念發展和實驗過程從根本上說是破裂的。 雖然后冷戰時代見證了發展聯合作戰概念的反復努力,但該過程未能產生創新的作戰方法來指導未來的部隊和能力發展。相反,這個過程產生的概念似乎是故意不推動重大變革的。這些概念并不是真正的 "聯合",而是由現有的服務概念組成的最低標準的組合,以服務的優先權為前提。任何能夠通過發展過程的創新的聯合概念都是如此的淡化和模糊,以至于它們不能引起變化(從而威脅到關鍵利益相關者的利益)。在這種環境下,單個服務概念勝過聯合概念,并驅動投資優先權。

然而,作戰概念和關鍵投資必須是聯合的,因為各軍種在作戰層面已經變得越來越相互依賴。此外,目前的戰爭演習和分析表明,這種作戰上的相互依賴將是未來與中國或俄羅斯等能力強大的同行對手發生沖突的一個關鍵方面--是作為一種優勢還是一種弱點,還有待觀察。我們可以預期,一個先進的、適應性強的對手會尋找美軍的任何差距和縫隙,并利用這些差距和縫隙來發揮其優勢。在這方面,目前的聯合部隊還不夠 "聯合",無法與一個已經發展出對抗美國關鍵的、長期的作戰優勢(如空中、海上和信息優勢)的對手進行高端戰爭。正如本文所討論的,在與同行對手的沖突中成功發動戰爭的規模和強度將需要全新的作戰方式,這反過來又需要一種強制功能,將單個服務能力整合到實際的 "聯合 "戰斗力中。最近發展以威脅為重點的聯合作戰概念--如果成功的話--代表了這種結果實際發生的最佳機會。

本文簡要討論了國防部過去在發展聯合概念方面的三種嘗試,包括空地戰、空海戰和最近的努力--先進能力和威懾小組(ACDP)。本報告利用這些例子來展示克服孤立和狹隘的軍種主導的努力所面臨的挑戰,并說明建立以軍種為中心的概念并給它們披上聯合的外衣的弊端。這些案例強調了聯合概念發展過程中持續存在的病癥是如何使冷戰后的聯合概念在鼓勵作戰創新或推動服務投資優先事項的變化方面毫無用處。

正在進行的開發新的聯合作戰概念工作為國防部提供了一個早該提供的機會,將其概念開發集中在具體的威脅和相應的作戰目標上。目前的努力是幾十年來國防部第一次圍繞應對具體的威脅來組織概念開發,而不是支持聯合部隊對模糊或未定義的對手群體進行作戰的理想化概念。然而,如果不對被廣泛認為是沒有促進思想競爭的共識過程做出重大改變,國防部就有可能重復它過去所犯的概念發展錯誤。此外,新的聯合概念必須通過實驗活動進行嚴格的測試和完善,以驗證其對未來部隊設計的可行性。目前還缺少實驗這一塊。

聯合參謀部正在努力重建其聯合概念開發能力,因為多年來它既沒有優先考慮這項工作,也沒有為其提供足夠的資源。產生真正的新的作戰方式,并有可能改變未來的部隊設計,將需要國防部長辦公室(OSD)、參謀長聯席會議主席和副主席(CJCS和VCJCS)的持續關注,以通過該系統推動新的聯合概念。國防部的高級領導層必須克服每個軍種推動共識產品的傾向,這些產品更多的是為了保護現有的優先事項和長期的特權,而不是產生創造性的想法。

該文件提出了以下建議,以改進聯合概念開發過程:

  • 將聯合概念開發的重點放在未來作戰環境中的優先挑戰上。
  • 賦予作戰指揮部推動聯合概念發展的權力。
  • 探討未來戰爭的其他設想,并通過廣泛的戰爭演習和實驗來驗證聯合概念,而不是通過共識。
  • 擴大實地和艦隊演習中的實驗。
  • 通過培養一種 "紅色思維 "的部門文化來加大思想碰撞。
  • 促進概念開發者和技術專家之間更緊密的結合。
  • 建立一個集中的、高水平的概念和能力發展組織。

修正流程是開發有用的聯合作戰概念的關鍵的第一步,但國防部還必須確保聯合概念開發從正確的角度出發,專注于正確的問題集,同時保持前瞻性。迄今為止,國防部對中國和俄羅斯的思考集中在保持或恢復聯合部隊在冷戰后 "單極時刻 "所擁有的作戰優勢水平上。然后,聯合參謀部提出的概念,如 "聯合愿景:2010",是以 "信息優勢 "的假設為前提的,這將有助于實現 "全譜系主導地位 "的既定目標。國防部的概念和能力發展應該側重于為中國和俄羅斯創造作戰困境,而不是追逐其現有業務方式的微不足道的邊際回報。

很明顯,國防部仍然被其傳統的作戰方式所束縛。參謀長聯席會議副主席約翰-海滕將軍說,在2020年底一系列兵棋推演的測試中,根據美軍過去30年的運作方式制定新的聯合作戰概念的初步努力證明是完全失敗的。

制定新的聯合作戰概念的最初嚴重地依賴傳統的作戰方式,盡管它打算對抗新的對手和新的作戰挑戰,這暴露了一個倉促的“產品”。一個成功的、以威脅為重點的作戰概念需要全面深入的分析--既要分析對手的能力和概念,也要分析聯合部隊在所設想的時間段內的能力和概念,并在深入研究概念的形成和完善之前需要時間來綜合各種投入。以前的聯合概念開發的趨勢是優先形成“產品”和達成共識,而不是更平凡但必要的深度分析工作,這對目前的努力來說不是好兆頭。

自《國家發展戰略》要求提出新的作戰概念以來,已經過去了三年多。國防部需要全新的作戰方式。如果美國軍隊繼續按照今天的方式運作,就不可能保持對同行對手的競爭力。如果這個過程陷入官方機構的爭論,或者在努力達成軍種共識的過程中只產生微小的變化,那將是一個不折不扣的悲劇。

最后,對作戰挑戰提出的概念性解決方案,無論多么合理,只有得到最高級別的文職和軍警領導人的認可和授權,才能推動計劃的改變。雖然該部門在冷戰后的記錄并不完全令人放心,但發展新的聯合作戰概念背后的政治和官方動力是相當大的,而且中國和俄羅斯構成的戰略和行動挑戰比來自伊朗、朝鮮或恐怖組織的挑戰要緊迫和嚴重得多。如果國防部能夠正確對待這一進程,并專注于為中國和俄羅斯創造困境,那么在聯合部隊的轉型方面的積極影響可能是深遠的。

新美國安全中心:

新美國安全中心(CNAS)的使命是制定強有力的、務實的和有原則的國家安全和國防政策。在其工作人員和顧問的專業知識和經驗的基礎上,CNAS通過創新的、基于事實的研究、想法和分析來吸引政策制定者、專家和公眾,以塑造和提升國家安全辯論。我們任務的一個關鍵部分是為今天和明天的國家安全領導人提供信息和準備。

CNAS位于華盛頓特區,由共同創始人Kurt M. Campbell和Michèle A. Flournoy于2007年2月成立。CNAS是一個501(c)3免稅的非營利組織。它的研究是獨立和無黨派的。

作為一個致力于組織、知識和個人誠信的最高標準的研究和政策機構,CNAS對其想法、項目、出版物、活動和其他研究活動保持嚴格的知識獨立性和唯一的編輯指導和控制。CNAS在政策問題上不采取機構立場,CNAS出版物的內容僅反映其作者的觀點。根據其使命和價值觀,CNAS不參與游說活動,并完全遵守所有適用的聯邦、州和地方法律。CNAS不會代表任何實體或利益從事任何代表活動或宣傳活動,如果中心接受來自非美國來源的資金,其活動將限于符合適用的聯邦法律的善意的學術、學術和研究相關活動。該中心每年在其網站上公開承認所有捐款的捐助者。

付費5元查看完整內容

摘要

人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。

引言

縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。

人工智能的進展

幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
 雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。

付費5元查看完整內容

工業人工智能 (AI) 是人工智能在工業中的應用,是第四次工業革命中價值創造的主要貢獻者。人工智能正被嵌入到廣泛的應用程序中,幫助組織獲得顯著的利益,并使他們能夠改變向市場提供價值的方式。

? 本文檔為支持人工智能的工業物聯網系統的開發、培訓、文檔編制、通信、集成、部署和操作提供指導和幫助。它面向來自 IT 和運營技術 (OT)、來自多個學科的業務和技術的決策者,包括業務決策者、產品經理、系統工程師、用例設計師、系統架構師、組件架構師、開發人員、集成商和系統操作員。

該文檔圍繞 IIC 工業互聯網參考架構中的架構觀點構建,即業務、使用、功能和實施觀點。該文件討論了推動人工智能采用的商業和價值創造考慮因素。它還詳細闡述了人工智能的使用、工業用例以及與之相關的道德、隱私、偏見、安全、勞工影響和社會問題。在技術方面,該文檔描述了與 AI 相關的架構、功能和數據注意事項,并討論了各種實施注意事項,例如性能、可靠性、數據屬性和安全性?。

人工智能的采用將在行業中加速。鑒于計算能力的快速增長、可用于訓練的數據的更廣泛可用性以及算法的日益復雜,人工智能技術將繼續發展。當前的 IT 標準和最佳實踐必須不斷發展,以解決 AI 本身的獨特特征以及與 IIoT 系統的安全性、可靠性和彈性相關的具體考慮因素。此外,人工智能技術的日益成熟將幫助人們認識到它的好處遠遠超過它的風險。 AI 標準生態系統也將繼續發展,例如 ISO/IEC JTC 1/SC42 正在進行的標準工作,為 JTC 1、IEC 和 ISO 委員會制定 AI 標準提供指導。

基于這些趨勢,毫無疑問,人工智能將繼續推動技術和功能上的可能性,因此預期合理的事情將同樣發展。對技術的態度和對其使用的商業期望也將繼續發展。

未來,我們可以期待使用人工智能技術成為常態,而不是例外,考慮到這項技術的社會效益,“不使用人工智能”最終可能會成為不負責任的做法。

付費5元查看完整內容

摘要

人工智能(AI)技術的發展使各種應用系統得以應用于現實世界,影響著人們的日常生活。然而,目前很多人工智能系統被發現容易受到無形的攻擊,對弱勢群體存在偏見,缺乏對用戶隱私的保護等,這不僅降低了用戶體驗,也侵蝕了社會對所有人工智能系統的信任。在這篇綜述中,我們努力為人工智能從業者提供一個全面的指南,以構建可信賴的人工智能系統。我們首先介紹了人工智能可信度的重要方面的理論框架,包括穩健性、泛化性、可解釋性、透明度、再現性、公平性、隱私保護、與人類價值觀的一致性和問責性。然后我們調研了行業中在這些方面的領先方法。為了統一目前零散的人工智能方法,我們提出了一種系統的方法,考慮人工智能系統的整個生命周期,從數據采集到模型開發,到開發和部署,最后到持續監測和治理。在這個框架中,我們向從業者和社會利益相關者(如研究人員和監管機構)提供具體的行動項目,以提高人工智能的可信度。最后,我們確定可信賴的人工智能系統未來發展的關鍵機遇和挑戰,我們確定需要向全面可信賴的人工智能系統轉變范式。

//www.zhuanzhi.ai/paper/00386996069b8168827d03f0c809a462

引言

人工智能(AI)的快速發展給人類社會帶來了巨大的經濟和社會前景。隨著人工智能在交通、金融、醫療、安全、娛樂等領域的廣泛應用,越來越多的社會意識到,我們需要這些系統是可信的。這是因為,考慮到這些人工智能系統的普遍性,違背利益相關者的信任可能會導致嚴重的社會后果。相比之下,人工智能從業者,包括研究人員、開發人員、決策者等,傳統上一直追求系統性能(也就是準確性)作為他們工作流程的主要指標。這一指標遠遠不足以反映對人工智能可信度的要求。除了系統性能外,人工智能系統的各個方面都應該被仔細考慮,以提高其可信度,包括但不限于健壯性、算法公平性、可解釋性、透明度等方面。

雖然最活躍的關于人工智能可信度的學術研究集中在模型的算法屬性上,但我們發現,單靠算法研究的發展不足以構建可信的人工智能產品。從行業角度看,人工智能產品的生命周期包括數據準備、算法設計、開發、部署、運營、監控、治理等多個階段。要在任何一個方面(如健壯性)獲得可信賴性,需要在系統生命周期的多個階段進行努力,如數據凈化、健壯算法、異常監控、風險審計等。另一方面,任何一個環節或任何一個方面的信任違約都可能破壞整個系統的可信賴性。因此,應該在人工智能系統的整個生命周期中建立和系統地評估人工智能的可信度。

除了通過在不同的可信賴性方面建立可信賴的要求來追求人工智能的可信賴性,這些方面之間的交互是現實世界值得信賴的人工智能系統中一個重要且有待探索的話題。例如,對數據隱私的需求可能會干擾詳細解釋系統輸出的愿望,而對算法公平性的追求可能會不利于某些群體體驗到的準確性和穩健性。因此,僅僅貪婪地追求這些不同的方面并不一定會產生通向更可靠的AI系統的最佳解決方案。值得信賴的人工智能應該通過權衡和聯合優化多個值得信賴的方面來建立。以上事實表明,有必要采取系統的方法來改變目前的人工智能范式,以獲得可信賴性。這需要多學科相關者的意識和合作,相關者在系統生命周期的不同可信方面和不同階段工作。為了幫助開發這種系統方法,我們以一種可訪問的方式組織多學科知識,讓人工智能從業者了解人工智能的可信賴性,并為構建可信賴的人工智能系統提供操作和系統的指導。我們的主要貢獻包括:

  • 我們調研和擴大在最近討論關于AI可信賴性,建立值得信賴的AI系統的迫切需要得到我們的東西從工業的角度來看,包括魯棒性、泛化,可解釋性、透明度、復現性、公平、隱私保護、價值一致和責任(第2節)。

  • 我們廣泛回顧了各種利益相關者為實現這些需求所做的努力,包括積極的學術研究、工業發展技術以及治理和管理機制。這種多樣化和全面的方法集合有助于提供人工智能可信度的整體圖景,并彌合來自不同背景的從業者之間的知識鴻溝(第3節)。

  • 我們剖析了工業應用中人工智能系統的整個開發和部署生命周期,并討論了從數據到人工智能模型,從系統部署到操作的每個階段如何提高人工智能的可信度。我們提出了一個系統框架來組織值得信賴的人工智能的多學科和碎片化方法,并進一步提出將人工智能值得信賴作為一個連續的工作流,在人工智能系統生命周期的每個階段納入反饋。我們也分析了在實踐中不同可信度方面之間的關系(相互增強,有時是權衡)。因此,我們的目標是為研究人員、開發人員、操作人員和法律專家等人工智能從業者提供一個可訪問的、全面的指南,以快速理解通向人工智能可信度的方法(第4節)。

  • 我們討論了值得信賴的人工智能的突出挑戰,在不久的將來,研究社區和行業從業者應該專注于解決這些挑戰。我們確定了幾個關鍵問題,包括需要對人工智能可信度的幾個方面(如健壯性、公平性和可解釋性)有更深層次的基礎理解,用戶意識的重要性,以及促進跨學科和國際合作(第5節)。

付費5元查看完整內容

摘要

在過去的幾十年里,人工智能技術迅猛發展,改變了每個人的日常生活,深刻改變了人類社會的進程。開發人工智能的目的是通過減少勞動、增加生活便利、促進社會公益來造福人類。然而,最近的研究和人工智能應用表明,人工智能可能會對人類造成意外傷害,例如,在安全關鍵的情況下做出不可靠的決定,或通過無意中歧視一個或多個群體而破壞公平。因此,值得信賴的人工智能最近受到越來越多的關注,人們需要避免人工智能可能給人們帶來的負面影響,以便人們能夠充分信任人工智能技術,與人工智能技術和諧相處。近年來,人們對可信人工智能進行了大量的研究。在本次綜述中,我們從計算的角度對值得信賴的人工智能進行了全面的評述,幫助讀者了解實現值得信賴的人工智能的最新技術。值得信賴的人工智能是一個大而復雜的課題,涉及方方面面。在這項工作中,我們關注實現值得信賴的人工智能的六個最關鍵方面: (i) 安全性和健壯性,(ii) 非歧視和公平,(iii) 可解釋性,(iv) 隱私,(v) 問責性和可審計性,和(vi) 環境福祉。對于每個維度,我們根據一個分類回顧了最近的相關技術,并總結了它們在真實系統中的應用。我們還討論了不同維度之間的協調和沖突互動,并討論了值得信賴的人工智能在未來研究的潛在方面。

引言

人工智能(AI)是一門研究和發展模擬、擴展和拓展人類智能的理論、方法、技術和應用系統的科學,為現代人類社會帶來了革命性的影響。從微觀角度來看,人工智能在我們生活的許多方面發揮著不可替代的作用。現代生活充滿了與人工智能應用的互動: 從用人臉識別解鎖手機,與語音助手交談,到購買電子商務平臺推薦的產品; 從宏觀角度看,人工智能創造了巨大的經濟成果。世界經濟論壇的《2020年就業前景報告》[136]預測,人工智能將在5年內創造5800萬個新就業崗位。到2030年,人工智能預計將產生13萬億美元的額外經濟利潤,對全球GDP的年增長率貢獻1.2%[54]。然而,隨著其快速而令人印象深刻的發展,人工智能系統也暴露了其不值得信任的一面。例如,安全至關重要的人工智能系統在對抗攻擊時很脆弱。無人駕駛汽車的深度圖像識別系統可能無法識別被惡意攻擊者修改的路標[345],對乘客安全構成極大威脅。此外,人工智能算法可能會導致偏見和不公平。在線人工智能聊天機器人可能會產生不雅、種族主義和性別歧視的內容[335],冒犯用戶,并產生負面社會影響。此外,人工智能系統還存在泄露用戶隱私和商業秘密的風險。黑客可以利用人工智能模型產生的特征向量來重構私人輸入數據,如指紋[25],從而泄露用戶的敏感信息。這些漏洞會使現有的人工智能系統無法使用,并可能造成嚴重的經濟和安全后果。對于人工智能來說,要想在一個領域取得進步、得到更廣泛的應用并創造更多的經濟價值,對誠信的擔憂已經成為一個巨大的障礙。因此,如何構建可信的人工智能系統成為學術界和業界關注的焦點。

近年來,出現了大量關于可信人工智能的文獻。隨著構建可信人工智能的需求日益增長,總結已有成果并探討未來可能的研究方向勢在必行。在本次綜述中,我們提供了值得信賴的人工智能的全面概述,以幫助新手對什么使人工智能系統值得信賴有一個基本的了解,并幫助老兵跟蹤該領域的最新進展。我們澄清了可信人工智能的定義,并介紹了可信人工智能的六個關鍵維度。對于每個維度,我們給出了它的概念和分類,并回顧了有代表性的算法。我們還介紹了不同維度之間可能的互動,并討論了值得信賴的人工智能尚未引起足夠關注的其他潛在問題。除了定義和概念,我們的綜述還關注實現可信人工智能每個維度的具體計算解決方案。這一視角有別于現有的一些相關工作,如政府指南[307],建議如何以法律法規的形式建立一個值得信賴的人工智能系統,或綜述[51,318],從高層次、非技術的角度討論值得信賴的人工智能的實現。

根據歐盟(EU)最近提供的人工智能倫理指南[307],一個值得信賴的人工智能系統應符合四項倫理原則: 尊重人類自主、防止傷害、公平和可解釋性。基于這四個原則,人工智能研究人員、實踐者和政府提出了值得信賴的人工智能的各個具體維度[51,307,318]。在這項調查中,我們重點關注已經被廣泛研究的六個重要和相關的維度。如圖1所示,它們是安全性和穩健性、非歧視性和公平性、可解釋性、隱私性、可審計性和可問責性,以及環境福祉。

余下論文綜述組織如下。在第2節中,我們明確了值得信賴的AI的定義,并提供了值得信賴的AI的各種定義,幫助讀者理解來自計算機科學、社會學、法律、商業等不同學科的研究人員是如何定義值得信賴的AI系統的。然后,我們將值得信賴的人工智能與倫理人工智能和負責任的人工智能等幾個相關概念區分開來。在第3節中,我們詳細介紹了安全性和穩健性的維度,這要求人工智能系統對輸入的噪聲擾動具有穩健性,并能夠做出安全的決策。近年來,大量研究表明,人工智能系統,尤其是那些采用深度學習模型的系統,可能對有意或無意的輸入擾動非常敏感,對安全至關重要的應用構成巨大風險。例如,如前所述,自動駕駛汽車可能會被改變的路標欺騙。此外,垃圾郵件檢測模型可能會被設計良好的文本[30]郵件欺騙。因此,垃圾郵件發送者可以利用這個弱點,使他們的電子郵件不受檢測系統的影響,這將導致糟糕的用戶體驗。已經證明,人工智能算法可以通過提供的訓練例子學習人類的歧視,并做出不公平的決定。例如,一些人臉識別算法難以識別非洲裔美國人的面孔[280]或將其誤分類為大猩猩[168]。此外,語音聽寫軟件在識別男性聲音時通常比識別女性聲音表現得更好[277]。

在第4節中,我們介紹了非歧視和公平的維度,在這個維度中,人工智能系統被期望避免對某些群體或個人的不公平偏見。在第5節中,我們討論了可解釋性的維度,這表明AI的決策機制系統應該能夠向利益相關者解釋(他們應該能夠理解解釋)。例如,人工智能技術已經被用于根據患者的癥狀和身體特征進行疾病診斷[289]。在這種情況下,黑箱決策是不可接受的。推理過程應該對醫生和患者透明,以確保診斷的每個細節都是準確的。

研究人員發現,一些人工智能算法可以存儲和暴露用戶的個人信息。例如,在人類會話語料庫上訓練的對話模型可以記住敏感信息,如信用卡號碼,這些信息可以通過與模型交互而得到[164]。在第6節中,我們提出了隱私的維度,這需要一個人工智能系統來避免泄露任何私人信息。在第7節中,我們描述了可審計性和問責性的維度,該維度期望人工智能系統由第三方評估,并在必要時為人工智能故障分配責任,特別是在關鍵應用中[307]。最近,人工智能系統對環境的影響引起了人們的關注,因為一些大型人工智能系統消耗了大量的能源。作為一項主流的人工智能技術,深度學習正在朝著追求更大的模型和更多的參數的方向發展。因此,會消耗更多的存儲和計算資源。一項研究[312]表明,訓練BERT模型[110]需要排放大約1400磅二氧化碳,這與跨美國的往返飛行相當。因此,人工智能系統應該是可持續的和環境友好的。

在第8節中,我們回顧了環境福利的維度。在第9節中,我們將討論不同維度之間的相互作用。最近的研究表明,值得信賴的AI的不同維度之間存在一致性和沖突[307,333]。例如,深度神經網絡的魯棒性和可解釋性緊密相連,魯棒模型往往更具有可解釋性[122,322],反之亦然[255]。此外,研究表明,在某些情況下,健壯性和隱私之間存在權衡。例如,對抗性防御方法會使模型更容易受到成員推理攻擊,增加了訓練數據泄漏的風險[308]。

除了上述六個維度,值得信賴的人工智能還有更多的維度,如人工代理和監督、可信性等。盡管這些額外的維度與本文中考慮的6個維度一樣重要,但它們還處于開發的早期階段,相關文獻非常有限,特別是對于計算方法而言。因此,在第10節中,我們將討論值得信賴的人工智能的這些方面,作為未來需要專門研究的方向。

付費5元查看完整內容

主題: DeepHealth: Deep Learning for Health Informatics

簡介: 機器學習和深度學習已成為一種新趨勢,開啟了一個全新的研究時代。事實上,深度學習也已經被運用到了各個領域,在健康衛生學領域對于人工智能的需求正快速增加,并且在醫療健康領域人工智能應用的潛在好處也已經被證明。 深度學習在衛生信息學領域有許多優點,它可以在沒有先驗的情況下進行訓練,這有利于克服缺乏標記數據而導致的訓練問題,并可以緩解臨床醫生的負擔。例如,將深度學習用于醫學圖像,可以處理數據復雜性,檢測重疊的目標點和3維或4維醫學圖像。 出于對深度學習在醫療健康領域的信心和期望,最近這一領域的論文數量增加的非常迅速,至少采用了一套基礎的EHR系統的醫院的數量也在井噴式的增加。然而,將深度學習應用于衛生信息學仍舊有一些挑戰急待解決(如數據的信息性,缺乏標記數據,數據的可信度和完整性,模型的可解釋性和可靠性等)。

付費5元查看完整內容
北京阿比特科技有限公司