由于多種因素的影響,自動機器學習(AutoML)這些年一直在快速發展,數據科學家需要創建機器學習管道原型來決定如何進行解決,并為非專業人士提供解決方案。已經創建了一些AutoML框架,但它們受到能解決的問題類型、機器學習原語的數量、管道表示語言和嚴格數據描述的限制。這些限制大多是由相當大的工程量造成的。D3M項目旨在擴大AutoML的范圍,提供創建AutoML系統所需的工具,使其能夠解決超出大部分框架的問題類型,并為用戶提供工具,使機器學習工具不需要太多的專業知識。此外,該項目還致力于實現AutoML組件的標準化,以便對不同的框架進行公平的比較,并通過開源共享該項目期間創建的基礎設施來幫助研發界改善該領域。
本文在D3M上的工作主要集中在兩個方面:在D3M小組內創建標準化AutoML工具,以及創建具有不同目的的AutoML系統和框架。在這份報告中,將介紹對該項目的主要貢獻以及AutoML系統的演變。在該項目中,創建了評估AutoML系統的工具,開發了三個AutoML系統,開發了被多個系統廣泛使用的原型,設計了測試原型的自動化框架,并通過創建AutoKeras對AutoML研發界產生了巨大影響。
隨著技術的飛速發展和威脅環境變得更加復雜,今天的海軍行動經常面臨著具有挑戰性的決策空間。人工智能(AI)的進步為解決海軍行動中日益復雜的問題提供了潛在的解決方案。未來的人工智能系統提供了潛在的意義深遠的好處--提高對態勢的認識,增加對威脅和對手能力和意圖的了解,識別和評估可能的戰術行動方案,并提供方法來預測行動方案決定的結果和影響。人工智能系統將在支持未來海軍作戰人員和保持作戰和戰術任務優勢方面發揮關鍵作用。
人工智能系統為海戰提供了優勢,但前提是這些系統的設計和實施方式能夠支持有效的作戰人員-機器團隊,改善作戰情況的不確定性,并提出改善作戰和戰術結果的建議。實施人工智能系統,以滿足海軍應用的這些苛刻需求,給工程設計界帶來了挑戰。本文確定了四個挑戰,并描述了它們如何影響戰爭行動、工程界和海軍任務。本文提供了通過研究和工程倡議來解決這些挑戰的解決思路。
人工智能是一個包括許多不同方法的領域,目的是創造具有智能的機器(Mitchell 2019)。自動化系統的運作只需要最小的人類輸入,并經常根據命令和規則執行重復性任務。人工智能系統是自動化機器,執行模仿人類智能的功能。它們將從過去的經驗中學習到的新信息融入其中,以做出決定并得出結論。
如表1所述,人工智能系統有兩種主要類型。第一種類型是明確編程的專家系統。Allen(2020,3)將專家系統描述為手工制作的知識系統,使用傳統的、基于規則的軟件,將人類專家的主題知識編入一長串編程的 "如果給定x輸入,則提供y輸出"的規則。這些系統使用傳統的編程語言。第二種類型是ML系統,從大型數據集中進行訓練。ML系統自動學習并從經驗中改進,而不需要明確地進行編程。一旦ML系統被 "訓練",它們就被用于操作,以產生新的操作數據輸入的結果。
表1. 兩類人工智能系統
人工智能系統--包括專家系統和學習系統--為海軍提供了巨大的潛力,在大多數任務領域有不同的應用。這些智能系統可以擴展海軍的能力,以了解復雜和不確定的情況,制定和權衡選擇,預測行動的成功,并評估后果。它們提供了支持戰略、作戰計劃和戰術領域的潛力。
本文確定了工程設計界必須解決的四個挑戰,以便為未來海戰任務實施人工智能系統。表2強調了這四個挑戰領域。這些挑戰包括:(1)復雜的海戰應用領域;(2)需要收集大量與作戰相關的數據來開發、訓練和驗證人工智能系統;(3)人工智能系統工程的一些新挑戰;(4)存在對手的人工智能進展,不斷變化和發展的威脅,以及不斷變化的人工智能系統的網絡弱點。本文側重于海軍戰爭的四個挑戰領域,但認識到這些挑戰可以很容易地被概括為整個軍隊在未來人工智能系統可能應用的所有戰爭領域中廣泛存在的挑戰。
表2. 為海軍實施人工智能系統的四個挑戰領域
人工智能正被視為一種能力,可應用于廣泛的應用,如批準貸款、廣告、確定醫療、規劃航運路線、實現自動駕駛汽車和支持戰爭決策。每個不同的應用領域都提出了一系列的挑戰,人工智能系統必須與之抗衡,才能成為一種增加價值的可行能力。表3比較了一組領域應用的例子,從潛在的人工智能系統解決方案的角度說明了挑戰的領域。該表在最上面一行列出了一組10個因素,這些因素對一個特定的應用程序產生了復雜性。根據每個因素對作為實施人工智能的領域的整體復雜性的貢獻程度,對六個應用領域的特征進行了定性評估。顏色代表低貢獻(綠色)、中貢獻(黃色)和高貢獻(紅色)。
表3中最上面一行顯示的特征包括: (1)認識上的不確定性水平(情況知識的不確定性程度),(2)情況的動態性,(3)決策時間表(可用于決策的時間量),(4)人類用戶和人工智能系統之間的互動所涉及的錯綜復雜的問題、 (5)資源的復雜性(數量、類型、它們之間的距離以及它們的動態程度),(6)是否涉及多個任務,(7)所需訓練數據集的復雜性(大小、異質性、有效性、脆弱性、可獲得性等 8)對手的存在(競爭者、黑客或徹頭徹尾的敵人),(9)可允許的錯誤幅度(多少決策錯誤是可以接受的),以及(10)決策后果的嚴重程度。該表的定性比較旨在提供一個高層次的相對意義,即基于一組樣本的貢獻因素,不同應用領域的不同復雜程度。
表3. 影響應用復雜性的因素比較
對于所有的應用領域來說,人工智能系統的工程都是具有挑戰性的。人工智能系統在本質上依賴于具有領域代表性的數據。獲得具有領域代表性的數據會帶來基于數據大小、可用性、動態性和不確定性的挑戰。決策時間--由情況的時間動態決定--會給人工智能系統工程帶來重大挑戰--特別是當一個應用領域的事件零星發生和/或意外發生時;以及當決策是時間緊迫的時候。具有更多決策時間、充分訪問大型數據集、直接的用戶互動、完善的目標和非致命后果的應用,如貸款審批、廣告、醫療診斷(在某種程度上)面臨工程挑戰,但其復雜程度較低。確定最佳運輸路線和為自動駕駛汽車設計AI系統是更復雜的工作。這些應用是動態變化的,做決定的時間較短。航運路線將在可能的路線數量上具有復雜性--這可能會導致許多可能的選擇。然而,航運錯誤是有空間的,而且后果通常不會太嚴重。對于自動駕駛汽車來說,決策錯誤的空間非常小。在這種應用中,決策失誤會導致嚴重的事故。
影響開發支持海戰決策的人工智能系統的因素在表3所示的所有類別中都具有高度的復雜性。因此,戰術戰爭領域對工程和實施有效的人工智能系統作為解決方案提出了特別棘手的挑戰。表4強調了導致這種復雜性的海戰領域的特點。作為一個例子,海軍打擊力量的行動可以迅速從和平狀態轉變為巨大的危險狀態--需要對威脅保持警惕并采取適當的反應行動--所有這些都是在高度壓縮的決策時間內進行。戰術威脅可能來自水下、水面、空中、陸地、太空,甚至是網絡空間,導致需要處理多種時間緊迫的任務。由于海軍和國防資產在艦艇、潛艇、飛機、陸地和太空中,戰術決策空間必須解決這些分散和多樣化資源的最佳協作使用。制定有效的戰術行動方案也必須在高度動態的作戰環境中進行,并且只有部分和不確定的情況知識。決策空間還必須考慮到指揮權、交戰規則和戰術理論所帶來的限制。人類作為戰術決策者的角色增加了決策空間的復雜性--信息過載、操作錯誤、人機信任和人工智能的模糊性/可解釋性問題等挑戰。最后,對于戰術決策及其可能的后果來說,風險可能非常大。
表4. 導致戰術決策復雜性的因素
解決高度復雜的決策領域是對海軍的挑戰。人工智能為解決海軍作戰的復雜性提供了一個潛在的解決方案,即處理大量的數據,處理不確定性,理解復雜的情況,開發和評估決策選擇,以及理解風險水平和決策后果。Desclaux和Prestot(2020)提出了一個 "認知三角",其中人工智能和大數據被應用于支持作戰人員,以實現信息優勢、控制論信心和決策優勢。約翰遜(2019年)開發了一個工程框架和理論,用于解決高度復雜的問題空間,這些問題需要使用智能和分布式人工智能系統來獲得情況意識,并做出適應動態情況的協作行動方案決定。約翰遜(2020a)建立了一個復雜的戰術場景模型,以證明人工智能輔助決策對戰術指揮和控制(C2)決策的好處。約翰遜(2020b)開發了一個預測分析能力的概念設計,作為一個自動化的實時戰爭游戲系統來實施,探索不同的可能的戰術行動路線及其預測的效果和紅色部隊的反應。首先,人工智能支持的C2系統需要描述戰術行動期間的復雜程度,然后提供一個自適應的人機組合安排來做出戰術決策。這個概念包括根據對目前戰術情況的復雜程度最有效的方法來調整C2決策的自動化水平(人與機器的決策角色)。約翰遜(2021年)正在研究這些概念性工程方法在各種防御用例中的應用,包括空中和導彈防御、超視距打擊、船舶自衛、無人機操作和激光武器系統。
在海軍作戰中實施人工智能系統的一個額外挑戰是在戰術邊緣施加的限制。分散的海軍艦艇和飛機的作戰行動構成了戰術邊緣--在有限的數據和通信下作戰。"在未來,戰術邊緣遠離指揮中心,通信和計算資源有限,戰場形勢瞬息萬變,這就導致在嚴酷復雜的戰地環境中,網絡拓撲結構連接薄弱,變化迅速"(Yang et. al. 2021)。戰術邊緣網絡也容易斷開連接(Sridharan et. al. 2020)。相比之下,許多商業人工智能系統依賴于基于云的或企業內部的處理和存儲,而這些在海戰中是不存在的。在戰術邊緣實施未來的人工智能系統時,必須進行仔細的設計考慮,以了解哪些數據和處理能力可用。這可能會限制人工智能系統在邊緣所能提供的決策支持能力。
在軍事領域使用人工智能必須克服復雜性的挑戰障礙,在某些情況下,人工智能的加入可能會增加復雜性。辛普森等人(2021)認為,將人工智能用于軍事C2可能會導致脆弱性陷阱,在這種情況下,自動化功能增加了戰斗行動的速度,超出了人類的理解能力,最終導致 "災難性的戰略失敗"。Horowitz等人(2020)討論了通過事故、誤判、增加戰爭速度和升級以及更大的殺傷力來增加國際不穩定和沖突。Jensen等人(2020)指出,人工智能增強的軍事系統增加的復雜性將增加決策建議和產生的信息的范圍、重要性和意義的不確定性;如果人類決策者對產出缺乏信心和理解,他們可能會失去對人工智能系統的信任。
實施人工智能系統的第二個挑戰是它們依賴并需要大量的相關和高質量的數據用于開發、訓練、評估和操作。在海戰領域滿足這些數據需求是一個挑戰。明確編程的專家系統在開發過程中需要數據進行評估和驗證。ML系統在開發過程中對數據的依賴性甚至更大。圖1說明了ML系統如何從代表作戰條件和事件的數據集中 "學習"。
ML系統的學習過程被稱為被訓練,開發階段使用的數據被稱為訓練數據集。有幾種類型的ML學習或訓練--它們是監督的、無監督的和強化的方法。監督學習依賴于地面真相或關于輸出值應該是什么的先驗知識。監督學習算法的訓練是為了學習一個最接近給定輸入和期望輸出之間關系的函數。無監督學習并不從地面真相或已知的輸出開始。無監督學習算法必須在輸入數據中推斷出一個自然結構或模式。強化學習是一種試錯法,允許代理或算法在獎勵所需行為和/或懲罰不需要的行為的基礎上學習。所有三種類型的ML學習都需要訓練數據集。在部署后或運行階段,ML系統繼續需要數據。
圖1顯示,在運行期間,ML系統或 "模型 "接收運行的實時數據,并通過用其 "訓練 "的算法處理運行數據來確定預測或決策結果。因此,在整個系統工程和采購生命周期中,ML系統與數據緊密相連。ML系統是從訓練數據集的學習過程中 "出現 "的。ML系統是數據的質量、充分性和代表性的產物。它們完全依賴于其訓練數據集。
圖1. 使用數據來訓練機器學習系統
美國海軍開始認識到對這些數據集的需求,因為許多領域(戰爭、供應鏈、安全、后勤等)的更多人工智能開發人員正在了解人工智能解決方案的潛在好處,并開始著手開發人工智能系統。在某些情況下,數據已經存在并準備好支持人工智能系統的開發。在其他情況下,數據存在但沒有被保存和儲存。最后,在其他情況下,數據并不存在,海軍需要制定一個計劃來獲得或模擬數據。
收集數據以滿足海軍領域(以及更廣泛的軍事領域)的未來人工智能/ML系統需求是一個挑戰。數據通常是保密的,在不同的項目和系統中被分隔開來,不容易從遺留系統中獲得,并且不能普遍代表現實世界行動的復雜性和多樣性。要從并非為數據收集而設計的遺留系統中獲得足夠的數據,可能非常昂貴和費時。數據收集可能需要從戰爭游戲、艦隊演習、系統測試、以及建模和模擬中收集。此外,和平時期收集的數據并不代表沖突和戰時的操作。海軍(和軍方)還必須教導人工智能系統在預計的戰時行動中發揮作用。這將涉及想象可能的(和可能的)戰時行動,并構建足夠的ML訓練數據。
數據收集的另一個挑戰是潛在的對抗性黑客攻擊。對于人工智能/ML系統來說,數據是一種珍貴的商品,并提出了一種新的網絡脆弱性形式。對手可以故意在開發過程中引入有偏見或腐敗的數據,目的是錯誤地訓練AI/ML算法。這種邪惡的網絡攻擊形式可能很難被發現。
海軍正在解決這一數據挑戰,開發一個數據基礎設施和組織來管理已經收集和正在收集的數據。海軍的Jupiter計劃是一個企業數據和分析平臺,正在管理數據以支持AI/ML的發展和其他類型的海軍應用,這些應用需要與任務相關的數據(Abeyta,2021)。Jupiter努力的核心是確定是否存在正確的數據類型來支持人工智能應用。為了生產出在行動中有用的人工智能/ML系統,海軍需要在游戲中保持領先,擁有能夠代表各種可能情況的數據集,這些情況跨越了競爭、沖突和危機期間的行動范圍。因此,數據集的開發和管理必須是一項持續的、不斷發展的努力。
第三個挑戰是,人工智能系統的工程需要改變傳統的系統工程(SE)。在傳統系統中,行為是設定的(確定性的),因此是可預測的:給定一個輸入和條件,系統將產生一個可預測的輸出。一些人工智能解決方案可能涉及到系統本身的復雜性--適應和學習--因此產生不可預見的輸出和行為。事實上,一些人工智能系統的意圖就是要做到這一點--通過承擔一些認知負荷和產生智能建議,與人類決策者合作。表5強調了傳統系統和人工智能系統之間的區別。需要有新的SE方法來設計智能學習系統,并確保它們對人類操作者來說是可解釋的、可信任的和安全的。
SE作為一個多學科領域,在海軍中被廣泛使用,以將技術整合到連貫而有用的系統中,從而完成任務需求(INCOSE 2015)。SE方法已經被開發出來用于傳統系統的工程設計,這些系統可能是高度復雜的,但也是確定性的(Calvano和John 2004)。如表5所述,傳統系統具有可預測的行為:對于一個給定的輸入和條件,它們會產生可預測的輸出。然而,許多海軍應用的人工智能系統在本質上將是復雜的、適應性的和非決定性的。Raz等人(2021年)解釋說,"SE及其方法的雛形基礎并不是為配備人工智能(即機器學習和深度學習)的最新進展、聯合的多樣化自主系統或多領域操作的工程系統而設想的。" 對于具有高風險后果的軍事系統來說,出錯的余地很小;因此,SE過程對于確保海軍中人工智能系統的安全和理想操作至關重要。
表5. 傳統系統和人工智能系統的比較
在整個系統生命周期中,將需要改變SE方法,以確保人工智能系統安全有效地運行、學習和適應,以滿足任務需求并避免不受歡迎的行為。傳統的SE過程的大部分都需要轉變,以解決人工智能系統的復雜和非確定性的特點。在人工智能系統的需求分析和架構開發階段需要新的方法,這些系統將隨著時間的推移而學習和變化。系統驗證和確認階段將必須解決人工智能系統演化出的突發行為的可能性,這些系統的行為不是完全可預測的,其內部參數和特征正在學習和變化。運營和維護將承擔重要的任務,即隨著人工智能系統的發展,在部署期間不斷確保安全和理想的行為。
SE界意識到,需要新的流程和實踐來設計人工智能系統。國際系統工程師理事會(INCOSE)最近的一項倡議正在探索開發人工智能系統所需的SE方法的變化。表6強調了作為該倡議一部分的五個SE重點領域。除了非決定性的和不斷變化的行為,人工智能系統可能會出現新類型的故障模式,這些故障模式是無法預料的,可能會突然發生,而且其根本原因可能難以辨別。穩健設計--或確保人工智能系統能夠處理和適應未來的情景--是另一個需要新方法的SE領域。最后,對于有更多的人機互動的人工智能系統,必須仔細注意設計系統,使它們值得信賴,可以解釋,并最終對人類決策者有用。
表6.人工智能系統工程中的挑戰(改編自:Robinson,2021)。
SE研究人員正在研究人工智能系統工程所涉及的挑戰,并開發新的SE方法和對現有SE方法的必要修改。Johnson(2019)開發了一個SE框架和方法,用于工程復雜的適應性系統(CASoS)解決方案,涉及分布式人工智能系統的智能協作。這種方法支持開發智能系統的系統,通過使用人工智能,可以協作產生所需的突發行為。Johnson(2021)研究了人工智能系統產生的潛在新故障模式,并提出了一套跨越SE生命周期的緩解和故障預防策略。她提出了元認知,作為人工智能系統自我識別內部錯誤和失敗的設計方案。Cruz等人(2021年)研究了人工智能在空中和導彈防御應用中使用人工智能輔助決策的安全性。他們為計劃使用人工智能系統的軍事項目編制了一份在SE開發和運行階段需要實施的策略和任務清單。Hui(2021年)研究了人類作戰人員與人工智能系統合作進行海軍戰術決策時的信任動態。他制定了工程人工智能系統的SE策略,促進人類和機器之間的 "校準 "信任,這是作為適當利用的最佳信任水平,避免過度信任和不信任,并在信任失敗后涉及信任修復行動。Johnson等人(2014)開發了一種SE方法,即協同設計,用于正式分析人機功能和行為的相互依賴性。研究人員正在使用協同設計方法來設計涉及復雜人機交互的穩健人工智能系統(Blickey等人,2021年,Sanchez 2021年,Tai 2021年)。
數據的作用對于人工智能系統的開發和運行來說是不可或缺的,因此需要在人工智能系統的SE生命周期中加入一個持續不斷的收集和準備數據的過程。Raz等人(2021)提出,SE需要成為人工智能系統的 "數據策劃者"。他們強調需要將數據策劃或轉化為可用的結構,用于開發、訓練和評估AI算法。French等人(2021)描述了需要適當的數據策劃來支持人工智能系統的發展,他們強調需要確保數據能夠代表人工智能系統將在其中運行的預期操作。他們強調需要安全訪問和保護數據,以及需要識別和消除數據中的固有偏見。
SE界正處于發展突破和進步的早期階段,這些突破和進步是在更復雜的應用中設計人工智能系統所需要的。這些進展需要與人工智能的進展同步進行。在復雜的海軍應用以及其他非海軍和非軍事應用中實施人工智能系統取決于是否有必要的工程實踐。SE實踐必須趕上AI的進步,以確保海軍持續的技術優勢。
海軍在有效實施人工智能系統方面面臨的第四個挑戰是應對對手。海軍的工作必須始終考慮對手的作用及其影響。表7確定了在海軍實施人工智能系統時必須考慮的與對手有關的三個挑戰:(1)人工智能技術在許多領域迅速發展,海軍必須注意同行競爭國的軍事應用進展,以防止被超越,(2)在海軍應用中實施人工智能系統和自動化會增加網絡脆弱性,以及(3)海軍應用的人工智能系統需要發展和適應,以應對不斷變化的威脅環境。
表7. AI系統的對抗性挑戰
同行競爭國家之間發展人工智能能力的競賽,最終是為了進入對手的決策周期,以便比對手更快地做出決定和采取行動(Schmidt等人,2021年)。人工智能系統提供了提高決策質量和速度的潛力,因此對獲得決策優勢至關重要。隨著海軍對人工智能解決方案的探索,同行的競爭國家也在做同樣的事情。最終實現將人工智能應用于海軍的目標,不僅僅取決于人工智能研究。它需要適當的數據收集和管理,有效的SE方法,以及仔細考慮人類與AI系統的互動。海軍必須承認,并采取行動解決實施人工智能系統所涉及的挑戰,以贏得比賽。
網絡戰是海軍必須成功參與的另一場競賽,以保持在不斷沖擊的黑客企圖中的領先地位。網絡戰的特點是利用計算機和網絡來攻擊敵人的信息系統(Libicki, 2009)。海軍對人工智能系統的實施導致了更多的網絡攻擊漏洞。人工智能系統的使用在本質上依賴于訓練和操作數據,導致黑客有機會在開發階段和操作階段用腐敗的數據欺騙或毒害系統。如果一個對手獲得了對一個運行中的人工智能系統的控制,他們可能造成的傷害將取決于應用領域。對于支持武器控制決策的自動化,其后果可能是致命的。海軍必須注意人工智能系統開發過程中出現的特殊網絡漏洞。必須為每個新的人工智能系統實施仔細的網絡風險分析和網絡防御戰略。海軍必須小心翼翼地確保用于開發、訓練和操作人工智能系統的數據集在整個人工智能系統的生命周期中受到保護,免受網絡攻擊(French等人,2021)。
威脅環境的演變是海軍在開發AI系統時面臨的第三個對抗性挑戰。對手的威脅空間隨著時間的推移不斷變化,武器速度更快、殺傷力更大、監視資產更多、反制措施更先進、隱身性更強,這對海軍能夠預測和識別新威脅、應對戰斗空間的未知因素構成了挑戰。尤其是人工智能系統,必須能夠加強海軍感知、探測和識別新威脅的能力,以幫助它們從未知領域轉向已知領域的過程。他們必須適應新的威脅環境,并在行動中學習,以了解戰斗空間中的未知因素,并通過創新的行動方案快速應對新的威脅(Grooms 2019, Wood 2019, Jones et al 2020)。海軍可以利用人工智能系統,通過研究特定區域或領域的長期數據,識別生活模式的異常(Zhao等人,2016)。最后,海軍可以探索使用人工智能來確定新的和有效的行動方案,使用最佳的戰爭資源來解決棘手的威脅情況。
人工智能系統為海軍戰術決策的優勢提供了相當大的進步潛力。然而,人工智能系統在海戰應用中的實施帶來了重大挑戰。人工智能系統與傳統系統不同--它們是非決定性的,可以學習和適應--特別是在用于更復雜的行動時,如高度動態的、時間關鍵的、不確定的戰術行動環境中,允許的誤差范圍極小。本文確定了為海戰行動實施人工智能系統的四個挑戰領域:(1)開發能夠解決戰爭復雜性的人工智能系統,(2)滿足人工智能系統開發和運行的數據需求,(3)設計這些新穎的非確定性系統,以及(4)面對對手帶來的挑戰。
海軍必須努力解決如何設計和部署這些新穎而復雜的人工智能系統,以滿足戰爭行動的需求。作者在這一工作中向海軍提出了三項建議。
1.第一個建議是了解人工智能系統與傳統系統之間的差異,以及伴隨著人工智能系統的開發和實施的新挑戰。
人工智能系統,尤其是那些旨在用于像海戰這樣的復雜行動的系統,其本身就很復雜。它們在應對動態戰爭環境時將會學習、適應和進化。它們將變得不那么容易理解,更加不可預測,并將出現新型的故障模式。海軍將需要了解傳統的SE方法何時以及如何在這些復雜系統及其復雜的人機交互工程中失效。海軍將需要了解數據對于開發人工智能系統的關鍵作用。
2.第二個建議是投資于人工智能系統的研究和開發,包括其數據需求、人機互動、SE方法、網絡保護和復雜行為。
研究和開發是為海戰行動開發AI系統解決方案的關鍵。除了開發復雜的戰術人工智能系統及其相關的人機協作方面,海軍必須投資研究新的SE方法來設計和評估這些適應性非決定性系統。海軍必須仔細研究哪些新類型的對抗性網絡攻擊是可能的,并且必須開發出解決這些問題的解決方案。海軍必須投資于收集、獲取和維護代表現實世界戰術行動的數據,用于人工智能系統開發,并確保數據的相關性、有效性和安全性。
3.第三個建議是承認挑戰,并在預測人工智能系統何時準備好用于戰爭行動方面采取現實態度。
盡管人工智能系統正在許多領域實施,但海軍要為復雜的戰術戰爭行動實施人工智能系統還需要克服一些挑戰。人工智能系統在較簡單應用中的成功并不能保證人工智能系統為更復雜的應用做好準備。海軍應該保持一種現實的認識,即在人工智能系統準備用于戰爭決策輔助工具之前,需要取得重大進展以克服本文所討論的挑戰。實現人工智能系統的途徑可以依靠建模和模擬、原型實驗、艦隊演習以及測試和評估。可以制定一個路線圖,彌合較簡單應用的人工智能和復雜應用的人工智能之間的差距--基于一個積木式的方法,在為逐漸復雜的任務開發和實施人工智能系統時吸取經驗教訓。
海軍將從未來用于戰術戰爭的人工智能系統中獲益。通過安全和有效地實施人工智能系統,戰術決策優勢的重大進步是可能的。此外,海軍必須跟上(或試圖超越)對手在人工智能方面的進展。本文描述了為在海戰中實施人工智能系統而必須解決的四個挑戰。通過對這些新穎而復雜的人工智能系統的深入了解,對研究和開發計劃的投資,以及對人工智能技術進步時限的現實預期,海軍可以在應對這些挑戰方面取得進展。
美國空軍研究實驗室(AFRL)在技術開發方面的主要目標之一是將技術轉移給 "客戶",以滿足能力需求。這種轉換可以是在AFRL內部,也可以是向工業界,向系統項目辦公室(SPO),或直接向作戰人員。每個 "客戶 "類別都描述了一個潛在的 "過渡伙伴"。技術開發可以發生在支持客戶要求的成熟期("技術拉動"),即客戶提出他們的需求("要求"),AFRL用為滿足該需求而定制的技術發展來回應。當AFRL開發新技術或根據其作為關鍵技術領域的科學和技術(S&T)領導者的角色為舊技術找到新用途時,技術發展也可以在沒有具體要求的情況下發生。這被稱為 "技術推動",當AFRL科學家進行的基礎和/或應用科學研究發現了以前未知的軍事能力的潛力時,就會發生這種情況。技術拉動 "和 "技術推動 "項目都可以改變AFRL其他項目、工業、SPO或作戰人員的可能性,創造出潛在的破壞性能力,如果沒有相應的科技研究活動,對手是很難對付的。任何轉型所面臨的挑戰是,技術的價值可能沒有被更廣泛的社會所理解,在新技術的情況下,也沒有被進行研究的科學家所理解。
科學家和潛在的過渡伙伴之間的討論往往不能準確地確定一項技術的成熟度、潛在的軍事用途,以及一項技術的合理和可靠的使用時間表。在 "技術拉動 "和 "技術推動 "的情況下,對技術成熟度的準確描述是必要的,以告知科技領導層和潛在過渡伙伴開發的進展。成熟度,通常被稱為技術準備水平(TRL),是一個時間快照,它描述了演示或測試環境的特點,在該環境下,一項特定的技術被成功地測試。美國國防部(DoD)對TRL有一個標準的定義,從1到9,范圍從基本原理到實際任務操作中證明的實際系統。 從歷史上看,官方的TRL評估只在正式的采購過程中被系統地分配,然而,在AFRL項目開發的各個層面,通常都會要求進行技術成熟度評估。
目前缺乏一種系統的方法來評估AFRL技術,也缺乏對任何評估的文件驗證。雖然這并不是轉型失敗的原因,但有條不紊、準確和可驗證的TRL評估過程有助于為其他多個過程奠定基礎;支持與其他科技專業人士、管理機構和潛在的轉型伙伴進行有意義的合作;并支持提高AFRL技術轉型的概率。這些其他過程包括技術成熟計劃(TMP)、推進難度(AD2)、制造準備水平(MRL)、集成準備水平(IRL)、系統準備評估和水平(SRA和SRL)、空軍未來(HAF/A57,正式的空軍作戰人員集成能力(AFWIC))。技術、任務、資源、組織(TMRO)方法,AFRL過渡指標(ATM)和項目管理審查(PMR)。
TRL可以通過各種方式得出,但通常是通過技術準備評估(TRA)來確定。技術準備評估是在對技術的形式、與系統其他部分的集成程度以及操作環境等方面的保真度逐步提高的基礎上確定TRL的。TRA是一個系統的、以證據為基礎的過程,評估關鍵技術要素(CTE)的成熟度,這些要素可以是硬件、軟件、過程或它們的組合。一個技術要素是 "關鍵 "的,如果被收購的系統依賴于這個技術要素來滿足操作要求(在可接受的成本和進度限制內),如果該技術要素或其應用是一項新技術,以一種新的方式使用舊的/更新的技術,或者該技術要素或其應用在詳細設計或演示期間被用于構成重大技術風險的領域。正式的TRA最常被用來支持一個采購項目的確定階段,如美國法典第10章第2366b條詳細規定的要求,即在里程碑B批準之前,一個項目必須在相關環境中進行演示;然而,非正式的,或 "知識建設TRA",也可以用來評估技術成熟度,為開發人員、項目經理、管理機構和潛在的過渡伙伴提供有用的信息,以更有效地成熟關鍵技術,確定一個技術的準備程度,管理和解決當前和未來的發展風險。
今天,國防戰略和空軍參謀長和空間業務主管要求加速技術發展,并使能力更快地進入作戰人員手中。 一個可靠的、可重復的技術成熟度評估是后續和同步進程和方法的關鍵,如TMPs、AD2、MRLs、IRLs、SRAs和SRLs、TMRO、ATM和PMRs,并為支持AFRL內部、工業、SPO或在技術被證明達到適當水平后直接向作戰人員的快速過渡活動建立了基礎。本研究提出了進行這些TRA的建議程序和工具。
本研究的主要目的是確定和推薦一個嚴格的、標準化的、可重復的程序和支持工具,以進行TRA,從伙伴的角度增加現有技術解決方案的可信度,并支持增加成功技術的過渡概率。因此,本研究將:
確定一個量身定做的、嚴格的、標準化的、可重復的TRA流程,以進行可靠的TRA,同時提供支持流程執行的工具。
將評估何時進行TRA的過程系統化,如何處理結果,以及如何確定下一步。
詳細說明識別CTE的系統方法
制作一個可定制的TRA模板,包括對可信度和客觀性至關重要的特征
確定支持技術成熟和TRL評估的RY能力
將技術要素納入建模、模擬和分析(MS&A)的方法。
確定數據工件和儲存庫,以證明所分配的TRL。
在DARPA終身學習機器(L2M)項目下,我們探索了一種自主系統終身學習的綜合方法,解決了不同任務間的持續學習和遷移、可擴展的知識維護、自我導向的學習以及對具身智能體變化環境的適應等基本問題。我們的L2M方法的關鍵方面包括:感知和行動的持續學習,不同任務之間的遷移,可擴展的終身知識維護,自主發現的自我導向學習,以及任務的非平穩分布建模。我們分別探索了這些方面,為分類和強化學習設置開發了各種終身學習算法。然后,這些開發的算法通過模塊化框架整合在一起,產生了一個同時支持分類和強化學習任務的L2M系統。
我們使用約翰霍普金斯應用物理實驗室的MiniGrid終身學習基準評估了這個L2M系統的終身學習性能。與單任務專家相比,對于該基準的Condensed和Dispersed場景,我們的結果顯示我們的系統有能力大大加快學習速度,平均前向遷移率為4.18和3.55,平均樣本效率為1.32和1.15。除了效率之外,我們的系統還顯示出比單任務專家更有效的性能,相對性能比為1.04和1.03,正向遷移比為1.12和1.04。
我們還通過使用Matterport 3D的機器人尋寶游戲,將這個L2M系統應用于綜合感知和行動,展示了我們的L2M系統在非結構化環境中快速學習不同任務并快速適應變化的能力。我們的結果顯示,與單任務專家相比,我們的系統學習分類任務的速度和準確性大約是他們的兩倍,顯示出平均相對性能為2.21,平均樣本效率為1.71,同時完全緩解了災難性遺忘。對于該領域的強化學習設置,我們的系統獲得了4.37的平均性能維持率和1.11的平均后向遷移率,這表明我們的終身學習智能體能夠學習新的任務,同時減輕災難性遺忘。我們的系統在利用過去的知識來啟動強化學習任務的學習方面也顯示出強大的潛力,其平均前向遷移率為3.11。然而,經過調整的單一任務專家能夠在單個強化學習任務上勝過我們的系統,我們的系統的平均相對性能比只達到0.88。我們還進行了各種消融實驗和對單個終身學習組件的評估。總體而言,我們的項目產生了110多篇科學出版物,展示了我們的工作和成果,從根本上推進了我們對終身機器學習的理解和能力。作為其中的兩個例子,我們的項目開發了最先進的使用占位預測的視覺導航,贏得了2020年人居署PointNav挑戰賽,并在2022年ICRA會議期間,在觀眾面前展示了服務機器人的實時終身學習的現場演示。
本報告記錄了我們在 DARPA 終身學習機器 (L2M) 計劃下的項目,涵蓋了我們在該計劃第 1 階段和第 2 階段的工作。
我們的項目探索了自主系統終身學習的綜合方法,解決了不同任務間的持續學習和遷移、可擴展的知識維護、自我導向的學習以及對具身智能體的變化環境的適應等基本問題。我們的L2M方法的關鍵方面包括:感知和行動的持續學習,不同任務之間的遷移,可擴展的終身知識維護,自主發現的自我導向學習,以及任務的非平穩分布建模。
在第一階段,我們分別探索了這些方面,為分類和強化學習設置開發了各種終身學習算法。這些開發的算法在個別實驗中得到了評估。
在第二階段,我們開發了一個綜合的、模塊化的框架,將上述這些方面結合到一個支持分類和強化學習任務的L2M系統中。在第一階段的算法中,每個方面最有前途的算法被選為該系統中的模塊。然后,我們將這個L2M系統(1)應用于約翰霍普金斯應用物理實驗室(APL)的MiniGrid終身學習基準;(2)通過使用Matterport 3D的機器人尋寶游戲來整合感知和行動,展示了我們的L2M系統在非結構化環境中快速學習不同任務并迅速適應變化的能力。在第二階段,我們還繼續開發了第一階段的個別算法,并探索了其他終身學習的個別方法。當這些基本算法在我們的L2M評估中顯示出前景時,我們就把它們過渡到L2M系統的模塊中。
由于這個項目包含了大量的算法(詳見附錄A),本報告將在第3.1節中首先關注綜合的L2M系統,展示我們如何構建我們的終身學習系統以及它如何支持各個終身學習算法的高層觀點。然后,我們將在第3.3-3.4節中介紹我們在第一和第二階段中開發的主要的單個終身學習算法。我們對結果的介紹也是類似的,首先探討綜合L2M系統在APL MiniGrid(第4.2節)和我們對具身智能體的Scavenger Hunt(第4.3節)的應用中的評價,然后探討本項目下開發的單個算法的評價(第4.4-4.5節)。
我們的工作產生了一些主要的貢獻,在本節中有所描述。為方便起見,我們將這些貢獻按照那些已被納入綜合L2M系統的方法和其他未被納入的方法進行分組。正如第3.1節所詳述的,我們選擇算法作為L2M系統的組成部分是基于它們在第一階段結束時和第二階段早期的成熟度,以及它們對我們應用的必要性。
一個綜合的終身學習框架。 我們開發了一個模塊化的終身學習系統,在現實的服務機器人環境中支持分類和強化學習(RL)任務。該系統的核心是將因子化的終身學習方法與移動機器人的感知動作循環相結合,我們將其分為獨立的分類和RL管道。該系統包括額外的可選模塊,可以與核心分類和RL管道相結合,包括支持元學習、內在動機、探索、主動視覺映射和課程學習。這些組件可以根據問題領域來啟用或禁用,我們討論了為一個視覺尋寶游戲應用開發和評估的配置實例。
用于終身深度學習的去卷積因子化CNN(DF-CNN)。在非深度多任務和終身學習方面的現有工作表明,使用模型參數空間的因子化表示進行轉移是成功的,允許更靈活地構建任務模型。受此啟發,我們介紹了一種在卷積神經網絡(CNN)中共享潛伏因子化表征的新架構。所提出的方法被稱為去卷積因子化CNN[4, 5],使用去卷積因子化和張量收縮的組合來進行任務間的靈活轉移。在兩個計算機視覺數據集上的實驗表明,DFCNN在具有挑戰性的終身學習環境中取得了卓越的性能,抵抗災難性的遺忘,并表現出反向轉移,從隨后的經驗中改善先前學到的任務,而無需重新訓練。與單任務學習者相比,DF-CNN在CIFAR-100和Office-Home任務上分別取得了19.2%和7.9%的改進,擊敗了其他多任務和終身學習基線。
終身策略梯度:無遺忘的快速訓練(LPG-FTW)。 策略梯度(PG)方法在學習高維動態系統的控制策略方面已經顯示出成功。它們最大的缺點是在產生高性能的策略之前需要大量的探索。在終身學習的環境中,智能體在其一生中會面臨多個連續的任務,重用以前看到的任務的信息可以大大加快新任務的學習。我們提供了一種新的終身策略梯度學習方法,通過策略梯度直接訓練終身函數近似器,使智能體在整個訓練過程中受益于積累的知識。我們的經驗表明,我們的算法比單任務和終身學習基線學習得更快,收斂得更好,并完全避免了在各種挑戰性領域的災難性遺忘。在Meta-World任務中,LPG-FTW比在每個任務中單獨訓練的智能體取得了17.5%的改進,比最接近的終身學習方法改進了533%。
快速適應的元優化器(KFO)。 我們開發了一種算法,META-KFO,它能夠在不增加模型的建模能力的情況下轉換較小模型的梯度,但仍能帶來更好的元可學習性。我們在討論和分析我們提出的META-KFO算法的同時,還簡要介紹了各種學習優化的方法。我們推測為什么足夠大的深層模型可以進行元學習:上層具有轉化底層梯度的同等效果,就好像上層是一個外部元優化器,在一個僅由底層組成的較小的網絡上運行。
高效探索和導航的占位預測(OCCANT)。最先進的導航方法利用空間記憶來概括新的環境,但它們的占位圖只限于捕捉智能體直接觀察到的幾何結構。我們開發了占位預測,智能體使用其以自我為中心的RGB-D觀察來推斷可見區域以外的占位狀態。這樣一來,智能體就能更迅速地建立起自己的空間意識,這有利于在三維環境中進行有效的探索和導航。通過利用以自我為中心的視圖和自上而下的地圖中的上下文,我們的模型成功地預測了一個更廣泛的環境地圖,其性能明顯優于強大的基線。我們的主要貢獻是 (1)一個新的占有率預測框架,利用來自自我中心RGB(D)視圖的語義和幾何背景;(2)一個新的探索策略方法,結合占有率預測,以較少的探索獲得更完整的地圖;(3)成功的導航結果,在蘋果對蘋果的比較中,包括在歸納到一個不相交的數據集中的環境時,比目前的技術水平有所改善。我們的方法是2020年人居環境點導航挑戰賽的獲勝作品。
**學習內在獎勵的策略梯度方法(LIRPG)**最佳獎勵問題[6]旨在學習內在獎勵的參數,使所得獎勵達到RL智能體的學習動態,使從某些分布中抽取的任務的壽命(外在)回報最大化。我們提出了一種元梯度方法[7, 8]來解決最佳獎勵問題。在高層次上,我們在每個生命周期的迭代中抽取一個新的任務和一個新的隨機策略參數,并使用具有策略梯度的內在獎勵函數模擬智能體的生命周期。同時,我們通過考慮內在獎勵對策略參數的影響來計算元梯度,用壽命值函數更新內在獎勵函數。通過對內在獎勵的分析,我們展示了我們的方法如何鼓勵在不確定的情況下進行探索,利用對象之間的因果關系,并考慮到非平穩的獎勵。
強化學習的課程策略(CMDP)。 強化學習中的課程學習是一種訓練方法,旨在通過首先在一系列較簡單的任務上進行訓練,并將獲得的知識轉移到目標任務上,從而加快對困難目標任務的學習。自動選擇這樣的任務序列(即課程)是一個開放的問題,也是該領域最近許多工作的主題。在這個項目中,我們以最近的一種課程設計方法為基礎,將課程排序問題表述為馬爾科夫決策過程(MDP)。我們對這一模型進行了擴展,以處理多種遷移學習算法,并首次表明可以從經驗中學習這一MDP的課程策略[9]。我們探討了使之成為可能的各種表示方法,并通過在兩個不同領域為多個智能體學習課程策略來評估我們的方法。結果表明,我們的方法產生的課程可以訓練智能體在目標任務上的執行速度,甚至比現有的方法更快。此外,我們最近的進展表明,這種為一組任務學習的課程策略可以被推廣到未見過的新任務集上[10]。
目標關系和分布模型(OBJMAP)。 為了幫助定位智能體更有效地解決視覺搜索任務,我們提出在多個環境中對目標-目標的空間關系進行建模。在探索一個環境的時候,一個智能體最好能利用已經看過的目標知識來幫助更快地找到目標物體。我們通過學習不同類別的目標之間的共同發生率統計來解決這個問題,建立一個包含所有看過的目標位置的環境地圖,然后結合這些信息來計算目標物體出現在地圖上每個位置的概率。
組合式終身分類(COMPCLF)和強化學習(COMPRL)。人類智能的一個特點是能夠構建自成一體的知識塊,并以新穎的組合方式充分重用它們來解決不同但結構相關的問題。由于基礎搜索問題的組合性質,學習這種組合結構對人工系統來說是一個重大挑戰。到目前為止,對組合式學習的研究在很大程度上與終身學習或持續學習的工作分開進行。我們整合了這兩方面的工作,提出了一個通用的框架,用于終身學習可用于解決一系列相關任務的組合結構。我們的框架將學習過程分為兩個廣泛的階段:學習如何最好地結合現有的組件以吸收一個新的問題,以及學習如何調整現有的組件集以適應新的問題。這種分離明確地處理了記憶如何解決早期任務所需的穩定性和解決新任務所需的靈活性之間的權衡,正如我們在分類環境的廣泛評估中所顯示的那樣。然后,我們探索了一種基于神經模塊的RL的特殊形式的組合,并提出了一組直觀地承認組合解決方案的RL問題。從經驗上看,我們證明了神經組合確實捕捉到了這個問題空間的基本結構。我們進一步提出了一種組合式終身RL方法,該方法利用積累的神經組件來加速對未來任務的學習,同時通過重放經驗的離線RL來保持對以前任務的表現。在持續學習中使用可組合的表征,當任務大規模多樣化時,比非模數方法提供了82.5%的相對準確性的性能增益。
用于改進目標檢測的視頻中的無監督硬例挖掘(DETFLICK)。 最近,通過使用專注于硬負面例子的訓練目標,即目前被檢測器評為正面或模糊的負面例子,在目標檢測中獲得了重要的收益。當網絡被訓練來糾正這些例子時,這些例子會強烈影響參數。不幸的是,它們在訓練數據中往往是稀疏的,而且獲取成本很高。在這項工作中,我們展示了如何通過分析視頻序列上經過訓練的檢測器的輸出來自動獲得大量的硬性否定。特別是,在時間上孤立的檢測,即沒有相關的之前或之后的檢測,很可能是硬否定句。我們描述了從無標簽的視頻數據中挖掘大量此類硬陰性(以及硬陽性)的簡單程序[11]。我們的實驗表明,在這些自動獲得的例子上重新訓練檢測器,往往能顯著提高性能。我們介紹了在多個架構和多個數據集上的實驗,包括人臉檢測、行人檢測和其他目標類別。
使用自我訓練使目標檢測器自動適應新領域(STSL)。這項工作解決了現有的目標檢測器在無監督的情況下適應新的目標領域的問題。我們假設這個領域中大量的無標簽的視頻是現成的。我們通過使用現有檢測器的高置信度檢測來自動獲得目標數據的標簽,再加上通過使用跟蹤器的時間線索獲得的硬(錯誤分類的)例子。這些自動獲得的標簽然后被用于重新訓練原始模型。我們提出了一個修改過的知識提煉損失,并研究了為目標領域的訓練例子分配軟標簽的幾種方法。我們的方法[12]在具有挑戰性的人臉和行人檢測任務上進行了實證評估:在WIDER-Face上訓練的人臉檢測器,由從網上抓取的高質量圖像組成,適用于大規模的監控數據集;在BDD-100K駕駛數據集的清晰、白天圖像上訓練的行人檢測器,適用于所有其他場景,如雨天、霧天、夜間。我們的結果證明了結合從跟蹤中獲得的硬例子的有用性,通過蒸餾損失使用軟標簽相對于硬標簽的優勢,并顯示了作為無監督領域適應目標檢測器的簡單方法的可喜性能,對超參數的依賴性最小。
一半和一半。研究視覺常識的新任務和基準(HNH)對物體、人、行動和場景類型的一般識別一直是計算機視覺研究的核心重點。然而,現在我們在這些問題上已經取得了一定程度的成功,現在是時候定義新的問題,以刺激我們達到視覺智能的下一個水平。視覺常識的發展對于開發能在動態、新穎環境中發揮作用的智能智能體至關重要。但究竟什么是視覺常識?我們認為,在不直接可見的情況下,對事物可能存在的位置進行智能評估的能力,是人類和其他智能生物共享的關鍵和普遍的能力,是視覺常識的一個基本組成部分。人類經常表現出在沒有明確視覺線索的情況下做出決定的能力。這種 "智能搜索 "是視覺常識的一個突出的例子,我們相信它代表了一種技能,在開發智能體中是必不可少的。與我們的工作密切相關的是早期關于將上下文信息納入視覺預測的努力[13, 14, 15, 16]。我們相信,以最基本的形式對這種能力進行正式的基準測試可以是一個有價值的補充。在這項工作中,我們將推斷圖像中我們無法看到的東西的存在這一問題正式化。為了做到這一點,我們依賴于這樣一個事實,即一幅圖像的不同視圖描繪的是同一個場景。因此,個別部分可以作為其他部分的背景線索。由于這個原因,我們把這些任務稱為 "一半和一半 "任務[17]。
高效的終身逆向強化學習(ELIRL)。從演示中學習(LfD)的方法在通過模仿用戶獲得行為策略方面已經顯示出成功。然而,即使是單一的任務,LfD也可能需要大量的示范。對于必須通過示范來學習許多任務的多功能智能體,如果每個任務都單獨學習,這個過程會給用戶帶來很大的負擔。為了解決這一挑戰,我們引入了從演示中終身學習的新問題,這使得智能體能夠不斷地建立在從以前演示的任務中學到的知識上,以加速新任務的學習,減少所需的演示量。作為這個問題的解決方案之一,我們提出了第一個反向強化學習的終身學習方法,它通過演示來學習連續的任務,不斷地在任務之間轉移知識以提高性能。在演示的任務之間分享信息導致恢復的獎勵函數減少約65%。
使用高級共享特征集(SHELS)的任務無關的終身學習。深度神經網絡(DNNs)通常不能在動態開放世界環境中對未見過的類別進行概括,在這種環境中,概念的數量是無限制的。相比之下,人類和動物的學習者有能力通過識別和適應新的觀察而逐步更新他們的知識。特別是,人類通過獨有的(唯一的)基本特征集來描述概念,這些特征用于識別已知類別和識別新奇事物。受自然學習者的啟發,我們開發了一個稀疏的高層-排他性、低層-共享特征表示法(SHELS),它同時鼓勵學習排他性的高層特征集和基本的、共享的低層特征。高層特征的排他性使DNN能夠自動檢測出分布外(OOD)的數據,而通過稀疏的低層特征有效地利用容量,可以容納新的知識。由此產生的方法使用OOD檢測,在沒有已知類別邊界的情況下進行類別遞增的終身學習。我們表明,在各種基準數據集上,使用SHELS進行新穎性檢測,在統計上比最先進的OOD檢測方法有明顯的改進。此外,我們證明了SHELS模型在類增量學習環境中減輕了災難性的遺忘,使一個結合了新奇性檢測和適應性的框架能夠支持開放世界環境中的學習。
復合強化學習的基準(CompoSuite)。我們創建了CompoSuite,一個開源的模擬機器人操作基準,用于復合多任務和持續的RL。每個CompoSuite任務要求一個特定的機器人手臂操縱一個單獨的物體,以實現任務目標,同時避開一個障礙物。任務的這種組合式定義使CompoSuite具有兩個顯著的特性。首先,改變機器人/物體/目標/障礙物的元素會導致數以百計的RL任務,其中每個任務都需要有意義的不同行為。其次,RL方法可以專門評估其學習任務組成結構的能力。后者對問題進行功能分解的能力將使智能體識別并利用學習任務之間的共性來處理大量高度多樣化的問題。我們對現有的單任務、多任務和組合式學習算法在不同的訓練環境中進行評估,并評估它們對未見過的任務進行組合概括的能力。我們的評估暴露了現有RL方法在組合性方面的缺陷,并開辟了新的研究途徑。平均而言,單任務和多任務智能體能夠解決大約40%的任務,而具有明確組成結構的智能體則在此基礎上有所提高,解決了全部基準任務的92%。
用于多智能體強化學習的多智能體-注意力批判(MAAC)。終身學習智能體可能需要在其生命周期內與其他學習智能體合作和/或競爭。傳統的強化學習算法無法考慮到其他智能體,并受到其他智能體學習所引起的環境非平穩性問題的影響。最近的多行為體強化學習方法[18, 19]試圖通過利用行為體批判范式中的集中批判來解決這些問題;然而,隨著存在的行為體數量增加,這些方法不能很好地擴展。我們的方法,即多行為體-注意力批評[20],將注意力機制納入集中式批評者,以緩解這一問題。在多智能體領域的實驗表明,相對于最先進的基線而言,性能和可擴展性都有所提高。
用于多智能體強化學習的隨機實體明智因式分解(REFIL)。在智能體的一生中,它可能需要與具有不同能力/技能的智能體團隊合作;然而,在這些智能體的子組中經常出現共同的行為模式。我們提出的方法,即想象學習的隨機實體因式分解(REFIL)[21],試圖利用這些共同模式,通過將價值函數隨機分解為由不相干的實體子組組成的條款,來提高類似團隊的概括性。通過以這種方式構建價值函數預測,我們能夠更好地預測熟悉的子組狀態的新組合中的預期收益。在復雜的多任務多智能體設置上的實驗表明,與最先進的基線相比,樣本效率和概括性都有所提高。
解決清道夫服務機器人的隨機旅行購買者問題(STPP)。創造能夠在人類居住的環境中執行通用服務任務的機器人,一直是人工智能和機器人研究的一個長期的大挑戰。與各種任務相關的一個特別有價值的技能是根據要求定位和檢索物體的能力。在這項工作中,我們將這種技能建模為 "尋寶游戲"(Scavenger Hunt,SH),該游戲被表述為NP-hard隨機旅行購買者問題的一個變種。在這個問題中,目標是盡可能快地找到一組物體,給定它們可能被找到的概率分布。我們在模擬和真實的移動機器人上研究了SH問題的幾種解決算法的性能。我們使用強化學習(RL)來訓練一個智能體來計劃一個最小成本的路徑,并表明RL智能體可以勝過一系列啟發式算法,實現接近最佳的性能。為了促進對這一問題的研究,我們介紹了一個公開可用的軟件棧和相關網站,使用戶能夠上傳尋寶游戲,機器人可以下載、執行并從中學習,以不斷提高他們在未來游戲中的表現。
基于模型的貝葉斯探索的終身強化學習(VBLRL)。我們提出了一種終身的RL算法,該算法提取了以前遇到的任務中存在的共同結構,以便智能體能夠快速學習新任務的特定動態。我們考慮的終身RL問題可以被建模為隱藏參數MDP或HiP-MDP[22, 23],其中真實任務動態的變化可以由一組隱藏參數描述。我們的算法比以前的終身學習和HiP-MDPs的工作更進一步:1)在任務集合的不同抽象層次上單獨建模認識性和非認識性的不確定性:由描述任務概率分布的世界模型分布捕獲的不確定性,以及由單個任務內(隨機的)動態的特定任務模型捕獲的不確定性。為了實現更準確的順序知識轉移,我們將這兩個量的學習過程分開,并保持一個近似于它們的分層貝葉斯后驗。2)執行層次化后驗所啟用的貝葉斯探索。該方法讓智能體根據從后驗中采樣的模型進行優化操作,從而提高采樣效率。
關于這些算法的細節將在下一節提供。
這個項目的目標是通過利用多模態和多語言信息改進矢量空間語言模型來創造更好的詞匯表征。我們收集了一個大規模的多語言圖像數據集,稱為MMID,它將圖像與98種不同語言的詞聯系在一起(每種語言多達10K個詞,每個詞有100張圖像)。這個數據集讓我們全面分析了視覺相似性是否可以用來識別翻譯,以及這在多大程度上受到語言因素的影響,如語篇和具體性。我們研究了MMID是否可以用來減輕像ImageNet這樣的圖像分類數據集中的地理偏見(例如婚禮在世界不同地區的視覺上是不同的)。我們研究了地理因素對語言對之間的可譯性的影響程度;共同的語系、族群或共同的宗教等因素對視覺相似性的影響比地理因素大,因此通過圖像的可譯性也大。我們還從維基百科上收集了一個數據集,通過聚合帶有多語言標題的共享圖像,為我們提供完整的句子,而不是MMID中的單個單詞。
圖:一個注釋預測示例,上面的源是通過我們的 "wikily"模型翻譯的羅馬尼亞語目標。受監督的源樹是用相交的詞對齊來預測的。
本報告總結了題為 "多模態表征的半監督學習 "的項目的主要發現。這個項目的主要研究者是賓夕法尼亞大學的Chris CallisonBurch教授和波士頓大學的Derry Wijaya教授。執行期為19年6月26日至22年6月14日。這個項目與DARPA項目經理Boyan Onyshkevych正在管理的其他項目廣泛相關,包括DARPA AIDA項目,但它是一項獨立的工作。這個項目是通過DARPA的OpenBAA資助的。這個項目的總預算為428,000美元。
這個項目的目標是通過改進帶有多模態和多語言信息的矢量空間語言模型來創造更好的詞匯表征。這份最終報告將詳細介紹四項研究。
圖:草莓是心理語言學研究中具有高具體性的一個詞的例子。這反映在一致的視覺表示上。
數據高效的機器學習(DEML)對AF/DoD(美空軍/美國防部)的運作至關重要,原因如下:首先,訓練機器學習算法通常需要一個大型的、完全標記的訓練數據集。人類對原始數據的標注是一個昂貴而耗時的過程,尤其是在專家分析師隊伍有限的情況下。因此,機器學習算法必須從有限的標記的訓練數據中產生準確的預測模型。此外,任務環境和目標可能是多樣的、快速變化的,因此,機器學習模型必須能夠快速適應手頭的情況。機器學習系統(和人類分析員)可用的原始數據的質量也往往是不可預測的。可能經常發生的情況是,并非所有用于預測和決策的理想特征都可用。因此,機器學習算法必須對缺失或部分未觀察到的數據具有魯棒性。
這項工作的范圍是在以下關鍵領域為DEML創造新工具:1)為涉及豐富的高維特征空間的分類和搜索問題開發數據效率高的主動學習算法;2)開發新的交互式工具,使人類分析者能夠快速和準確地標記大型數據集;3)開發一個新的框架,用于豐富的人類注釋,除標簽外還提供解釋和特征相關性反饋;4)在軟件中建立算法原型。這些目標將需要對DEML問題進行基本的數學研究和分析、算法開發和原型設計,以及用真實和合成數據集進行測試和實驗。
為了支持未來的多域作戰分析,美國DEVCOM分析中心(DAC)正在探索如何在陸軍的作戰模擬中體現天基情報、監視和偵察(ISR)資產的貢獻。DAC正在使用基于能力的戰術分析庫和模擬框架(FRACTALS)作為方法開發的試驗基礎。用于預測衛星軌道路徑簡化一般擾動的4種算法已經被納入FRACTALS。本報告的重點是來自商業衛星群的圖像產品,其分辨率為1米或更低。報告介紹了預測分辨率與傳感器特性、傾斜范圍(包括地球曲率)和觀察角度的關系的方法。還討論了在不同分辨率下可以感知的例子。
在2021年建模與仿真(M&S)論壇期間,空間情報、監視和偵察(ISR)建模被確定為當前/近期的建模差距。美國陸軍作戰能力發展司令部(DEVCOM)分析中心(DAC)提交了一份陸軍M&S企業能力差距白皮書(Harclerode, 2021),描述了幫助填補這一差距的行動方案。陸軍建模和仿真辦公室已經資助DAC開發方法,以代表商業、國家和軍事空間和低地球軌道資產的性能及其對聯合作戰的影響,并在基于能力的戰術分析庫和模擬框架(FRACTALS)內進行測試實施。
FRACTALS是DAC開發的一個仿真框架,它提供了通用的結構 "構件",用于模擬、仿真和評估ISR系統在戰術級任務和工作中的性能。FRACTALS作為DAC開發的各種ISR性能方法的測試平臺,將文件或數據被納入部隊的模擬中。FRACTALS還作為DAC的一個分析工具,在戰術環境中對ISR系統進行性能分析比較。
這項工作需要在一定程度上體現衛星飛行器(高度、軌跡和運動學)、傳感器有效載荷(光電[EO]、紅外、合成孔徑雷達和信號情報)、網絡、控制系統、地面站(時間線、通信、處理、利用和傳播)、終端用戶以及連接它們的過程和行為。本報告描述了DAC為支持這一工作所做的一些基礎工作,重點是可見光波段相機圖像。
當前的海軍作戰要求水手們根據動態作戰環境中的不確定態勢信息做出時間緊迫和高風險的決策。最近的悲慘事件導致了不必要的傷亡,海軍行動中涉及決策復雜性,并特別突出了 OODA 循環(觀察、定向、決策和評估)中的挑戰。涉及使用武器系統的殺傷鏈決策是 OODA 循環中一個特別緊張的類別——具有難以確定的意外威脅、縮短的決策反應時間和致命的后果。有效的殺傷鏈需要正確設置和使用船上傳感器;未知接觸者的識別和分類;基于運動學和智能的接觸意圖分析;環境意識;以及決策分析和資源選擇。
該項目探索了使用自動化和人工智能 (AI) 來改進海軍殺傷鏈決策。該團隊研究了海軍殺傷鏈功能,并為每個功能制定了特定的評估標準,以確定特定 AI 方法的功效。該團隊確定并研究了 AI 方法,并應用評估標準將特定的 AI 方法映射到特定的殺傷鏈功能。
圖:利用人工智能改進海軍殺傷鏈的作戰概念
當前的海軍行動通常是快節奏的、關鍵的,并且需要做出高風險的決策,這些決策有時基于非常動態的戰區中的不確定信息。許多例子強調了提高決策效率的必要性以及減輕觀察團隊負擔的必要性。缺乏上述情況的例子包括 2017 年的菲茨杰拉德號航空母艦 (DDG 62) 和 MV ACX Crystal相撞,以及 2009 年皇家港口號航空母艦 (CG 73) 的擱淺。一些根本原因是相關人員缺乏經驗、疲勞和壓力.
上述事故展示了軍事行動的難度,并展示了 OODA(觀察、定向、決策和評估)循環中的挑戰(Jones 等人,2020 年)。人為錯誤、人的認知限制和海軍作戰固有的決策復雜性導致了 OODA 循環中的挑戰,更具體地說,是殺傷鏈過程中的挑戰。
現代戰斗空間由來自常規陸地、空中和海洋等多個領域以及來自太空和網絡空間的大量數據組成。決策者需要考慮許多因素,包括交戰規則 (ROE)、要使用的武器、傳感器和意圖評估。發現、修復、跟蹤、瞄準、參與、評估 (F2T2EA) 殺傷鏈模型緩解了該過程的一些困難(參謀長聯席會議,2013 年)。人工智能 (AI) 和機器學習 (ML) 可以通過分析備選方案和使用評估標準將 AI 方法映射到殺傷鏈功能,從而幫助海軍在戰術領域做出殺傷鏈決策。這是在本報告的五個章節中分三個階段完成的。
本報告利用了數百個資源,主要利用了美海軍研究生院 AI-OODA 團隊在其 Capstone 報告(2020 年)中進行的先前研究,“利用人工智能 (AI) 進行空中和導彈防御 (AMD):以結果為導向的決策援助。”他們將他們的工作與 John Boyd 的觀察、定向、決定和行動決策框架相結合。作為他們分析的初步步驟,AI-OODA 團隊將特定的 OODA 功能明確且緊密地耦合到特定的 F2T2EA 功能。然而,本報告斷言 OODA 循環是一個決策循環,它嵌套在殺傷鏈的每個功能中,而不是在高壓力或低壓力情況下專門映射到一個或多個殺傷鏈功能。團隊基于 F2T2EA 模型開發了一組 28 個殺傷鏈功能。
在制定將 AI 方法映射到殺傷鏈的評估標準時,很難確定一個好的決策,這對于決策評估至關重要。在評估決策時,必須考慮選擇行動時的知識意識狀態以及解釋能力。使用了幾種對決策進行評分的方法,從定義和優先考慮感興趣的“武器-目標”到制定評分標準和報告評估結果,以供其他人審查。
目前,人工智能的狀態非常廣泛,必須對其進行解釋,以了解人工智能對殺傷鏈中功能的適用性。本報告討論了所選 AI 方法的高級概述,并突出顯示了部分最流行的方法。首先,沒有普遍接受的定義,這很難定義人工智能。其次,人工智能與機器學習 (ML) 存在差異。 ML 允許在準確性和可預測性方面取得增量收益; AI 接收數據并通過算法提供輸出。人工智能的歷史從 1940 年代艾倫·圖靈 (Alan Turing) 的加密機器到 1980 年代美國政府在戰略計算計劃中的使用,再到今天在聯合人工智能中心 (JAIC) 中的人工智能戰略五個支柱,從領先的人工智能人力到安全和倫理。美國國防高級研究計劃局 (DARPA) 在 3-wave 框架中描述了 AI 的發展方向,分為手工知識 (Wave 1)、統計學習 (Wave 2) 和上下文推理 (Wave 3) 在 1-4 個維度內情報參數的屬性(Launchbury 2017)。這些屬性包括感知、推理、抽象和學習。
人工智能涉及可以根據輸入值預測結果的監督學習。有幾種使用監督學習進行學習的技術。包括線性回歸和分類。此外,許多數值方法可以分析發生的學習有效性,例如 F-score 和 Accuracy score。人工智能還可以使用無監督學習,它使用算法來發現未標記數據集中的數據模式或分組。在分析未知(y)響應以揭示標記(x)數據中的模式時,無監督學習是有益的。數據分析界的一個著名例子是鳶尾花(Iris flower)數據集。僅使用標記的數據,可以看到響應聚集在一起,并且可以確定響應中存在模式(花的種類)。無監督學習的方法包括聚類和 K-means,但還有其他方法。強化學習有一個代理能夠接收來自環境的反饋并理解基本目標。此外,正如 Sutton 和 Barto 在(2018 年)中解釋的那樣,探索和開發之間存在權衡。最后,生成對抗網絡 (GAN) 利用無監督學習和強化學習,通常用于神經網絡 (NN)。神經網絡是機器學習算法的極好來源,它有大量的輸入,而這些輸入又會產生大量的計算。 NN 非常適合用于模擬、自然語言處理、博弈論和計算機視覺。 NN 只是一種將輸入映射到輸出的簡單方法,可以在此過程中進行學習。然而,NN 可以被描述為一種“黑盒”學習技術,因為很難解釋正在發生的事情,并且通常需要一種可解釋的 AI (XAI) 技術。 XAI 的三個主要組成部分是可解釋模型、解釋界面和解釋心理學(Gunning 2019)。數據安全必須與“大數據”一起考慮,“大數據”是指非結構化、復雜和大型數據集,具有五個 v 特征:數量、速度(數據量隨時間變化的增加)、多樣性、真實性和價值。其他理論包括決策理論、模糊邏輯和效用函數
使用上述文獻綜述,該團隊開發了一個框架,用于將 AI/ML 映射到 AMD(空中導彈防御)殺傷鏈。采取了四個步驟:1) 建立模型框架,2) 確定決策點,3) 應用 AI/ML 方法,以及 4) 分析結果。該團隊確定了以下用于殺傷鏈映射分析的 AI/ML 方法:線性回歸、邏輯回歸、聚類、關聯、隨機森林、神經網絡、GAN 和樸素貝葉斯。評估標準被稱為“決策點”并提出四個問題:(1)所需輸出的類型是什么,(2)所需的學習類型是什么,(3)可解釋性(XAI)是什么水平需要,以及 (4) 需要多少個預測變量?該團隊通過基于一組決策點和評分過程評估每個殺傷鏈功能的每種方法來執行映射。對于被認為非常適合某項任務的方法,得分為+1,如果該方法適合但次優,則為0,如果該方法不適合該任務,則為–1。
該團隊進行了映射分析,根據與殺傷鏈的 28 個功能中的每一個功能相關的評估標準(決策點)分析 AI 方法。該團隊使用評分方法來確定每個殺傷鏈功能的最佳整體 AI/ML 分數。團隊的映射顯示為 0。
該團隊的 AI/ML 映射到殺傷鏈功能為國防部和海軍提供了兩個關鍵好處。首先,映射本身是設計和開發支持殺傷鏈決策的人工智能戰術決策輔助工具的重要起點和基礎。其次,該團隊將 AI 方法映射到殺傷鏈的分析過程可用于了解 AI 在許多其他軍事和非軍事領域的應用。識別適當的人工智能方法、制定評估標準和評分過程以及制定過程功能以進行分析映射的過程對于支持許多不同人工智能系統的工程具有深遠的潛力。
表1:AI/ML方法到殺傷鏈的映射
主題: Towards Automatic Machine Learning Pipeline Design
簡介: 數據收集量的迅速增加,使決策的瓶頸迅速從缺乏數據轉向缺乏數據科學家,以幫助分析收集的數據。此外,用于數據分析的新潛在解決方案和方法的發布速度已經超過了人類數據科學家所能遵循的速度。同時,我們注意到數據科學家在分析過程中執行的許多任務都可以自動化。自動機器學習(AutoML)研究和解決方案試圖使部分甚至整個數據分析過程自動化。我們解決了自動化研究中的兩個挑戰: 首先,如何表示適合元學習的ML程序;第二,如何改進自動系統的評估,使之能夠比較各種方法,而不僅僅是預測。為此,我們設計并實現了一個ML程序框架,該框架提供了以標準方式描述ML程序所需的所有組件。該框架是可擴展的,框架的組件之間是解耦的,例如,該框架可以用來描述使用神經網絡的ML程序。我們為執行框架中描述的程序提供參考工具。我們還設計并實現了一個服務,一個元學習數據庫,它存儲由不同的自動化系統生成的執行ML程序的信息。
我們通過測量使用框架與執行直接調用底層庫的ML程序的計算開銷來評估框架。我們注意到框架的ML程序執行時間比不使用該框架的ML程序慢一個數量級,內存使用量是不使用該框架的ML程序的兩倍。 通過比較使用我們的框架的10個不同的AutoML系統,我們展示了我們的框架評估AutoML系統的能力。結果表明,該框架既可以用來描述一組不同的ML程序,又可以用來明確地確定哪個自動化系統生成了最佳的ML程序。在許多情況下,生成的ML程序的性能優于由人類專家編寫的ML程序。