亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

北約和各國都面臨著聯合集體訓練的迫切需求,以確保任務準備就緒:當前和未來的行動都是多國性質的,任務和系統都變得更加復雜,需要詳細的準備和快速適應不斷變化的環境。由于可用資源較少,訓練范圍有限,防止對手觀察第五代戰術和系統能力,以及政治決策和部署之間有限的準備時間,多國背景下的實戰訓練和任務準備機會減少。仿真已經成為解決軍隊訓練需求的一個重要工具,各國都在朝著采用分布式仿真的國家任務訓練(MTDS)能力發展。聯軍正在尋找一種在實戰和模擬訓練和演習之間新的平衡,以提供兩個世界的最佳效果。

北約建模與仿真小組(NMSG)的一些倡議為北約MTDS愿景和行動概念的發展提供了寶貴的意見(MSG-106 NETN、MSG-128 MTDS、MSG169 LVC-T)。在這些成果的基礎上,最近的NMSG活動(MSG-163北約標準的演變,MSG-165 MTDS-II,MSG-180 LVC-T)涉及為聯合和集體行動開發一個通用的MTDS參考架構(MTDS RA)。最近完成的MTDS RA版本以構件、互操作性標準和模式形式定義了指導方針,用于實現和執行由分布式仿真支持的集體訓練和演習,與應用領域(陸地、空中、海上)無關。此外,MSG-164(M&S即服務II)開發了一個技術參考架構(MSaaS TRA),其中包括實現所謂的MSaaS能力的構件。這些構件可以與MTDS的RA結合起來,以包括作為服務進行集體訓練和演習的準則。

當前版本的MTDS RA提供了一個基線,以詳細說明和確定應該發生進一步要求/技術開發的領域。未來更新的主題包括網絡戰和影響、危機管理、現場系統集成和多域戰或混合戰,僅舉幾例。

聯合MTDS對北約和國家的準備工作至關重要。本文提供了MTDS RA的背景、目標和原則,以及實現北約范圍內持久的集體訓練能力的途徑。聯合MTDS RA的維護和持續發展將是北約多個國家、伙伴國和組織在NMSG主持下的共同方向。

1.0 引言

北約和各國都有一個共同的需求,那就是進行聯合集體訓練,以確保任務準備就緒。然而,存在著重大的挑戰:當前和未來的行動都是多國性質的,需要多方協調以追求共同的目標;新的系統和平臺正變得越來越復雜,需要更多的準備時間才能使用。同時,由于可用資源較少,政治決策和部署之間的時間跨度有限,在多國背景下進行實戰訓練和任務準備的機會減少。成本、復雜性、環境限制和敵方(電子)監測能力往往使得在現實環境中不可能完全用實戰系統進行訓練。

仿真已經成為滿足軍隊訓練需求的一個重要工具,各國正在朝著采用國家MTDS能力的方向發展。隨著時間的推移,北約建模與仿真小組(NMSG)的一些倡議(見[1])已經為北約MTDS愿景和行動概念的發展提供了寶貴的投入,如MSG-106北約教育和訓練網絡(NETN)和MSG-128 MTDS。到目前為止,由于缺乏一個共同的技術框架和準備集體訓練活動的復雜性,這些導致北約范圍內沒有持久形成有意義的合成集體訓練能力。這種復雜性既是由于技術方面(例如,不同的、遺留的國家仿真資產和用戶界面),也是由于組織方面(例如,行為者和學科的數量)。此外,仿真資產可能使用不同的安全域,數據的交換受制于國家安全政策。根據演習的范圍和復雜性,合成集體訓練活動的準備工作可能需要幾個月的時間,有時甚至需要一年的時間,包括最初的規劃會議。因此,合成集體(和聯合)訓練或任務演練只是零星地發生,而實際任務越來越多地在國際聯盟中進行,而且準備時間很短。

北約MTDS應該關注現有訓練安排中沒有涉及的領域,并在這些領域提供最大的價值和效率。因此,它不尋求復制通過現有國家活動提供的訓練,而是提供額外的聯盟合成訓練能力。北約MTDS能力旨在將國家或北約的模擬資產整合到一個分布式的合成集體訓練環境中,這些資產通過一個共同的模擬基礎設施連接。在以往成果的基礎上,正在進行的NMSG活動(MSG-165 MTDS-II,MSG-169 LVC-T)旨在為聯合和聯合行動開發一個MTDS參考架構(以下稱為 "RA")。該參考架構以構件、互操作性標準和模式的形式概述了實現和執行由獨立于應用領域(陸地、空中、海上)的分布式仿真支持的合成集體訓練和演習的要求。

該要求涉及多個利益相關者的觀點:

  • 對于在其組織內實施合成集體訓練的國家和北約,以及參加北約合成集體訓練活動的國家和北約,RA應被用來說明標準能力、構件、模式和其他屬性,以評估一致性。

  • 對于產品供應商,RA應提供一套足夠具體的要求和標準,使供應商能夠開發產品并評估其產品與這些要求和標準的一致性。

  • 對于集成商來說,RA應該是一個參考來源,以確定實施合成集體訓練環境的具體限制和方向。

  • 對于NMSG來說,RA應該提供一個參考,在此基礎上可以開發技術和要求,確定標準,提供指南,并定義更詳細的具體水平。

本文概述了RA以及用于劃分不同類型架構的概念。

2.0 架構概念和MTDS的框架

架構可以在不同的抽象層次上進行設計,人們可以區分不同類型的架構。一般來說,對各種抽象層次或如何命名它們沒有什么共識。例如,北約架構框架(NAF)[2]提到了不同種類的架構和導致這些架構的活動。架構的不同種類或類型如圖1所示。

圖1:架構的種類。

在這個圖中,企業架構是由企業層活動開發的,參考架構是由領域和方案層活動開發的,而系統架構是在項目層活動中開發的。本文遵循同樣的結構,領域和計劃層的活動由NMSG旗下的任務組執行,而項目層的活動由國家或北約的項目執行。

各種架構有不同的利益相關者和用戶,需要采用各種方法來完善一個抽象級別的架構。架構抽象級別的范圍和這種方法就是這里所說的架構框架[3]。MTDS的架構框架如圖2所示。

圖2:MTDS的架構框架。

圖中的方法指的是(a)任務組活動和(b)工程流程,如DSEEP[4]。架構開發工作是在指導原則下進行的,后面將簡要討論。

2.1 企業架構

為了MTDS RA的目的,北約協商、指揮和控制(C3)分類法[5]被視為企業架構。在圖2中,用分類圖的圖像和類別的層次來說明。北約C3分類法提供了一個北約C3能力的分類(包括標準和要求),通過超類型-次類型的關系組織了一個概念的層次。該分類法由北約ACT開發和維護,可以通過C3分類法的企業管理Wiki網站查看和修改。C3分類法定義了幾個適用于MTDS的能力類別。例如,集體訓練和演習(CTE)過程;教育、訓練、演習和評估(ETEE)應用;以及技術服務,包括M&S服務。這些類別是MTDS參考架構中各組成部分的參考來源。它們為MTDS參考架構的構件提供了結構和要求。

2.2 MTDS參考架構

這種類型的架構是MTDS架構開發工作的重點。MTDS參考架構(RA)是在NMSG的框架下通過任務小組開發和維護的,它定義了實現合成集體訓練環境所應考慮的構件和模式。在圖2中,構件用綠色方框表示,模式用灰色方框表示,包括構件和它們之間的關系。構建模塊既涉及過程構建模塊,也涉及技術構建模塊。過程構件包括,例如,開發、計劃和進行CTE活動的參考過程,而技術構件包括支持這一過程的CTE和M&S應用,以及連接培訓系統和合成集體培訓環境的CTE和M&S服務。

2.3 MTDS項目架構

一個特定的合成集體訓練活動的架構被稱為MTDS項目架構。該項目架構在圖2中由橙色的解決方案構件和它們之間的關系來說明。字母指的是參考架構中由解決方案構建塊實現的構建塊。例如,一個項目架構是由美國駐歐洲空軍(USAFE)戰士準備中心組織的斯巴達戰士活動[6]或瑞典武裝部隊組織的維京活動[7]的訓練環境架構。由于RA提供了合成集體訓練環境的構件,項目架構中使用的解決方案構件的許多要求原則上可以從RA的構件中得到。但是,一般還是需要細化以滿足項目(即訓練活動)的要求和限制。這可能包括對RA中定義的參考培訓流程進行調整;增加安全要求;選擇特定的中間件解決方案;選擇網關和橋梁組件、跨域解決方案、數據記錄解決方案以及環境數據產品和格式。參考模擬數據交換模型,如北約AMSP-04[8]中的定義,通過RA提供,但項目架構仍然需要就這些參考數據交換模型中的哪些具體部分進行約定。

因此,從同一個參考架構中,可以開發出不同的項目架構,每個項目架構都指定了符合參考架構中設定的標準和要求的合成集體訓練環境的特定實現。項目架構可能涉及一個持久的訓練環境,也可能是一個只為特定訓練活動而臨時存在的環境。

2.4 架構原則

架構原則指導MTDS參考架構和MTDS項目架構的開發、維護和使用過程。原則是持久性的一般規則和指導方針,告知并支持北約和伙伴國家如何完成任務。在圖2中,"指南 "箭頭說明了這一點。

架構原則的屬性是用The Open Group Architecture Framework (TOGAF) [9]定義的,包括:

名稱 代表規則的本質。

聲明 應該簡潔明了地傳達基本規則。

理由 應該強調遵守該原則的商業利益。

影響 應該強調執行該原則對業務和IT的要求--在資源、成本和活動/任務方面。

MSG-165為RA制定了十個主要的架構原則(見MSG-165 RA技術報告[10])。以下是其中一項原則:

1.名稱:遵守北約的政策和標準

2.聲明:MTDS應符合北約在M&S互操作性和標準方面的政策和協議。

3.原理:這些政策和協議的目的是促進所有3級(指揮和參謀)、2級(戰術)和1級(個人和機組)建模與仿真(M&S)系統內部和之間的系統級互操作性。這些政策和協議的范圍包括用于操作、訓練和分析的M&S系統。這適用于由不同的北約國家和北約組織開發的、位于這些國家的M&S系統。

4.影響:以下基準政策和協議應適用于MTDS:AMSP-01: M&S標準簡介,STANREC 4815[11]。STANAG 4603:技術互操作性的建模和仿真架構標準:高層架構(HLA)[12]。AMSP04:NETN聯盟架構和FOM設計,STANREC 4800 [8]。AMSP-03: 北約和多國計算機輔助演習中分布式模擬的M&S標準指南,STANREC 4799 [13]。

在MTDS背景下,架構原則被用來獲取關于北約國家和北約組織應如何使用和部署M&S資源和資產進行合成集體訓練的信息。除其他外,這些原則推動了架構構件中功能需求的定義,指導了項目架構的評估,并通過理由說明提供了動機。

2.5 架構模塊和架構模式

架構模塊(ABB)和架構模式(AP)這兩個概念被用來描述RA中的模塊以及這些模塊如何被組合。這些概念在圖3和圖4中得到了說明,其中第一個圖還顯示了作為對比的概念--解決方案模塊(SBB)。

圖3:架構模塊與解決方案模塊。

一個ABB具有指定其目的、功能和所需技術接口的屬性,以及任何適用的標準。一個ABB并不意味著是一個具體解決方案的規范,而是為開發合成集體訓練環境的架構,即項目架構提供要求、標準和指導。另一方面,SBB與可能被采購或開發的具體解決方案(以及項目架構)有關。SBB規定了培訓活動所需的功能、特定的接口、實際性能值和施工約束。ABB和SBB的概念來源于TOGAF[9]。

圖4:架構模式。

一個AP可以作為項目架構的參考,提供已被證明可以為某個問題提供解決方案的ABB的組合信息。模式屬性包括對模式所幫助解決的問題的描述,對模式如何提供問題解決方案的描述,以及幫助描述模式的圖示。其他模式屬性規定了功能和非功能要求,列出了適用的標準,并提供了參考和例子。

RA描述使用AP圖示,如圖5。這個簡化的插圖顯示了兩個相互作用的ABB,交換具有相關接口要求和標準的數據對象。例子在第3.0章中提供。

圖5:架構模式的插圖。

3.0 參考架構(RA)層和模塊

圖6提供了RA中各層的概述,按照北約C3分類法的主要層次組織。

  • 行動能力:在流程、信息產品、角色和組織方面的集體訓練和演習能力。在C3分類法中,相關類別位于作戰能力 > 業務流程 > 啟用 > ETEE > CTE下。

  • 面向用戶的能力:支持CTE過程的能力,以及培訓受眾使用的能力。在C3分類法中,相關的CTE類別位于面向用戶的能力 > 用戶應用 > ETEE應用 > CTE應用下。而相關的M&S類別位于面向用戶的能力 > 用戶應用 > M&S應用。

  • 后端能力:啟用或支持面向用戶的能力的能力。C3分類法中的相關類別在后端能力 > 技術服務 > COI服務 > COI特定服務 > ETEE功能服務下,以及后端能力 > 技術服務 > COI服務 > COI啟用服務 > M&S服務下。另外,核心和通信服務包括與管理和保障合成集體訓練環境中的技術組件有關的幾個類別。

  • 服務管理和控制(SMC),以及CIS安全被描述為RA中的兩個交叉層。在C3分類法的最新版本中,這些交叉層已從概覽中刪除,但基本類別存在于分類法的每一層。為了RA的目的,我們在概述中保留了這些層次,以強調集體訓練和演習中SMC和安全的交叉問題。

圖6:主要MTDS架構構件的層級和聚類。

下面的章節描述了RA的每個層次,最后一節介紹了MTDS技術框架。更多的細節包括在MSG-165 RA技術報告[10]中。

3.1 業務能力

這一層定義了集體訓練和演習(CTE)過程。這些定義了在進行合成集體訓練時應遵循的一般過程步驟,以及在此過程中應開發的信息產品。集體訓練和演習過程在北約Bi-SC 75-3集體訓練和演習指令中有所描述[14],提供了參考過程以及關于規劃、執行和評估北約集體訓練和軍事演習的綜合指南。

CTE過程還包括合成集體訓練環境本身的發展或調整。AMSP-05北約計算機輔助演習(CAX)手冊[15]提供了額外的M&S相關準則,補充了Bi-SC 75-3附件N(演習的合成環境支持)。這本手冊包括了對基于模擬的訓練活動的更專業的流程描述。

設計、開發、實施和測試訓練環境的技術組件的工程流程也包括在這一層。這包括分布式仿真工程和執行流程(DSEEP)、環境數據和流程的再利用和互操作(RIDP)以及V&V活動:

  • DSEEP[4]是一個流程模型,定義了設計、開發、集成、測試仿真環境和執行仿真的七個步驟。DSEEP允許用戶根據他們的具體應用要求定制流程模型,即合成集體訓練環境。

  • RIEDP[16]定義了環境數據產品共享所需的組件。它包括一個參考過程模型、一個抽象數據模型和一個元數據規范,以支持資源庫和目錄要求。作為項目架構開發活動的一部分,環境數據產品的開發至關重要。因此,在合成集體訓練環境的工程中,將RIEDP活動與DSEEP步驟和活動相結合是至關重要的。

  • 如果合成集體訓練環境需要驗證和/或核實,那么應該考慮FEDEP[17]的VV&A疊加,或驗證和核實的通用方法指南(GM-VV)[18]。

所有這些參考程序通常都需要定制,以滿足國家或多國的培訓要求和項目的具體限制。影響定制的因素包括:培訓環境的變化;風險;解決方案的成熟度、規模和復雜性;培訓活動的時間;技術準備度(新興技術或傳統技術);預算;系統和人員的可用性;對核查和驗證的要求;以及安全相關的要求。

3.2 面向用戶的能力

這一層包含了訓練系統,以及用于支持合成集體訓練的M&S和CTE應用。這些是用戶與之互動的應用,因此是 "面向用戶的"。

M&S和CTE應用包括(但不限于)。場景開發應用(用于開發概念性和可執行的場景),合成物理環境應用(用于開發環境數據產品),以及演習控制應用(用于控制場景的執行)。

訓練系統是國家資產,但也包括在這一組中,因為從RA的角度來看,這些被認為是面向用戶的能力。訓練系統的范圍從相對簡單的單元素系統,如專用的CGF應用程序,到更復雜的多元素系統,如完整的任務模擬器。討論訓練系統本身并不在本報告的范圍之內,而是討論這些能力如何在一個合成的集體訓練環境中聯合起來。

訓練系統與其他層的一些服務相互作用,例如。

  • 后端能力:

    • M&S面向消息的中間件(MOM)服務協調訓練系統和M&S/CTE服務之間的模擬數據交換。

    • 仿真門戶服務進行仿真數據協議轉換,使不兼容或部分兼容的訓練系統能夠與M&S MOM服務連接。

    • 場景分配服務為訓練系統提供場景初始化數據,使訓練系統的場景初始化協調一致。

  • CIS的安全性:

    • CDS服務提供了控制模擬數據從一個安全域向另一個安全域釋放的方法。

    • M&S MOM服務實現了模擬數據在站點之間的安全交換。

  • 服務管理和控制:

    • SMC服務能夠有序地啟動和停止訓練系統,并提供對訓練系統進行測量和監控的能力。

3.3 后端能力

這一層包含了幾個構件。本層的M&S和CTE服務定義了MTDS的具體能力。培訓系統和應用與這些后端能力進行交互,如模擬門戶服務,將培訓系統與M&S面向消息的中間件服務進行連接。

這一層的核心服務定義了一些一般的能力,這些能力對于任何合成的集體訓練環境來說都是需要到位的。同樣,通信服務是一般的通信能力,對于任何合成的集體訓練環境都是必不可少的。這些服務包括在這里作為參考,并沒有進行深入的討論。

本層的M&S和CTE服務包括以下內容

  • 仿真門戶服務。在許多合成集體訓練環境中,會有混合的訓練系統,每個系統都支持不同的(版本)仿真標準、戰術數據鏈和/或HLA FOM模塊,例如DIS版本7、IEEE 1516.2000(HLA)、IEEE 1516.2010(HLA進化版)、RPR-FOM、NETN-FOM模塊,或不同的戰術數據鏈仿真標準。RA定義了仿真門戶服務,以執行最常見的轉換,將使用非HLA(如DIS)或傳統HLA(如HLA 1.3)的訓練系統連接到M&S面向消息的中間件服務中。

  • M&S面向消息的中間件(MOM)服務。這些服務使M&S和CTE應用程序和服務以及培訓系統具有互操作性。面向消息的中間件服務符合NATO STANAG 4603和NATO標準AMSP-04。NATO STANAG 4603規定使用IEEE 1516?-2010 (HLA Evolved)標準,用于分布式仿真環境的高層架構。AMSP-04(NETN)定義了一套(連貫的)HLA FOM模塊,以及架構和設計指南,見圖7。NETN的FOM模塊旨在最大限度地提高仿真組件之間的重復使用和互操作性。

圖7:AMSP-04版B中的NETN FOM模塊。

  • 場景分配服務。這些服務為模擬執行提供初始模擬場景(如作戰順序(ORBAT)數據),由場景開發應用程序開發。初始模擬場景包括關于單位、設備項目及其關系的信息,以及關于初始建模責任的信息。即哪些訓練系統負責哪些單位和設備項目的建模和模擬。

  • 仿真服務。這些服務產生地面真實和非地面真實數據,用(模擬的)空中、陸地或海上平臺或綜合信息刺激訓練系統,如敵機、導彈、誘餌、陸地單位、空中交通和海上船只交通。仿真服務由演習控制應用程序控制。

RA還包括架構模式,提供了關于如何組合架構構件的信息。以下是兩種模式的說明。

圖8展示了一個演習控制模式,模擬實體由演習控制應用發出任務。M&S MOM服務在模擬服務和訓練系統之間分配任務,對于演習控制應用來說,模擬實體所在的位置是透明的,因此哪個組件有建模的責任。AMSP-04 NETN-ETR是戰爭領域中模擬實體任務和報告的標準。

圖8:模擬實體的任務分配和報告模式。

圖9提供了一個場景初始化的模式,其中初始模擬場景由演習控制應用提供給場景分配服務。場景分配服務使用M&S MOM服務在運行時將場景分配給訓練系統。場景元素的建模責任對場景分配服務是透明的。培訓系統需要對模擬環境協議中約定的指定元素的建模負責。這種模式使用AMSP-04 NETN-ORG作為場景初始化的標準。場景分配服務支持HTTP,用于發布MSDL數據等。

圖9:場景初始化的模式。

3.4 通信和信息系統(CIS)安全

該層是一個交叉層,定義了與合成集體培訓環境中不同安全領域之間的數據交換、信息安全脆弱性評估以及發布政策對培訓目標的影響評估有關的構建模塊和模式。鑒定過程也是這個交叉層的一部分。此外,其他層的構件也可能包括CIS安全要求。例如,對于M&S MOM服務來說,要支持在聯合合成集體訓練環境中各站點之間安全地交換數據的機制。

這一層的構件提供了安全執行、管理和監控的功能。這些構件在實施M&S CDS解決方案的要求方面提供了指導和考慮,并促進了為SBB選擇適當的技術。構建模塊包括

  • 安全策略配置管理應用:提供配置本套系統中其他構件的方法。

  • M&S防護服務:提供連接國家模擬安全域和北約MTDS安全域的能力,并根據一套預定的發布策略規則控制國家域的模擬數據的發布。

  • M&S調解服務:提供訓練系統或M&S MOM服務與M&S防護服務之間的模擬數據交換的調解手段。

圖10提供了一個跨域信息交換的簡化模式。M&S調解服務將數據轉換為M&S防護服務可以解釋的格式。M&S調解服務和M&S防護服務之間的接口是特定的解決方案,但通常涉及XML或純文本格式的消息,供M&S防護服務檢查和過濾。M&S防護服務的實施大多是國家(機密)和專有的解決方案,并且由于與模擬數據的延遲和吞吐量有關的M&S要求,被認為是M&S特定的。訓練系統位于國家站點,在這個例子中是X站點和Y站點,通信服務(如CFBL-Net)提供跨站點的IP單播/多播網絡服務。此外,加密設備(如果使用,未在圖中顯示)確保站點之間的數據通信是加密的。

圖10:跨域信息交換的模式。

3.5 服務管理和控制

服務管理和控制(SMC)集群也是一個跨域層,因為它影響到所有其他層。

這一層定義了一系列的構件,以便在一個(聯合的)合成集體訓練環境中連貫地管理各部分。這涉及到流程和技術能力。

SMC能力提供了以下手段:

  • 測試訓練系統和測試MTDS技術框架中的應用和服務(見下一節)。

  • 初始化和啟動MTDS技術框架中的應用和服務。

  • 監督MTDS技術框架中的應用和服務的健康和運行狀態。

  • 監測培訓系統的狀態。

  • 終止MTDS技術框架中的應用和服務,該組的應用和服務包括。

  • 系統初始化和終止服務:協調一致地初始化和終止培訓系統,以及MTDS技術框架中的應用和服務。這些服務對組件的初始化和終止進行協調。一旦一個組件成功啟動,進一步協調初始化和與其他組件的同步,例如,由該組件自己決定。

  • 監測、計量和記錄應用程序和服務:收集和提供關于MTDS技術框架中應用程序和服務的健康和性能的信息。例如,監測組件的有效性,從組件中收集指標(如CPU使用率,交換的消息數量),并從組件中收集日志數據(如控制臺日志)。這些服務是任何分布式仿真環境中的基本功能。

圖11展示了一種模式,平臺監控服務監測M&S服務的有效性和準備性。準備就緒表示服務已經準備好參與仿真執行的狀態。有效性表示服務正按計劃執行的狀態。平臺監控服務可以向M&S服務發出有效性請求,以確定其狀態,例如通過HTTP GET探測。平臺監控服務是非M&S特定的服務,定義在RA的核心服務層。

圖11:監測M&S服務的模式。

  • 測試管理應用:驗證CTE/M&S應用和服務以及訓練系統的解決方案是否正常運行;也就是說,符合商定的模擬互操作性要求。北約IVCT[19]是一個解決方案,可用于測試HLA仿真組件的互操作能力,并支持聯合仿真的整合。

3.6 MTDS技術框架

為支持合成集體訓練和演習所需的通信和信息系統能力構成了所謂的 "MTDS技術框架"。該技術框架如圖12所示。它由前幾節所討論的技術構件(不包括訓練系統)組成,被歸納為一套連貫的技術能力。

總之,MTDS技術框架支持CTE過程中的活動,提供在不同地點的訓練系統之間安全和一致地交換信息的能力,提供收集、存儲和處理訓練和演習相關數據的能力,并提供用M&S應用或M&S服務產生的信息激勵訓練系統的能力。技術框架中的構件和模式共同提供了在(聯合)合成集體訓練環境中整合訓練系統的技術要求。

圖12:MTDS技術框架的模式。

4.0 總結和結論

本文對MTDS參考架構(RA)進行了概述。RA為MTDS的合成集體訓練環境的設計、開發和實施提供了參考和方向來源。參考架構是以架構基石(ABBs)和架構模式(APs)分層描述的。每個ABB提供了要求和標準,每個AP提供了關于ABB如何組合的信息。架構塊和模式為開發或獲取ABB和AP的解決方案提供了方向。此外,RA還定義了架構原則來指導RA的開發、維護和使用。

RA與北約C3分類法有很強的聯系,提供了與北約通信、指揮和控制(C3)能力的可追溯性,以及一個共同的結構,以北約C3用戶群體可識別的方式命名和組織構建塊。

RA提供(1)一個框架和結構,(2)其內容(即ABB和AP描述)可以隨著需求和見解的變化而不斷改進和充實。目前MSG-165開發的RA版本已經提供了一個有幾個ABB和AP的基線。然而,我們發現了一些差距,應該為這些差距開發ABBs和APs,并添加到RA描述中(見MSG-165 RA技術報告,[10])。此外,還有機會利用正在進行的科學和技術工作,這些工作應與RA相整合并保持一致。

5.0 建議

對各國和北約:

  • 將RA作為在組織內實施合成集體訓練的參考,并參與北約的合成集體訓練活動,以獲得實際經驗,發展技術能力,并提供業務培訓價值。

對NMSG來說:

  • 將RA作為合成集體訓練的參考,在此基礎上開發技術和要求,確定標準,提供指南,并確定更詳細的具體水平。

  • 確保歷屆工作組對RA進行維護并保持更新。

  • 將MTDS相關的主題(見MSG-165 RA技術報告,[10])組織在一個路線圖中,用于逐步發展RA的內容。

  • 采用RA并促進各國在實施MTDS時使用它。

  • 評估RA在AMSP-03[13]中的整合情況,更新和發展該簡介,使之成為聯合MTDS的簡介。

對集成商和產品供應商:

  • 使產品與RA中列出的要求和標準保持一致。
付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

摘要

一系列因素(射程空間減少、空域限制、武器系統可用性、缺乏目標模擬能力、敵對能力監測)正在推動北約向分布式合成訓練過渡。為了幫助實現這一轉變,北約科技組織(STO)成立了MSG-165任務組,負責為聯合和聯盟空中行動通過分布式仿真(MTDS)執行任務訓練。

MTDS能力的發展并不局限于MSG-165的工作;事實上,它是北約的智能防御計劃之一,由美國贊助,因此在各個層面都有很好的知名度,但仍然未能取得必要的進展。雖然仍有一些挑戰,但該小組迄今為止所開展的工作已經為北約現有的其他合成訓練問題提供了解決方案。這些都體現在文件中,包括:

  • 建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。

  • 制定參考架構原則,為聯合MTDS能力的使用提供基礎。

  • 建立MTDS能力驗證演習,稱為 "斯巴達勇士20-9"(SW 20-9)。SW20-9是對以前“斯巴達勇士”方案的修改,是一個由美國空軍-非洲作戰中心(UAWC)協調的多邊參與機會,通過北約機密級別的聯合戰斗實驗室(CFBL)網絡為聯盟伙伴提供持續的連接,進行日常的、以聯盟為中心的、由單位領導的訓練。

  • 制定MSG-165關于如何利用MTDS來支持北約空中作戰訓練的設想。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。

本文將強調在建立一個共同的北約聯合MTDS環境方面所取得的成就。

關于作者

Arjan Lemmers是英國皇家海軍陸戰隊的高級項目經理。他是北約MSG-165任務組MTDS的聯合主席,在國際分布式任務訓練計劃方面有長期經驗。Arjan也是機載嵌入式訓練系統和LVC互操作性方面的專家。Arjan領導著這個領域的幾個研發項目,并且是幾個國際社區中這些主題的主要參與者。

Clark Swindell是美國空軍作戰中心(UAWC)的建模和仿真主管。他在通過聯合模擬提供分布式訓練方面有豐富的經驗,是NMSG-165的美國國家負責人。克拉克的經驗主要集中在大規模演習,使用聯合模擬,如JLVC,JLCCTC和BLCSE,這些都是使用分布式仿真和玩家的位置,以及整合LVC互操作性和合成環境。

Richard Hemmings是亨廷頓-英格爾斯工業公司(HII)的承包商,是美國空軍作戰中心(UAWC)的LVC集成和開發負責人。最初,他在UAWC作為操作主題專家(SME)和多國LVC演習的項目官員工作,后來他被調到 "未來計劃 "工作,負責整合和開發。作為專家加入北約MSG-165任務組,理查德幫助領導UAWC的工作,主持驗證演習。

1 引言

北約和各國都需要進行聯合的集體訓練,以確保任務準備就緒。一系列的因素(射程空間的減少、空域的限制、武器系統的可用性、目標模擬能力的缺乏、敵對能力的監測)促使北約向分布式合成訓練過渡。為了幫助實現這一轉變,北約科技組織(STO)成立了MSG-165任務組,負責為聯合和聯盟空中行動通過分布式仿真(MTDS)執行任務訓練的增量實施。

本文將強調在建立一個共同的北約聯合MTDS環境方面取得的成就。它首先解釋了北約MTDS能力的背景,以及之前為實現這一能力所做的努力。然后,它提出了訓練目標,并描述了實現這一即將到來的重要訓練能力的步驟。隨后是MTDS原則的定義,為多個利益相關者的觀點提供要求和標準。這促成了MTDS參考架構,它提供了一個符合上述架構原則的通用和可重復使用的描述。在下一部分中,考慮了為聯盟集體訓練部署MTDS跨域安全解決方案時應考慮的安全問題。本文最后對斯巴達勇士20-9演習進行了展望,該演習被用作北約MTDS能力的驗證演習。

2 北約MTDS研究的背景

合成能力已經成為滿足北約軍事力量作戰訓練需求的一個重要工具。新的系統和平臺正變得越來越復雜,需要更多的準備時間來使用。技術能力的提高和成本的降低,再加上環境限制的增加和對實戰活動的敵對(電子)監控能力的提高,使得合成訓練的使用更具吸引力。因此,通過分布式仿真任務訓練(MTDS)實現的集體訓練(CT)對北約和成員國的準備工作變得越來越重要。許多成員國正朝著更多地使用先進的模擬進行任務訓練和采用國家MTDS能力的方向發展,但北約目前還沒有一個集體的MTDS能力來利用這些發展進行聯盟CT。

過去,北約在這一領域采取了一些舉措,從2000年開始進行了關于MTDS的SAS-013研究(NATO RTO SAS-013, 2004)。這項研究確定了參與國的空勤人員任務訓練的做法和局限性,并確定了先進的分布式仿真是否能加強北約飛行員和空勤人員的訓練。它提出了未來的方向,將促進北約空勤人員培訓和任務演練的分布式仿真能力的發展。這在2004年的培訓示范演習First WAVE中得到了推進,即 "虛擬環境中的第一個作戰人員聯盟"(NATO RTO SAS-034,(2007)。第一次波浪演習沒有遇到不可克服的技術障礙,并證實MTDS可以提供一個重要的新能力來滿足北約的任務培訓需求。MTDS工作組建議,北約和聯合國應認可MTDS的潛力,并共同努力將MTDS推進到作戰能力。第一波倡議的后續是北約SMART(2007年)、北約現場、虛擬、建設性(LVC)(2010年)項目,以及2011-2012年北約工業咨詢小組(NIAG)關于空中聯合任務訓練的分布式仿真研究小組(NIAG SG 162,2012)。這些研究為北約MTDS行動概念(CONOPS)的發展提供了越來越清晰的思路。然而,沒有一項研究提供了持久的MTDS能力,目的是支持作戰人員為未來行動實現任務準備。鑒于演習預算的減少,可用于實戰演習的資產的減少,以及現實模擬復雜威脅環境的難度的增加,北約缺少一種具有成本效益的手段來提高未來聯合作戰的集體行動準備能力。

北約建模與仿真小組(NMSG)的任務是 "開發和利用建模與仿真(M&S),使聯盟及其合作伙伴受益"。上述考慮是NMSG在2013年啟動MSG-128任務組 "通過分布式作戰逐步實施北約任務訓練"(NATO STO MSG-128, 2018)的動機。MSG-128研究已經驗證了連接異構作戰訓練模擬器的技術可行性,以便為多國空中任務演習提供真正的訓練價值。它已經起草了MTDS參考架構,為多國訓練演習提供了一個初步的基線,即使在促進MTDS演習就業方面仍有許多差距。多國MTDS演習的成熟將是一個漫長的過程。MSG-128小組建議,為達到這一成熟度,有以下幾個努力的軸心(Lemmers和Faye等人,2017):

  1. 在小型/中型演習的操作成熟度方面取得進展,為上述確定的差距提供技術解決方案。

  2. 繼續在作戰演習環境中驗證這些解決方案,并將這些解決方案整合到MTDS最佳實踐文件中。

  3. 將MTDS演習的可擴展性擴展到大型和聯合演習,包括空軍、海軍和陸軍之間的空域互操作性,以及包括聯合情報、監視和偵察(JISR)。這一行動將是LVC發展和MTDS在多國聯盟演習中使用的一個助推器。

MSG-128在2018年被后續任務組MSG-165 "通過分布式仿真為聯合和聯盟空中行動逐步實施任務訓練 "所接替,該任務組將持續到2021年初。其目標是為北約持久的MTDS環境建立基本要素,并通過初步的操作測試和評估來驗證這些要素。MTDS能力的發展并不局限于MSG-165的工作;事實上,它是北約的智能防御計劃之一,由美國贊助,因此在各個層面都有很好的可見度,但可悲的是仍然未能取得必要的進展。雖然仍有一些挑戰,但該小組迄今為止所開展的工作已經為北約現有的其他合成訓練問題提供了解決方案。這些都體現在文件中,包括

  • 建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。

  • 制定參考架構原則,為聯合MTDS能力的使用提供基礎。

  • 建立空中MTDS能力驗證演習,稱為 "斯巴達勇士20-9"(SW 20-9)。SW20-9是由美國空軍非洲作戰中心(UAWC)協調的一個多邊參與機會,為聯盟伙伴提供北約機密級別的聯合戰斗實驗室(CFBL)網絡的持續連接,以進行日常的、以聯盟為重點的、單位領導的訓練。

  • 制定MSG-165關于如何利用MTDS來支持北約空中作戰訓練的設想。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。

3 共同的空中訓練目標

為了提供最大的價值和效率,北約MTDS必須關注現有訓練安排中沒有涉及的領域。因此,它不尋求復制通過現有國家或北約活動提供的訓練,而是提供額外的聯盟合成訓練能力。北約有能力提供作戰航空部門指揮能力的合成集體訓練(CT)。然而,它還沒有能力對空中指揮部(ACC)以下的戰術能力進行綜合訓練。在合成提供 "從輪子到輪子 "的空中活動方面的這一差距,是北約MTDS提供訓練的主要重點。然而,為了實現端到端的合成訓練,任何未來的系統都應該能夠連接到現有的北約合成訓練能力,特別是支持(NATO STO MSG-165, 2019):

  • 合成傳播和執行空軍司令部(ACC)訓練衍生的空中任務指令(ATO)、空域控制指令(ACO)和特別指令(SPINS)。

  • ACC執行階段的訓練,將合成訓練的任務與ACC戰術人員聯系起來,支持其動態訓練。

空中訓練的要求可以分成三個日益復雜和具有挑戰性的層次,如圖1所示,并在下文中描述:

  • 第1級:個人能力,涵蓋人員的個人訓練和貨幣,安全地發揮作用。

  • 第2級:戰術團隊訓練,訓練分隊的 "基石",為個人和隊員的作戰戰術和程序做準備。

  • 第3級:戰術集體訓練,為復雜的空中行動提供訓練,需要多種空中能力和單位來完成一個行動任務。

在這三個級別中,1級和2級培訓將仍然是國家的責任。然而,3級戰術集體訓練是北約MTDS的關鍵多國要求;這源于許多國家難以實現這一級別的現實訓練所需的密度和能力范圍。盡管如此,在北約MTDS剩余能力允許的情況下,作為次要的優先事項,MTDS將用于2級訓練,作為提高這種訓練的真實性和復雜性的一種手段。

圖1:空中訓練的級別

為確保任何未來的MTDS能力能夠滿足必要的作戰訓練和演練要求,必須確定MTDS將提供的作戰訓練類型。因此,通過與MSG-165行動小組代表協商,制定了北約聯盟反恐目標(CCTO)(NATO STO MSG-165,2019)。這項工作提供了50個CCTVO。這些CCTVO被分組,以提供MTDS解決方案必須能夠支持的廣泛任務集,并幫助未來的培訓設計。以下任務集被確定。攻擊、進攻性反空、防御性反空、空中C2、空中機動性、空中情報監視和偵察、戰斗支援、空地一體化和空海一體化。

在第1級和第2級活動中的個人和構件訓練中,重點是確保機組人員能夠在駕駛艙內采取必要的行動來有效地打擊他們的平臺。然而,在第三級培訓中,雖然正確的機組人員行動仍然很重要,但概念上的重點卻發生了微妙的變化。第三級培訓必須提供培訓機會,以確保在通常大型和復雜的編隊中,控制人員和機組人員之間發生正確、及時的C2互動,如圖2所示。

圖2:將在CT環境中復制的操作互動

與1級和2級培訓相比,3級培訓的重點發生了微妙的變化,允許更加關注合成培訓的交付。因此,雖然大型實戰演習仍然是實現訓練真實性、建立信心和戰略信息的重要手段,但北約空中訓練的更大比例可以在合成環境中常規實施。這一假設已經在MSG-165行動小組中進行了討論和測試,主要的結論是,對于3級多國訓練,對于任務集,超過50%的訓練可以以合成方式進行。

4 參考架構

北約MTDS能力旨在將國家或北約的模擬資產整合到一個分布式的合成集體訓練環境中,這些資產通過一個共同的模擬基礎設施連接。仿真資產一般通過網關或門戶連接到該基礎設施。合成訓練環境的一致性也是參與集體合成訓練和演習的模擬資產的互操作性的關鍵。含有合成環境數據的數據庫的制作可能是整個M&S成本的重要組成部分,這意味著應該促進重復使用。仿真資產提供者通常使用相同的高級流程來生成他們的環境數據產品,但詳細的數據生成流程因生產商或集成商的不同而略有不同。這些差異使數據重用變得復雜,并危及目標應用的最終互操作性。

為了實現MTDS的合成集體訓練環境,能夠快速響應新的訓練需求,需要為訓練環境的開發和工程制定共同的流程和技術協議。由于技術協議通常是在每次演習中制定的,因此仍然缺少一個具有相關工程流程和技術協議的共同認可的模擬基礎設施。這就是MTDS參考架構(RA)發揮作用的地方(van den Berg, Huiskamp, et al., 2019)。該參考架構以構件、互操作性標準和模式的形式概述了MTDS的要求,用于實現和執行由分布式仿真支持的合成集體訓練和演習,與應用領域(陸地、空中、海上)無關。MTDS RA的重點是合成集體訓練和演習,因此將包括具有MTDS特定功能和接口的構件和模式。由于RA是在北約范圍內開發的,它也將利用北約的模擬互操作性標準。

用于特定訓練或演習活動(如 "斯巴達勇士 "演習系列)的模擬環境架構被稱為解決方案架構。由于MTDS的RA為合成集體訓練環境提供了一個 "模板解決方案",因此解決方案架構中使用的許多元素的要求原則上應來自RA。但是,可能還需要進行一些改進,以滿足特定事件的要求。這可能包括選擇仿真協議和特定的中間件解決方案(DIS、HLA)、網關組件、跨域解決方案、數據記錄工具,以及代表合成物理環境(SPE)的協議和格式。參考數據交換模型是通過RA提供的,但解決方案架構仍然需要就這些參考數據交換模型中的哪些具體部分將在具體事件中使用達成協議。

通常情況下,各套原則形成一個層次結構,即架構原則將被企業原則所告知、闡述和約束。架構原則定義了使用和部署資源和資產的基本一般規則和準則。它們反映了企業各要素之間的某種程度的共識,并形成了做出未來決策的基礎。在MSG-165中,為MTDS定義了10個主要的架構原則。下面將討論這些原則。

1.支持北約行動的合成集體訓練和任務演練 MTDS工作的主要預期應用是在北約范圍內的合成集體訓練。應為單一服務和聯合行動開發一個共同的技術和程序解決方案。就技術要求而言,任務演練被認為與任務訓練密切相關。

2.啟用(混合的)現場、虛擬和建設性資產 MTDS應(在未來)支持(混合的)現場、虛擬和建設性的模擬玩家。聯合行動和聯合行動的集體訓練需要有許多模擬實體的復雜訓練場景。訓練對象通常會在實戰、虛擬和混合的LVC環境下進行訓練。解決方案應支持LVC的混合集成。

3.提供靈活性和發展能力 許多國家已經使用模擬系統進行訓練。然而,這些現有的系統在技術上往往是非常不同的。MTDS RA應定義一個框架,該框架在技術上是先進的,沒有限制性(例如,可擴展新的模擬資產),并且不會不必要地阻礙訓練(例如,帶寬,穩健性)。應定義門戶或網關,以允許在MTDS中整合遺留系統,并允許MTDS所需的靈活性。

4.使用開放標準 北約提倡使用開放標準,因為它促進了成本效益的互操作性。開放標準可以被所有各方自由使用。對私人方(如供應商)的使用沒有任何限制。

5.遵守北約政策和標準 MTDS應遵守北約關于M&S互操作性和標準的政策和協議。偏離這一原則需要說明理由,包括對合適的北約標準的評估和與替代解決方案的比較。

6.支持在北約保密級別或最高級別使用 MTDS應支持北約行動的合成訓練和任務演練。系統、理論和任務執行的保密方面需要得到保護。應就系統、網絡、場地和能夠接觸上述內容的人員的實施和認證達成協議。

7.在一次演習中支持多個安全域或飛地 應就屬于不同飛地的系統、網絡、場地和人員之間的信息交流的實施和認證達成協議,可能通過使用CDS解決方案。每個國家和北約之間的CDS解決方案的認證將由每個國家承擔。

8.提供有代表性的訓練環境 MTDS應提供一個有代表性的集體訓練環境,以支持演習中所有參與者的公平競爭(或公平戰斗)。仿真系統性能的差異不應導致某些參與者獲得不現實的(不)優勢。

9.解決多個利益相關者的觀點 MTDS使用RA來提供對特定MTDS解決方案設計的通用和可重復使用的描述。RA是以架構構件的形式來描述的,對這些構件的解決方案有要求和適用標準。為了實施MTDS,將涉及不同的利益相關者。這些構件應該為不同利益相關者的觀點提供指導。

10.通過聯網模擬器為北約和國家的集體培訓提供具有成本效益的培訓解決方案,不得對用戶以及各中心及其工作人員施加不可接受的限制,因為這些限制不值得花費時間,也不能被行動上的好處所抵消。

MTDS原則為多個利益相關者的觀點提供了要求和標準。MTDS RA提供了一個符合上述架構原則的通用和可重復使用的描述。它使用了架構積木(ABB)和架構模式(AP)的概念來定義應用和服務的框架,使國家訓練系統能夠被整合到一個分布式的合成集體訓練環境中。圖3提供了該框架中主要ABB的概述。

圖3:MTDS框架的應用和服務

圖3中的應用是面向用戶的能力,與稱為服務的后端能力互動。例如,圖中顯示--在解決方案層面--將有一個或幾個用于場景準備的應用程序;這些軟件組件與后端服務實現(如威脅生成服務)互動,向這些服務提供模擬場景數據。框架應用和服務的一個子集(門戶服務、面向消息的中間件服務、威脅和跟蹤生成服務以及合成自然環境(SNE)服務)在(van den Berg, Huiskamp, et al., 2019)中有更詳細的討論。

5 跨域安全

北約國家有必要在北約MTDS演習中整合和操作其國家或主權機密模擬資產,以實現其共同的空中集體訓練目標。同時,北約國家希望保護這些最敏感或最機密的資產、其基礎數據和信息,防止因加入這種北約MTDS演習而受到(網絡)安全威脅。在不同國家敏感度、信任度或安全分類級別的模擬資產之間實現安全連接和互操作性,對于成功實施北約MTDS能力和演習至關重要。

M&S跨域安全(CDS)服務旨在滿足這一要求,使北約國家能夠通過共同共享的北約MTDS模擬主干,對位于其國家安全領域的模擬資產進行安全互操作。在這種情況下,安全域被定義為在一致的安全政策下運行的模擬資產,并由一個組織、國家和/或安全認證機構(SAA)擁有。安全政策定義了關鍵要素,如安全分類、可釋放性、利益共同體和任何其他對模擬資產中包含和處理的實際軍事系統和理論的數據和信息的特殊處理注意事項。

在這里,M&S CDS被定義為一個由安全強化服務組成的系統,該服務是為減輕在不同安全領域運行的模擬資產之間傳輸模擬數據的特定安全風險而定制的。這樣的M&S CDS可以被看作是一種網關環境的形式。與普遍應用的M&S(網絡)網關不同,M&S CDS提供了廣泛的安全控制,以提供全面的模擬數據過濾和深度防御,具有更高的保障水平。M&S CDS服務是保護整個北約MTDS基礎設施及其組成的模擬資產免受所有形式的安全威脅所需的整個安全措施的一個專門部分。除其他外,這包括:模擬資產和設施的物理和網絡邊界保護裝置,模擬資產或設施與網絡連接的物理安全,模擬資產和監測之間的加密通信保護,人員安全許可和意識培訓。這些常見的安全措施對于MTDS演習的安全執行也應到位。

理論上,可以設想許多通用的應用拓撲結構,其中部署M&S CDS解決方案,以確保在多個安全域之間進行受控和安全的模擬數據交換。然而,在實踐中,這種拓撲結構的實施必須符合具體的使用案例和威脅環境所施加的跨域安全要求和限制。這意味著分布式仿真環境的跨域安全不僅僅是孤立地關注M&S CDS設備(如數據節點、防護裝置或信息交換網關)。只有當每個連接的安全域內的模擬資產和網段滿足某些可信的安全政策、實踐和要求,并且其相關的安全風險被充分理解和接受時,才能保證整個分布式仿真環境的適當安全水平(反之亦然)。因此,在北約MTDS用戶背景和威脅環境下,在為聯盟集體訓練部署M&S CDS解決方案時,應考慮以下安全因素。

1.最重要的是,每個北約國家需要保持對其國家擁有的模擬數據和信息的完全控制,以及在MTDS訓練演習之前、期間和之后如何共享這些數據和信息。這意味著每個國家將始終通過本國擁有的CDS設備將其機密模擬資產與北約MTDS模擬主干連接起來,這些設備受本國的SAA和安全政策的約束。

2.所有將參加北約MTDS演習的北約國家都使用私營軍事網絡北約聯盟戰斗實驗室網絡(CFBLNet)作為共同的網絡基礎設施,以連接他們的機密模擬資產和其他相關的培訓應用,直至北約機密級別。這意味著參與的北約國家有一個共同的協議,在每個國家對這些資產或應用的安全等級執行方面相互信任,在此基礎上,他們可以通過這個網絡連接、共享數據和信息。因此,目前,從這個北約CFBL網絡到較低信任安全域的級聯連接對任何北約國家來說都是非常不可取的,甚至是不可接受的。

3.北約MTDS將部署符合北約STANAG和標準的仿真互操作性中間件服務(如HLA、DIS和TENA),以便在一個統一的分布式仿真環境中對國家仿真資產進行互操作,用于集體任務訓練和演習。目前,這些中間件標準通過一個共同的共享數據空間和模擬信息交換數據模型來交換模擬數據,而這并不提供任何安全措施。這意味著,任何國家只要能進入北約CFBL網絡,并被允許用正確的加密密鑰加入特定的MTDS演習,也可以直接訪問參與模擬資產之間交換的所有模擬數據。因此,這個集體模擬數據集是MTDS演習中所有參與國(即安全領域)的 "共享秘密"。

4.M&S CDS部署拓撲結構過于復雜,將使每個國家安全領域內的機密模擬資產的安全保障和操作復雜化,并可能增加攻擊面、轉換數據流渠道的風險以及與較低信任環境的級聯連接。這意味著過于復雜的部署拓撲結構可能會在整個MTDS演習準備、執行和匯報階段給北約國家帶來額外的成本和準備時間。因此,CDS的部署拓撲結構應該在滿足國家安全和培訓要求的前提下,設計得盡可能的簡單。

圖4描述了在北約MTDS演習中部署M&S CDS的參考拓撲,該拓撲是根據前面提到的安全考慮因素確定的(Roza,等人,2020)。

圖4:北約MTDS CDS部署的參考拓撲結構

該參考拓撲結構反映了這樣一種典型情況:參與北約聯盟級分布式仿真環境的仿真資產由不同的國家擁有,因此屬于受不同SAA管轄的安全領域。為了確保每個國家完全控制其國家擁有的機密模擬數據,以及如何與其他國家共享這些數據,每個國家通常應使用自己的CDS設備。在這里,每個國家的CDS首先將自己的主權機密模擬數據集轉換并映射成可釋放的數據集,然后根據商定的集體模擬信息交換模式將其發布到集體共享的模擬數據集中。這種共享數據受到共同商定的安全措施的集體保護,如數據加密,以確保通過第三方網絡基礎設施進行保密信息交流,并對每個國家的參與模擬設施采取安全措施,以獲得加入北約MTDS聯盟級演習的權限。反之,國家擁有的CDS設備可以保護單個或聯合的國家機密模擬資產免受來自北約CFBL網絡的網絡攻擊,包括因訂閱共享數據空間的數據而導致的未經授權的模擬數據入侵。

6 MTDS驗證演習

從UAWC的演習選項中選擇,"斯巴達勇士 "活動是通過分布式仿真進行的多國、以空中為重點的訓練。這次演習將在北約的CFBL網絡上進行,在四天的時間里使用每個國家的模擬或仿真器通過DIS和HLA進行連接。UAWC模擬/環境生成器將提供整體的合成環境、安全語音、聊天功能和紅色部隊來填充該領域。

為了建立支持大規模演習所需的行動區域,UAWC雇用了其他模擬中心的專家,包括空戰訓練中心(英國皇家空軍瓦丁頓空軍基地)、北約預警系統ASCOT控制員(北約蓋倫基興航空站)和萊昂納多公司(意大利)。此外,計劃中的參與包括法國空軍(FAF)、意大利空軍(ItAF)、北約預警系統、英國皇家空軍(UK)、加拿大皇家空軍(RCAF)、荷蘭皇家空軍(RNLAF)、西班牙空軍(SpAF)、美國空軍(USAF)和美國陸軍(USA)。因此,它還將通過采用嵌入盟軍控制和報告中心(CRC)和北約預警機的美國陸軍防空炮火控制官(ADAFCO)來實現聯合和北約的互操作性訓練。為了繼續提供互操作性的機會,演習還將通過北約預警機E-3、建設性的E-8 JSTARS和皇家空軍RC-135 "鉚釘 "聯合模擬器支持情報監視偵察(ISR)的 "鐵三角"。這種ISR融合能力模擬了關鍵的現實世界ISR整合,以提高跨平臺和機構的決策技能。這項培訓還將在盟軍CRC和聯合戰術空中管制員(JTAC)之間執行美國空軍支援行動中心(ASOC)的連接。最后,為了支持這項工作,將有多架反空和攻擊飛機,包括建設性的和有人駕駛的模擬器,通過故意瞄準(DT)、打擊協調和偵察(SCAR)以及近距離空中支援(CAS)來支持協調打擊。

由于有機會進行驗證演習,目前建立的基礎設施和系統得到了利用。由此產生的系統和網絡提供了探索規定的RA和CDS配置的混合機會。因此,支持演習的數據被記錄下來,用于進一步的參考架構測試和比較,這使得演習規劃者能夠專注于實現MTDS CONEMP(NATO STO MSG-165, 2019)中概述的聯盟集體訓練目標(CCTO)。通過在整個演習責任區(AOR)創造3級訓練機會,集中精力實現盡可能多的CCTVO,演習策劃者能夠將50個CCTVO中的37個作為計劃目標(NATO STO MSG- 165,2019)。

參照上圖2,不同的任務和飛機類型之間的相互作用有助于建立3級訓練的復雜性。為了開始建立所需的部隊互動過程,規劃者希望建立一個能夠支持現有參與者所需復雜性的戰斗空間。隨著四(4)個指揮和控制(C2)元素的使用,結構化的通道被分配給每個C2元素。有了這些通道,就需要控制戰斗機的進攻/防御行動,以及確保空中加油保持所需的CAPs的支持要求。這種最初的集體行動將戰斗機及其加油機與控制它們的C2機構聯系起來,以滿足聯合空中作戰司令部(CAOC)在規劃文件中制定的規定的區域防空計劃(AADP)。這種看似簡單的互動現在發生在四(4)個不同的元素之間,可以想象是在四(4)個不同的地點。對于 "斯巴達勇士 "20-9,意大利空軍(ItAF)的歐洲戰斗機在作為C2機構的北約預警機控制的航道上與作為建設性實體的UAWC控制的加油機之間的互動現在將3個不同的單位聯系在一起,以實現一個相對良性的集體訓練目標,AAR.02--在同一地點進行空對空加油。同樣地,一個集體可以通過綜合空中行動(COMAO)完成一個更復雜的舉措,以實現進攻性反空(OCA)目標OCA.01(護航),OCA.02(戰斗空中掃蕩)和SEAD.01(壓制敵人防空)。為了建立這個集體目標,規劃人員利用C2機構在機會窗口期間將屬于COMAO包的飛機組織到他們的集結點,然后提供空中掩護(護送),假設達到CAOC的規劃文件規定的可接受的風險水平(ALR)。這個目標給C2機構帶來了決策,他們有能力從以前的打擊中辨別出ALR(防空設施是否被充分壓制?)、COMAO包的狀態、護航OCA組的狀態以建立空中控制,然后是打擊發生后的戰斗損傷評估(BDA)信息。這些集體行動現在占了多個地點的多個小組,處理融合的情報(敵方防空狀態),以及打擊前和打擊后的有效信息交流。

對于MTDS事件的規劃者來說,場景的復雜性不應掩蓋手頭任務的復雜性。在這種情況下,規劃文件根據ALR定義了限制,并建立了已知的時間事件來創建這些打擊窗口。這就創造了機會,或缺乏機會,基于提供給決策者的輸入--在這種情況下,接受培訓的C2機構。對于演習策劃者來說,所需的CCTVO成為驅動特定場景的焦點。通過創建這些決策點,在多個平臺上收集相關信息,所有這些平臺都在為已知的事件進行協調,從而實現了集體訓練點。在更大的事件中,實現這些功能的機會可能會在細節和機會的海洋中消失,以引起更大的力量反應。然而,正是通過保持任務的簡單性來控制信息的流程和流動,才可以在不影響訓練對象或創造支持環境的白軍元素的情況下常規地實現CCTO。

最后,為了改變行動區的任務,特定的任務集在整個行動區被輪換使用。這種輪換使不同的C2機構能夠在四個演習日的每一天改變他們的重點。當一些機構負責支持CAS時,其他機構則負責協調COMAO包、SCAR資產或動態目標事件。此外,戰斗的性質在四天的演習中也有所改變。通過不保持時間線(演習第1天=第100天,演習第2天=第101天,等等),計劃者可以用較小的每日投入進一步構建演習事件。在這個例子中,演習日以10天為單位向前移動。這樣,雙方的補給都可以完成,但更重要的是,戰爭的基調可以得到調整。對于SW20-9來說,10天的增量提供了創造紅方部隊推進日、藍方部隊推進日、停火(以及隨后重新陷入戰爭)日和僵局日的機會。這些都會在對事件的整體解釋中產生色調和變化,從可能的叛逃者到自相殘殺的擔憂,都需要加以考慮。這些變化為所有玩家提供了一系列的事件和任務集,以解釋和建立他們的行動方案,從而增加集體的訓練機會。

7 結論和對北約聯合MTDS的建議

北約內部MTDS能力的發展并不限于MSG-165的工作。MSG-180工作組努力在海洋領域建立MTDS能力(名為LVC-T)(NATO STO MSG-169. 2019)。此外,這兩個小組的工作與MSG-164建模與仿真服務(MSaaS)有關(NATO STO MSG-164. 2018)。MTDS也是北約的智能防御倡議之一,由美國贊助,因此在各個層面都有很好的知名度,但遺憾的是仍然未能取得必要的進展。為了幫助這個問題,我們打算通過將海洋領域納入MTDS倡議,將智能防御的努力結合起來。雖然仍有一些挑戰,但迄今為止所開展的工作已經為其他現有的北約合成訓練問題提供了解決方案。這些問題包括:

  • 分析未來的空中訓練需求,從而重新確認多國MTDS活動的好處。

  • 建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。

  • 制定參考架構原則,為聯合MTDS能力的使用提供基礎。

  • 制定MSG 165的愿景,即如何利用MTDS來支持北約空中業務培訓。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。

為了支持北約聯合MTDS的發展,我們提出了以下建議:

  • 發展北約綜合演習要求,從北約贊助的年度MTDS演習開始。這將有助于提高整個北約對MTDS能力和好處的認識,并有助于為MTDS的培訓制定必要的優先次序。

  • 正式確定聯盟對未來多國合成訓練的期望。我們相信,這將帶來巨大的好處,并提供必要的自上而下的方向和指導,以幫助推動MTDS能力的發展,這是一個初步要素。

鳴謝

本文介紹的工作是由以下北約國家和組織在MSG-165任務組中合作完成的。比利時、加拿大、法國、德國、意大利、荷蘭、挪威、西班牙、土耳其、英國、美國、歐洲航空集團(EAG)、北約工業咨詢集團(NIAG)和北約空中作戰卓越中心。所以這項工作的功勞應該歸功于這個MSG-165任務小組的所有參與者。本文的作者是MSG-165的聯合主席,并代表整個小組的作用。

付費5元查看完整內容

北約逐步面臨著動蕩、技術先進和不穩定、不確定、復雜和不明確(VUCA)的作戰環境。基于北約聯盟,成員國和盟國可以通過建立共同的目標和相互承諾,通過合作和分享資源和風險,以及通過激發彼此的創新和創造力來應對未來的作戰挑戰。然而,為了實現這些優勢,北約將需要有能力跨越文化和地理界限的領導者,將他們的組織團結起來。他們將需要高度發達的社會、文化和道德能力,以建立作為一個聯盟成功所需的信任和理解。

本報告為北約領導者開發提出了一個綜合能力框架,界定了有效領導多國軍事行動所需的關鍵技能。它還旨在幫助調整個別國家的領導者開發計劃,這些計劃獨立地培養其未來的領導者。與該框架一起,本報告確定并研究了有效的多國領導者開發的關鍵領域。本報告探討了管理和利用形勢、技術和道德復雜性的挑戰,以及促成包容性和創造性文化、建立有效關系以實現和維持未來持久的北約聯盟所需的技能

執行摘要

需要北大西洋公約組織(NATO)成員國派遣部隊的多國軍事行動的數量顯著增加。這是對各種危機的回應,從COVID-19大流行病的回應到救災和地區沖突。事實上,21世紀的全球安全環境是一個VUCA(動蕩、不確定、復雜和模糊)環境。領導者需要在多國的、文化多樣的環境中接受挑戰,這些環境在行動實踐、角色、權力和理論方面存在獨特的差異,可能會影響他們作為軍事行動領導者的有效性。因此,有必要確定軍事領導者所需的關鍵能力,以確保在參與多國行動時的信心、有效性和成功。

成立第286研究小組的目的是考慮多國行動中領導力的當前和新出現的挑戰以及對整個北約聯盟正在進行的軍事領導者開發的影響。其主要目標是為未來的領導力發展需求提供指導,并制定一個領導力發展框架,以支持不斷提供的領導力教育、培訓和經驗。RTG-286匯集了整個北約在軍事教育、領導者開發和培訓、文化能力和社會心理學領域的專家。該小組借鑒了成員國關于當前領導者開發計劃的總結報告、學術研究和北約出版物,如《未來聯盟行動框架》(FFAO,2015;2018),以形成對到2035年作戰環境可能面臨的挑戰的深入理解。

本文提出的領導者開發框架包括未來軍事領導者所需的關鍵能力,涉及六個領域:認知、社會、個人、專業、技術和轉型。一系列的領導能力被進一步分解為其組成部分,以便進行詳細的審查,例如未來的領導者將如何建立信任和關系,這是多國軍事行動的關鍵組成部分。與領導者開發框架一起,RTG-286號文件從主題上探討了多國領導者的未來需求。研究了文化能力和關系建設的作用,以及管理復雜性、利用技術、培養創造力和發展道德領袖所需的方法。

本報告建議北約審查其領導者開發實踐,以應對未來的多國行動需求。報告認為,亟需加強對軍事領導者的多國重點教育和經驗,為文化多樣和技術先進的行動做準備。建議在本報告和領導者開發框架的指導下,將教育、基于演習的經驗和培訓相結合。這將提高領導者在一系列領域的知識和能力,包括技術和文化能力、溝通技巧和決策,并為北約多國行動的未來軍事領導者提供經驗和洞察力。

第1章 - 引言

為了保持軍事優勢并在未來的行動中獲勝,北約部隊必須不斷發展、適應和創新,并具有可信性、網絡化、意識、敏捷和彈性。(NATO Act, 2018)

1.1 領導多國軍事行動的挑戰

進入21世紀以來,北大西洋公約組織(NATO)對基于多國聯軍或聯盟的軍事行動的參與程度大幅提高。同時,在非對稱戰爭的擴散、技術進步、新的作戰概念和世界許多地區日益嚴重的政治不穩定等因素的推動下,這些多國軍事行動的復雜性、多樣性和節奏都在增加。

從領導阿富汗的國際安全援助部隊(ISAF)(2003-2014年),到打擊亞丁灣、非洲之角和印度洋周邊海盜的威懾和破壞行動(2008-2016年),北約的行動一直是多樣化的(北約新聞室,2021年8月19日;北約新聞室,2016年12月19日)。2005年,北約對造成超過80,000人死亡的巴基斯坦地震災難作出了反應,空運了近3,500噸急需的物資,并部署了工程師、醫療隊和專業設備,協助救援行動(北約新聞室,2010年10月27日)。最近,在2018年,約有20,000名軍事人員參與了北約在世界各地的復雜行動,包括地面、空中和海上領域以及所有類型的環境。北約一直負責在阿富汗、科索沃和地中海的行動,同時還承擔了大量的培訓任務,以支持伊拉克國防部隊的發展。此外,北約通過執行空中治安任務支持非洲聯盟,并協助應對歐洲的難民和移民危機(北約新聞室,2021年9月10日)。

多國軍事行動,包括人道主義、維和和戰斗任務,是全球安全工作中一個越來越大的特點。它們涉及多個不同文化背景的機構,如北約或聯合國,以及非政府機構,如紅十字會和無國界醫生組織。這種國家和機構之間的聯盟給領導者帶來了復雜的挑戰,影響了決策和任務的有效性。鑒于每一類任務都有獨特的挑戰,無論是地區沖突、城市戰爭、救濟援助還是大流行病,未來的軍事領導者必須以量身定做的方式做好準備,以滿足特定聯盟部隊的需求。

對于每項任務,軍事領導者必須了解每個國家的能力和不足,以及非政府機構如何與有關地區的當地軍隊聯系起來。這是一個巨大的挑戰,需要詳細介紹該地區的關鍵地緣政治和社會文化因素,以及他們將遇到的一系列民間和其他安全及援助組織。這種復雜的信息在接受指揮之前可能并不總是能夠得到。

在組織軍事任務時,與當地國防組織的接觸和協調以及管理區域文化多樣性的復雜性都會發揮作用。如果把與非政府機構打交道的相關問題也考慮在內,這將是一個錯綜復雜的過程。更重要的是,當軍事領導者在外國擔負起領導的重任時,他們是在一個新的、具有挑戰性的環境中進行領導,他們很可能遇到不熟悉的團隊、利益相關者和文化。此外,他們可能沒有完全的指揮權,而是受制于國家的軍事領導,并受制于國家的組織結構、任務目標和規則集。

正如北約職權范圍的多樣性所表明的那樣,領導者需要了解和駕馭他們所參與的行動環境和國家的文化方面,如果他們要最大限度地提高行動效率。此外,相互支持、思想的多樣性、創造性和風險分擔是聯盟成員的許多優勢之一。為了實現這些優勢,北約將需要具有發達的社會技能和建立基于信任、尊重和信心的關系能力的領導者人。他們將需要有能力做出符合道德的決定,并理解他們工作的復雜系統,以便在復雜的作戰環境中促進有彈性的和可信賴的合作關系。

使問題更加復雜的是,未來的領導者將需要了解先進的技術,以及如何最好地實施這些技術和它們產生的信息。隨著支持人工智能和嵌入人工智能的系統在戰斗空間中變得更加普遍,信息管理將在未來成為一個更大的挑戰。信息過載的風險加上這些技術無處不在的傳播,雖然是為了支持領導者,但實際上可能只會增加他們的負擔。此外,對手手中的先進技術將改變和塑造未來的戰斗空間,以及沖突和戰爭的發起和戰斗方式。

網絡空間中這種信息戰的虛無縹緲的性質不是本報告的重點,然而,領導者將需要準備處理信息流,因為它將影響未來的任務指揮。空中空間、衛星和海底空間將越來越多地使用分布式傳感器網絡進行管理,這些網絡是自主監測的。然而,未來的領導者將受制于根據這些系統的輸出作出判斷和決定。因此,他們將需要了解技術的輸出,以及如何對其進行優化,以便為有效決策提供信息。

本報告認為,未來有效的領導者將是具有技術能力、創造性和批判性思維能力的人。他們將了解如何利用技術來實現其決策優勢。未來決策周期的加速和決策精度的提高是決定未來戰爭的最關鍵因素。因為我們知道,我們的對手也在尋求利用這些技術來發揮他們的優勢的方法。我們的優勢是人的因素! 我們的領導者的社會性、創造性和批判性思維能力將意味著決策優勢,并使北約能夠保持信息優勢、總體態勢感知和理解。這一切都與領導者有關,以及他們如何很好地理解他們將在其中運作的環境的細微差別,領導和授權給他們的指揮者。

問題是,鑒于動態和復雜的作戰環境所帶來的挑戰,我們如何使我們的領導者最好地準備好,以便有效地發揮作用?本報告認為,我們有責任確保為我們的領導者做好準備,以應對這些方面的領導問題。沒有簡單的答案,然而,北約可以通過評估和確定他們的需求,并為領導者提供獲得這些需求的機會,來準備教育未來的軍事領導者。

1.2 RTG-286 - 范圍、目標和產出

北約人因與醫學(HFM)研究任務組(RTG)286的基礎是北約HFM-ET-143(2015-2016)對軍事多國行動的領導者開發進行的初步研究。該小組包括來自澳大利亞、捷克共和國和土耳其的代表,確定了探索北約領導者領域現有知識差距的要求。RTG-286進行了合作研究,以評估多國軍事行動中當前和預測的發展(詳見上文)對北約領導者的影響。

RTG-286旨在提高對領導者開發需求的認識,并為提高領導者在多國任務中的表現做出貢獻。RTG-286的目標是:

1)創建一個與北約多國行動相關的當前高級領導者開發主題的摘要。

2)確定未來多國行動中的挑戰以及北約高級領導者取得成功所需的領導能力。

3)確定當前和預期的領導者開發和領導者績效之間的差距,并提出適當的建議;以及

4)為當前和未來的北約多國行動制定一個初步的擬議領導者能力的整體框架。

鑒于多國軍事行動的復雜性,有必要考慮發展領導者的戰略,為這種挑戰做準備。因此,本報告的目的是為多國軍事行動加強每個國家的領導者開發實踐,特別是在作戰指揮層面。本研究考察了有關領導力的學術和軍事學術研究,并審查了當前與北約多國任務中的領導力有關的領導者開發培訓和教育。它還探討了戰略和工具的發展,各國可以利用這些戰略和工具來確定其現有的培訓、教育和發展實踐在多大程度上為其領導者準備了多國任務。

除了提供該研究背景的章節外,RTG-286的顯著成果是為北約多國行動制定了一個領導者開發的綜合框架。北約和伙伴國家可以利用這一框架,為他們專門針對多國行動的領導者開發和培訓活動提供信息。通過一個反復的過程,該框架被開發出來,以包括必要的知識、技能、屬性、經驗和其他因素(包括道德、核心價值觀、身份和對武器職業的承諾)。該框架旨在作為了解和評估北約和伙伴國現有領導者開發活動的參考和資源,并與北約《未來聯盟行動框架》(FFAO)2018年戰略軍事觀點保持一致。

1.3 第286號研究任務組--組建、組成和活動

在完成并提交北約HFM-ET-143報告的結論(包括技術活動建議(TAP)和職權范圍(TORs))后,北約高級小組代表批準了建立北約HFM RTG-286的過渡。北約高級領導層的批準期為2017年6月至2020年6月。RTG-286由來自加拿大、匈牙利、挪威、丹麥、波蘭、瑞典、英國和美國的參與者組成,同時還有來自北約盟軍司令部轉型的代表。美國主席Yvonne Masakowski博士發起了研究計劃,并邀請英國代表Karl Santrian皇家海軍司令擔任該小組的聯合主席,Matt Petersen上校(英國陸軍)于2018年10月接任。

北約STO要求每個RTG在其總部舉行第一次會議,以確保北約的高級領導者能夠參與該小組的初步研究規劃。因此,RTG-286的第一次會議于2017年6月在法國巴黎的NATO STO總部舉行。各國輪流在北美和歐洲主持會議,以確保所有成員都有機會參與。全年通過網絡研討會和電話會議舉行會議,各分組和/或個人參加會議,討論他們的進展和目標。會議在波蘭克拉科夫(2017年12月)、美國洛杉磯(2018年6月)和加拿大渥太華(2018年10月)、英國施萊文漢(2019年3月)和華盛頓特區(2019年6月)舉行。加拿大會議的安排是由于幾個小組成員正在那里參加IMTA會議,它還促進了與倫理和領導力RTG小組的聯合會議。北約HFM RTG-286的最后一次會議于2019年10月在匈牙利布達佩斯舉行,小組參加了北約創新挑戰賽,并商定了最終報告。

1.4 報告的組織

本報告研究了多國軍事行動對領導者開發的要求,涉及六個關鍵領域。對這些領域的分析是與多國領導者開發的新框架同時進行的,這是RTG-286對北約未來領導者開發需求研究的一個重要貢獻。

在這段介紹之后,第2章將首先概述RTG-286在分析未來領導者能力要求方面所采取的方法。它介紹了差距分析的結果和指導這項研究的方法概述,特別是能力框架的設計。

第3章介紹了北約的領導者開發框架。通過這個框架,領導者的能力在五種上層能力下被合理化。專業知識;技術能力;認知能力;變革能力;和社會能力。在RTG-286的研究中,這些能力與其他個人屬性一起被確認為有效的跨國領導力的關鍵要求。他們在該框架中的定義是為了滿足更好地理解這些要求的需要。

在介紹了能力框架之后,第4章將重點討論本報告中考慮的第一個關鍵的行動效率領域,特別是管理和利用復雜性。本章概述了未來北約領導者可能面臨的復雜問題和情景,并研究了一些可用于支持有效的多國指揮的方法和思維技巧。

然后,第5章將探討創造力和創新作為有效領導的關鍵組成部分,強調領導者在為創造力創造條件、解決創新障礙以及促進組織敏捷性和共同復原力方面可以發揮的作用。

第6章探討了最近和未來的技術進步,以及如何利用它們來提高領導者的效率。這將包括研究影響未來行動的先進技術(例如,自主系統、機器人技術)。本章分析了一些可供領導者努力利用技術進步的方法。

然后,第7章從戰略角度闡述了在未來北約多國軍事行動中發展有效伙伴關系所需的領導者能力。本章從內部(建立有凝聚力的聯盟)和外部(非政府組織)的角度,探討了與軍事和非軍事伙伴的關系建設,以及當地的非正式領導和弱勢人群。它試圖確定有效關系的挑戰和基石,以及未來的北約領導者如何建立和維持強大而富有成效的伙伴關系。

跨文化能力是第8章的重點,因為本報告更深入地探討了未來多國行動對北約領導者的社會能力要求。本章認識到北約活動的全球前景,以及國家和非政府組織之間的合作以及與學術界和商界的合作所帶來的軍事優勢。它認為,從制定戰略和戰術到獲得緩和沖突所需的知識,領導者在不同的社會文化環境中理解和有效應對的能力將是所有領域的關鍵。

第9章涵蓋了與未來多國環境相關的新出現的道德挑戰,以及道德推理、身份、氣候和文化的日益重要性。它概述了北約核心價值觀的可操作性的重要性,承認了北約合作伙伴之間可能存在的價值觀趨同和分歧,以及領導者如何管理這些差異。

最后一章綜合了本報告的主要建議,并總結了RTG-286的結論,然后從前面的章節和其他章節中引出一些共同的線索和見解。第十章和本報告的最后,簡要考慮了從RTG-286的結論中引出的進一步研究領域。

付費5元查看完整內容

摘要

荷蘭的Smart Bandits項目旨在開發顯示真實戰術行為的計算機生成部隊(CGF),以提高戰斗機飛行員模擬訓練的價值。盡管重點在于展示空對空任務中的對抗行為,但其結果更廣泛地適用于模擬領域。

傳統上,CGF的行為是由腳本控制的,這些腳本規定了在一組特定事件中的預定行動。腳本的使用有一定的缺陷,例如,在考慮完整的任務場景時,腳本的復雜性很高,而且腳本的CGF往往表現出僵硬和不現實的行為。為了克服這些缺點,需要更復雜的人類行為模型,并結合最先進的人工智能(AI)技術。Smart Bandits項目探討了應用這些人工智能技術的可能性。

本文解釋了在理論行為模型和用于戰斗機訓練的CGF中的實際實施之間架起橋梁的主要架構。測試CGF的訓練環境包括四個聯網的F-16戰斗機模擬器。這種設置能夠為飛行員提供實驗性訓練,以對抗敵人的戰斗機編隊(以智能CGF的形式)。該架構是通用的,因為它可以滿足各種人類行為模型,在概念上,它們在使用人工智能技術、認知的內部表示和學習能力方面彼此不同。基于認知理論的行為模型(例如,基于情境意識、心智理論、直覺和驚訝的理論)和基于機器學習技術的行為模型實際上都嵌入到這個架構中。

1.0 引言

戰斗機飛行員在模擬器中的戰術訓練已經被廣泛使用。戰術訓練的一個基本特征是除了受訓者之外,還有其他參與者的存在。這些參與者可以是隊友,如編隊中的其他戰斗機,支持力量,如前方空中管制員,中立力量,如平民,或敵方力量,如對手的戰斗機。在模擬中,這些參與者的角色可以由人類、半自動化部隊(SAFs)或CGFs來完成。半自動部隊有一些執行角色相關任務的功能,例如,多個虛擬實體可以由一個人控制。然而,使用人類專家參與戰術模擬可能既不符合成本效益,也不具有操作性。首先,這些人類參與者是昂貴的資產。其次,由于模擬的目的不是為他們提供訓練,他們可以在其他地方使用。因此,由CGF來扮演這些角色更為有效,只要這些CGF有能力以適當的方式扮演這些角色。

然而,目前最先進的CGFs在許多情況下并不能滿足戰術訓練的需要,因為它們的行為很簡單。除了前面提到的SAFs,可以區分四類CGF-行為(Roessingh, Merk & Montijn, 2011)。

1)非反應性行為,在這種情況下,CGF根據預先確定的行動序列行事,對環境的觀察或反應能力最小;例如,這種CGF能夠遵循由航點定義的路線。

2)刺激-反應(S-R)行為,在這種行為中,CGF對來自環境的某一組刺激或輸入的反應,總是表現出一致的行為;例如,這樣的CGF能夠在能夠連續觀察到飛機位置時攔截飛機。

3)延遲反應(DR)行為,在這種情況下,CGF不僅考慮到當前環境中的一組刺激,而且還考慮到以前的刺激,這些刺激存儲在CGF的存儲器中。這樣的CGF通過記憶以前的位置,能夠攔截一架飛機,即使這架飛機不能被連續觀察到。

4)基于動機的行為,這種CGF結合了S-R和DR行為,但另外考慮到其動機狀態。這些動機狀態是內部過程的結果,可以代表目標、假設、期望、生物和情感狀態。例如,這樣一個CGF可以假設,一架目標飛機的燃料不足,它將返回基地。因此,CGF可能決定放棄攔截。或者,CGF可能預計到飛機的路線改變,并決定在一個更有利的位置攔截飛機。

到目前為止,CGF的一個特點沒有被納入討論,那就是學習行為或適應行為(在Russell和Norvig, 2003的意義上)。表現出S-R、DR或基于動機的行為的CGF,可以在機器學習(ML)的基礎上擴展適應這種行為的能力。ML技術使CGF的發展能夠更好地適應受訓者的專業知識。此外,ML技術還可以防止為每個要解決的具體問題或情況制定一套艱苦的規則(例如 "如果-那么規則"),這些規則是基于對業務知識的人工啟發,而這些知識在很大程度上是隱性的,不能簡單地用邏輯規則來解釋。

本文的目標是說明在 "智能強盜 "項目(2010-2013年)中開發智能CGFs。該項目旨在將類似人類的智能植入模擬任務場景中出現的CGF中。通過Smart Bandits項目,荷蘭國家航空航天實驗室(NLR)和荷蘭皇家空軍(RNLAF)的目標是在模擬戰術戰斗機飛行員訓練領域邁出重要一步。本文的核心信息是,認知模型是在CGF中創造基于動機的行為的有力手段。然而,為了減輕認知建模的缺點,我們主張額外使用ML技術。這些技術對于減少開發在復雜領域中行動的代理的知識誘導工作至關重要。它展示了如何將不同的方法組合成混合模型。

2.0 基于動機的行為建模

2.1 智能強盜模型

產生智能行為的一種方法是認知建模。在這種方法中,計算模型被設計來模擬人類的認知。在Smart Bandits項目中,到目前為止已經設計了三個認知模型:一個自然的決策模型,一個驚喜生成模型和一個情況意識模型。所有這三個模型都是利用空戰領域的抽象場景進行評估的。

2.1.1 自然主義決策

由于決策是產生任何智能行為的關鍵部分,在項目的早期就開發了一個自然決策模型。該模型的靈感來自于達馬西奧的體細胞標記假說。軀體標記假說提供了一種決策理論,該理論將體驗到的情感作為決策的直覺部分發揮了核心作用,同時將這種直覺部分與理性推理相結合,形成一個兩階段的決策過程。Hoogendoorn, Merk & Treur (2009)對這個模型進行了描述。

2.1.2 驚奇的產生

驚訝被認為是人類對意外情況的普遍體驗的認知反應,對行為有可識別的影響。然而,在CGF的研究中,很少有人關注驚訝現象,很少有CGF有類似人類的機制來產生驚訝強度和驚訝行為。這就導致了CGF在人類會做出驚訝反應的情況下,其行為是貧乏的和不現實的。對于空戰來說,這形成了一個問題,因為許多軍事專家認為驚訝因素是軍事行動的一個重要因素。

出于這個原因,我們開發了一個產生驚訝強度及其對行為影響的模型(Merk, 2010)。該模型是基于各種理論和對人類驚訝行為的認知研究的經驗結果。除了情境的意外性,其他的認知因素,如情境的新穎性也被考慮在內。

2.1.3 情境意識

有效決策的一個重要因素是情景意識(Situation Awareness,SA)。SA在工作領域尤其重要,在那里信息流可能相當大,錯誤的決定可能導致嚴重的后果。為此,我們根據Endsley(1995)的SA的三個層次設計了一個模型:(1)對線索的感知,(2)對信息的理解和整合,(3)對未來事件的信息投射。

在Smart Bandits中用于智能CGF的基本SA模型(見Hoogendoorn, van Lambalgen & Treur, 2011)包括五個部分。(1)觀察,(2/3)對當前情況的信念形成,(4)對未來情況的信念形成和(5)心理模型。對當前情況和未來情況的信念通過閾值函數被激活(接收一個激活值),這是一種從神經學領域采用的技術。圖1中的SA模型代表了用于形成信念的領域的知識。人類使用專門的心理模型,這些模型代表了各種觀察和關于環境的信念形成之間的關系,反過來,這些模型又指導了要進行的進一步觀察。

圖1:情況意識的認知模型:概述

另一個重要的方面是在苛刻的環境下可能出現的SA的退化。當時間有限時,感知和線索的整合會受到影響,導致對環境的不完整了解。此外,由于工作記憶的限制,人類并不總是能夠進行所有必要的觀察。根據可用時間的多少,可以通過考慮不太活躍的信念來進一步完善對情況的了解。這些特點反映在智能CGF的行為中。上述模型的詳細描述可以在Hoogendoorn, Lambalgen and Treur (2011)中找到。

3.0 機器學習

3.1 強化學習

機器學習技術的一個常見區別是監督學習和無監督學習(例如Russel和Norvig,2003)。在監督學習中,在每次試驗后,代理人會得到與他應該采取行動的輸入演示(也稱為輸入實例)相匹配的反應。實際反應和預期反應之間的差異被用來訓練代理,就像培訓師或監督員讓學生意識到預期反應一樣。例如,代理人可以通過向其展示正確的反應來學習飛行動作。在無監督學習中,代理只是被告知輸入的例子。代理人必須在所提供的例子中找到隱藏的結構。由于給代理的例子沒有伴隨著反應,所以沒有差異信號來訓練代理。例如,代理可以學習區分友軍和敵軍的戰術。

強化學習具有上述兩種學習技術的要素。代理人在每次試驗后不是被告知正確的反應,而是在每次試驗的執行過程中收到來自環境的反饋。雖然反饋不一定代表每個單獨行動的正確反應,但該學習技術的目的是為整個試驗提供匯總反饋,從而平均強化正確反應。然而,這并不能保證收斂到正確的反應。強化學習的技術實現在Sutton & Barto (1998)中有所解釋。

強化學習特別適合代理在模擬環境中的應用,因為在這種環境中,代理能夠探索環境,從而可以評估大量成功和不成功的反應。另外,在復雜的環境中,所需的反應,如最佳的對手交戰戰術,往往是未知的。強化學習提供了一種技術,通過每次試驗來改進反應,從而發現更好的戰術。

強化學習的一個普遍問題是,它需要大量的內存來存儲中間計算值(反應與代理在其環境中的狀態相結合,如其位置、速度和方向)。在現實的戰術環境中,這實際上轉化為無限量的反應-狀態組合("狀態-行動空間")。在Smart Bandits項目中,模擬了兩架友軍飛機和兩架敵軍飛機之間的空對空交戰,后兩者由學習型代理人代表。在這些交戰中,學習型代理只能以四種方式做出反應(左、右、前和射擊)。在這個例子中,我們將狀態-動作空間存儲在一個表格中,在可接受的學習試驗數量之后,它需要2千兆字節的內存。這種內存需求隨著額外參數的增加而呈指數級增長。驚人的內存需求可以通過對狀態-動作-空間的近似來減少,而不是保留所有的精確值。近似一個大的狀態動作空間的方法是使用神經網絡(NN),這將在下一節解釋。

3.2 強化學習與神經網絡

在一般意義上,NN(Haykin,1998)可以被認為是一個可以模擬任何數學函數的網絡。在這種情況下,我們使用NN來近似上述的狀態-動作空間。NN的輸入是代理人在其環境中的當前狀態。NN的輸出是代理的每個可能行動的值。NN的輸出是在RL算法產生的數據基礎上進行優化的。RL算法的數據不需要再被存儲。事實上,NN是用RL算法產生的數據來訓練的。以前我們需要2千兆字節的內存來解決一個相對簡單的空對空問題,現在我們只需要大約10千兆字節的數據來存儲這個問題的NN知識。這種知識是由NN的權重值表示的。而且,內存需求不再隨著問題的復雜性呈指數增長,而只是呈線性增長。為此,可以使用相對簡單的前饋型NN,而不是遞歸型NN。然而,我們發現有兩個原因要為需要在復雜戰術場景中行動的代理類型開發替代的ML技術。

1)與一些領域不同,如解決象棋等游戲中的問題,其中最佳的下一步行動完全由世界的當前狀態決定,而解決戰術問題的特點是需要使用以前的世界狀態。例如,一個空對空的對手可能會消失一段時間,并可能在不同的位置突然出現,代理人必須考慮到這一點。換句話說,戰術問題的特點是對環境的不完善或不完全了解1。眾所周知,RL技術對這些類型的問題并不太健壯,當面對更復雜的問題時,我們確實經歷了與我們的代理人的正確反應相背離的情況。

2)一些現實的戰術問題需要在當前的決策中考慮到對以前狀態的記憶。正因為如此,基于RL的代理不能很好地適用于現實的戰術問題。對于需要延遲反應行為或基于動機的行為的應用(見第1章),RL可能不是首選技術。

對于空對空領域的更高級問題,下一節將研究進化技術作為RL的替代品。

3.3 進化技術和神經網絡

人工自主系統被期望在動態、復雜的環境中生存和運行。在這樣的環境中,代理人的具體能力是很難事先預測的,更不用說詳細說明了。自主系統的人工進化使代理人能夠在復雜的動態環境中優化他們的行為,而不需要使用領域專家的詳細先驗知識。RL技術假定問題的解決方案具有馬爾科夫特性(見前面的腳注),而進化技術(B?ck, Fogel, Michalewicz, 1997)不受這種約束,適用于更大的問題集。

進化技術使用一個迭代過程,在一個解決方案的群體中搜索適配性景觀,在這種情況下,就是戰術問題的解決方案。種群中更成功的實例在有指導的2次隨機搜索中被選擇,使用平行處理來實現期望的解決方案。這種過程通常受到生物進化機制的啟發,如突變和交叉。許多進化技術的實驗使用神經網絡來控制代理。神經網絡提供了一個平滑的搜索空間,對噪聲具有魯棒性,提供了概括性并允許擴展(見Nolfi和Floreano, 2000)。此外,網絡結構可以被進化或優化以允許延遲響應行為。這些特性與優化網絡的進化方法相結合,為復雜、動態領域提供了一個有趣的研究領域。作為一個例子,我們可以使用智能強盜的進化技術更新SA模型(見第2.3節)的連接強度的權重。

由于像SA模型這樣的認知模型通常有一大套相互關聯的參數,使用主題專家來確定它們的(初始)值是很麻煩的,而且是投機性的和勞動密集的。這就需要使用進化學習技術來為上述觀察、簡單信念、復雜信念和未來信念之間的聯系確定適當的權重。圖2給出了第2.3節中提到的SA模型的網絡表示的一個簡化例子(取自Hoogendoorn, van Lambalgen & Treur, 2011)。

圖2:情況意識的例子模型(Hoogendoorn, van Lambalgen & Treur, 2011)。

為了學習圖2中網絡的連接權重,我們采用了兩種不同的方法(Gini, Hoogendoorn & van Lambalgen, 2011),即遺傳算法應用和基于權重重要性的專門方法。后一種方法被稱為 "基于敏感度 "的方法。這兩種方法都利用了一個健身函數,表示一個解決方案與期望狀態的符合程度。在這種情況下,可以通過實際激活水平和主題專家估計的激活水平之間的差異來衡量適合度。遺傳算法的表現明顯優于基于敏感性的方法。

3.5 多代理系統中ML的復雜方面

多Agent系統(MASs)屬于兩類中的一類:集中式或分散式控制的系統。集中式控制系統由具有一定程度自主權的代理組成,但整個系統由一個統一的戰略、方法或代理控制,以實現特定的目標。然而,盡管有整體的統一策略,單個代理并不知道其他代理在做什么,所以團隊策略通常在任務中的不同點與單個代理的策略相沖突。這個問題3已經成為在復雜環境中實施MAS的典型障礙。分散式系統與集中式系統不同,它的代理具有更高的自主性,但缺乏指導所有代理的預先存在的戰略。它們通常有某種形式的通信系統,允許代理在探索其環境的同時制定所需的整體戰略。開發能夠進行空對空戰術的智能CGF的挑戰,直接屬于MAS環境的集中式類別。因此,各個代理必須在同一環境中一起訓練。然而,這使狀態空間以環境中存在的代理數量的倍數膨脹。這是每個代理保持自己對環境的獨特看法的結果,這種看法被記錄在自己的狀態空間中。然而,追求多代理的方法是有道理的,特別是在與領域有關的問題上,不同的飛行成員可能有不同的,可能有沖突的目標和不完整的情況意識。

4.0 架構

4.1 仿真環境

Smart Bandits項目中用于CGF的仿真環境是STAGE ?,這是一個場景生成和CGF軟件套件。作為一個基本的場景工具,STAGE為我們提供了一定的保真度和抽象度,很適合目前考慮的戰術空對空作戰模擬。當需要更高的平臺、傳感器或武器模型的保真度時,STAGE提供的基本功能將得到擴展。這種擴展CGF環境基本功能的能力是STAGE被選為Smart Bandits的主要CGF軟件套件的原因之一。

4.1.1 中間件(調解器)

傳統上,代理人的刺激-反應(S-R)行為(見第1章)可以通過使用腳本和/或基本條件語句在CGF軟件中實現。結合這些簡單的構件,通常可以為CGF行為提供一定程度的可信度,這對于許多模擬培訓練習來說可能是足夠的。然而,對于更高級的問題和相關的代理行為,包括學習行為,如第2和第3節所述,這種方法將是不夠的。正如前幾節所論述的那樣,存在著大量的技術用于發展CGF行為和在模擬環境中控制CGF。一個標準的CGF平臺并不能滿足實現這些不同的技術。

為了將STAGE作為Smart Bandits中的CGF平臺,同時將CGF的控制權委托給外部軟件(即使用選擇的編程語言構建的特定軟件),我們開發了一個接口,外部軟件可以通過該接口接收來自STAGE中任何CGF的觀察結果,并可以命令CGF在仿真環境中執行操作。這個中間件層(圖3中所謂的調解器)通過特定的協議(nCom,Presagis專有)與STAGE進行實時通信,可以向不同的代理(可能分布在不同的計算機上)發送和接收上述的觀察和行動。為了與調解器通信,外部軟件使用一個特定的接口,該接口定義在一個庫中,可以很容易地鏈接到軟件中,例如用Java或C++。

圖 3:將智能代理納入商用現成 CGF 包(STAGE?)的架構,智能代理可以使用 C++ 或 Java 接口,通過調解器與 STAGE 通信。

5.0 結論與討論

本文介紹了一種認知建模的技術和各種機器學習技術。不幸的是,似乎沒有一種單一的技術來解決從事空對空任務的智能CGF的所有突發戰術問題。

認知模型是在CGF中創造基于動機的行為的有力手段。然而,為了減輕認知模型的缺點,我們主張額外使用機器學習技術。機器學習技術對于減少在復雜領域中行動的CGFs的開發的知識誘導工作至關重要。本文建議將不同的方法組合成混合模型。

這里提出的主要架構的目標有三個方面:

  • 將智能CGF模型與戰術戰斗機模擬脫鉤。

  • 促進人類行為模型與上述模擬的連接過程。

  • 使得智能CGF模型能夠在不同的客戶端進行分配。

這三個特點共同促成了對混合方法的追求。

在Smart Bandits項目中,智能CGF的行為和設計必須適應手頭的戰術訓練目標。在本文中,我們沒有明確地處理訓練要求。然而,在本文中,我們隱含著這樣的假設:作戰戰斗機飛行員的戰術訓練所需的CGF行為包括以下方面:使人類對手吃驚的能力,看似隨機的行為,即不重復的反應,以及從武器平臺的角度來看是真實的。到目前為止,已經創建的智能CGF將在未來的項目階段(2012/2013)根據訓練要求進行驗證。因此,在 "智能土匪 "項目中,未來工作的兩個主要項目是:

  • 實施混合模型,其中認知建模和ML相結合,以及

  • 根據具體的學習目標或能力來調整智能機器人的行為。

付費5元查看完整內容

摘要

軍事決策在不同的領域--陸地、海洋、空中、太空和網絡--以及不同的組織層面--戰略、作戰、戰術和技術上發揮著關鍵作用。建模和仿真被認為是支持軍事決策的一個重要工具,例如,生成和評估潛在的行動方案。為了成功地應用和接受這些技術,人們需要考慮到整個決策 "系統",包括決策過程和做出決策的指揮官或操作員。

人工智能技術可以以各種方式改善這個決策系統。例如,人工智能技術被用來從(大)數據流中提取觀察結果,自動建立(物理/人類/信息)地形模型,產生對未來事件和行動方案的預測,分析這些預測,向人類決策者解釋結果,并建立人類決策者的用戶模型。

對于所有這些應用,人工智能技術可以在不同的情況下被使用,并且已經開始被使用,因此有不同的要求。在本文中,我們概述了人工智能技術和模擬在決策"系統"中的不同作用,目的是在我們的社區中促進對人工智能的綜合看法,并為用于軍事決策的各種人工智能研發奠定基礎。

1.0 引言

軍事決策有多種形式。它發生在不同的領域--陸地、海洋、空中、太空、網絡--以及不同的組織層次[7]。例如,在戰略層面上,決策是否以及何時在一個特定的作戰區域內開始一項軍事任務。在作戰層面上,聯合部隊指揮官決定為某項行動分配哪些軍事要素,并指定在具體行動中尋求的預期效果。在戰術層面上,例如,海上任務組的反空戰指揮官決定由哪艘護衛艦來應對來襲的威脅。最后,在技術層面上,要決定在什么范圍內使用什么武器來消滅對手。

建模和仿真被認為是支持這些現場決策過程的一個重要工具(例如,見[3]的清單)。它提供了一種理解復雜環境和評估潛在行動方案有效性的手段,而不必使用現場測試。因此,借助于建模和模擬可以更安全、更便宜、更快速,而且可以更容易地測試不同的操作方式。此外,對于戰場上的軍事行動來說,廣泛地試驗軍事行動應該如何進行,甚至可能在道德上不負責任。因為,在指揮官可以決定不繼續按照同樣的戰術行動之前,就已經產生了意想不到的效果。

現代建模和仿真經常得到人工智能(AI)技術的支持。例如,用于仿真單個節點、組織和社會行為模型(見一些背景資料[13][4]),以獲得對對手合理和可能行為的洞察力。在這種行為洞察力的基礎上,可以為許多決策層面的軍事行動設計提供智能分析和決策支持。此外,人工智能技術被用來構建這些模型,與這些模型互動,并迅速分析大量的模擬結果數據。這里的技術進步非常多,例如,使用機器學習來構建更真實的行為模型[11],改善人機協作[5],對大量的模擬數據進行理解[10]。然而,人工智能技術只有在對決策者有用的情況下才能也應該被用于軍事決策。這意味著,只有在決策質量提高或決策過程變得更容易的情況下,才應將人工智能技術(在建模和仿真中)整合起來。

成功應用和接受用于決策支持的模擬仿真--可能建立在人工智能技術之上--取決于與主要軍事決策過程的互動和不斷學習([1])。決策者和分析員應該知道如何提出正確的輸入問題,以便通過建模和仿真來回答。然后,這些問題應該通過建模和仿真研究轉化為正確的輸出答案。因此,在各種互補的人工智能技術的支持下,應該對軍事決策過程和軍事模擬之間的互動有一個廣泛、全面的看法,并服從不同的功能要求。在本文中,我們概述了由人工智能技術支持的軍事仿真在決策"系統"中的不同作用,目的是在我們的社區內促進對人工智能的綜合看法,并為軍事決策的各種人工智能研發奠定基礎。

2.0 基于仿真的軍事決策

如引言所述,決策發生在不同的領域和不同的組織層面。在這里,我們提出了一個決策系統的示意圖,以提供一個關于如何通過仿真來支持決策的一般見解。這一觀點(圖1)來自于對多個決策過程的分析,如聯合定位[5]、作戰計劃[7]、海上反空戰[1],并與著名的OODA環[8]相結合。該觀點中的元素解釋如下。

圖1:由建模和仿真支持的軍事決策周期的系統觀點。

觀察:OODA循環的第一步是觀察,從廣義上講,就是觀察現實世界中正在發展和出現的事件和情況。觀察包括,例如,來自傳感器的(原始)數據,包括我們自己的眼睛和耳朵,以及來自報告、報紙和社會媒體的符號數據。還收集了來自高層指揮和控制實體的指導意見。這些數據由分析員處理,對鏡頭中的個體進行命名,計算某些Twitter標簽的出現次數,驗證某個事件是否真的發生,等等。根據[9],這可以被稱為情境意識的第一級:對當前情況下的元素的感知。

世界模型:在OODA環的觀察步驟中,已經開始了構建世界模型的過程,無論是隱性的還是顯性的。符合軍事決策觀點的世界模型的另一個名稱是共同行動圖。所有相關的概念都在世界模型中得到體現,包括不確定因素和假設。請注意,世界模型可以被仿真,即個體、平臺、團體或社會的行為可以隨著時間的推移而被預測,即使是在用戶的頭腦中隱含完成。

定位:在OODA循環的第二步,分析者使用他的專業知識,對觀察結果進行推理,形成假設,例如對手的意圖。通過這樣做,實現了對真實世界的深入理解[12],這反映在世界模型中(仍然是顯性或隱性的)。在態勢感知方面,這被稱為第2級(對當前形勢的理解)和態勢感知能力第3級(對未來狀態的預測)。在任何時候,推理的結果可能是世界模型結構是不充分的,例如,現實世界的一個方面被認為是不相關的,但最后發現是相關的。因此,世界模型需要被更新。

決定:決策者,可能是與分析員相同的人,將根據對現實世界的理解,考慮如何采取行動的選項。世界模型的預測能力被用來演繹各種情景,讓人了解什么是理想的行動方案,什么不是,或者讓人了解空間和/或時間上的關鍵點,這樣就可以對這些關鍵點給予額外考慮。當然,如果世界模型是隱含的,這都是決策者的精神努力。此外,對于感興趣的現實世界系統的預測行為,可以得出的結論的精確性和/或確定性有很大不同:從精確的路線,到可能的戰略和理論的廣泛指示。

行動:在OODA-環的這一步,行動被執行。這些行動發生在真實世界中,然后一個新的OODA-環開始觀察是否需要重新考慮已經做出的決定。另一個行動可以是向 "較低層次"的決策過程下達命令,例如,讓下屬單位計劃和執行他們所得到的任務。這就是不同組織層次的決策過程的互動方式。還要注意的是,盡管每個組織層面的世界模型都與真實世界相聯系,但這些世界模型的結構(即被認為是相關的)可能是不同的。

從概念上講,在上述的決策過程中引入模擬(實際上首先是建模的巨大努力)是很直接的。在第一步和第二步中,建立了世界相關部分的模型,在以后的時間里,它被用來評估許多不同的情景,分析由此產生的結果,并根據其結論做出決定。正如后面將顯示的那樣,人工智能技術的作用與建模和模擬的使用有很大關系。

雖然從概念上來說,納入仿真模擬和人工智能技術是很簡單的,但為了給行動提供真正的附加值,它需要被嵌入到具體的決策過程中。而每個決策過程都是不同的,有不同的時間限制,不同的行動者,在不同的操作環境中。這將對開發使用的解決方案,包括人工智能技術,提出不同的功能要求。此外,根據具體的作戰決策環境,應用人工智能技術的附加值(或缺乏附加值)將是不同的。在下一節中,我們將對一個具體的案例進行進一步的探索,盡管肯定不是詳盡的努力,以允許對這種系統在這個過程中可能具有的不同角色進行更通用的識別。

3.0 案例研究:聯合目標定位周期

本節提供了一個關于如何利用仿真和人工智能技術來支持作戰層面上的(蓄意)聯合目標定位決策的案例研究。對于每個想法,都有以下描述:被加強的行為者(決策者)和/或產品,人工智能如何提供支持,以及使用這種形式的支持的附加值是什么。請注意,這個案例研究的目的是為了更好地了解人工智能技術應用的廣度,因此,目標不是完全涵蓋所有的可能性,也不是過于詳細。這種類型的案例研究已經確保了可以得出初步的功能要求,人工智能技術和智能建模與仿真應該應用于此。

圖2顯示了北約盟國聯合出版物3.9中的聯合瞄準決策周期,其中強調了五個想法。

圖2--來自北約盟國聯合出版物3.9的聯合目標定位周期,JFC=聯合部隊指揮官,JTCB=聯合瞄準協調委員會,JTL=聯合瞄準清單,TNL=目標

想法1--基于AI的目標系統分析的所有來源分析。第一個想法是支持目標小組的成員在聯合目標定位周期的第二階段參與目標系統分析,進行目標開發。例如,假設從第一階段開始,就打算通過瞄準對手的石油生產來擾亂其資金能力。在第二階段,分析人員將研究石油生產的目標系統,以確定油井、煉油廠、管道、重要的道路,也許還有相關的關鍵人物,等等,基于他們擁有的所有來源(圖像、信號情報、人類情報,等等)。

人工智能技術可以協助人類分析員建立 "目標系統模型",即通過采用模式識別算法來處理大量的所有來源的信息,通過使用推理算法將信息碎片組合成一個結構化和連貫的整體。分析傳入信息的算法可能--經過增量的人工智能驅動的創新--也能夠識別尚未反映在目標系統模型中的新概念,然后可以自動添加到模型中。另一種可能性是創建一個 "虛擬分析師"(見圖3),通過不斷挑戰假設、假說和人類偏見來協助人類分析師,這需要額外的用戶建模和可解釋的AI技術。

圖3:人類和虛擬分析員,一起解釋數據,推理信息和知識,以建立一個目標系統模型。

這個想法的潛在附加值首先體現在完整性上,更多的目標可以呈現給人類分析員--它仍然可以為交叉檢查的目的做最后一步的目標審查。因為所有來源的情報都被整合到目標識別決策中,所以可以得出更具體的目標信息。識別算法經過訓練后,與基于人眼從數據中識別目標時相比,可以更快更及時地進行識別。最后,該算法可以明確地轉向識別不同類型的目標,這些目標可能并不都在人類分析員的經驗或觀察能力范圍內。

想法2--通過算法識別來自目標系統分析的優先目標。第二個想法是支持從一個給定的目標系統分析中識別優先目標。這有助于目標支持小組成員得出一個聯合的優先目標清單,該清單是在聯合目標定位周期的第二階段,即目標開發階段制定的。人工智能技術的支持始于將目標系統分析(如果還沒有的話)轉化為計算機可理解的形式,該形式由功能關系連接的實體組成,并由目標任務的目標支持。然后,在相關的時間范圍內計算直接或間接瞄準不同實體所產生的效用(例如,效果和效果的持續時間)。

然后,最終結果可以由人類分析員檢查,該分析員可能會重新引導算法的某些部分,以確保最終結果選擇的優先目標盡可能地滿足和平衡任務目標。另一種可能性是,分析表明,對目標系統的某些部分還沒有足夠的了解,無法做出某種決定,然后發出新的情報請求,以減少這種不確定性。

在這種情況下,使用人工智能技術的附加價值首先體現在通過完整地確定優先事項,包括最大限度地實現任務目標,同時最大限度地減少負面問題,從而更好更快地確定優先次序。這種全面的分析可能會導致原始的目標選擇,在這種情況下,會發現反直覺但非常有效的目標。目標優先級的可追溯性增加了,因為目標選擇問題的算法規范以及積極和消極的相關功能迫使決策者在激發他們的偏好時完全明確。

想法3--能力和優先目標的自動映射。與目標開發(第二階段)密切相關的是第三階段的能力分析。第三個想法是協助,仍然支持目標支持小組的成員,找到最適當的(致命和非致命)能力的最佳同步組合,可以應用于產生所需的物理和心理效果。使用模擬和人工智能技術來自動生成和播放高水平和低水平的行動方案,可以獲得對計劃的優勢、機會、弱點和威脅的深刻理解。當然,只有在與人類分析員和決策者密切合作的情況下,建立這樣的理解才是有用的,這就需要有人類意識的 "虛擬分析員 "技術。

想法4--計算機輔助的穩健和適應性部隊規劃和分配。在聯合定位的第四階段,能力分析的結果被整合到進一步的行動考慮中,推動聯合部隊指揮官對目標的最終批準。仿真和人工智能優化技術可用于尋找稀缺資源對目標或其他任務的最佳分配。什么被認為是 "最好的 "可以是不同的,例如,爭取最大的效果、安全、穩健、靈活,或這些和更多因素的任何組合。這可能會提供原始的規劃和分配方案,從人類分析者的角度來看,這些方案部分是反直覺的,但卻富有成效。智能優化算法可以幫助確定時間和/或空間上值得監測的關鍵點。而且,如果可以實時跟蹤進展,在事件或機會實際發生之前就可以立即生成重新分配方案,在時間緊迫的情況下減少決策時間。

想法5--自動評估軍事行動績效措施。在聯合定位的最后階段,收集和分析數據和信息,以確定計劃的行動在多大程度上得到執行(績效的衡量),以及達到預期的效果(效果的衡量)。因為這種類型的分析與其他階段的分析基本相似(即需要觀察和理解),所以在這里采用的模擬和人工智能技術可以被重復使用。例如,"目標系統模型"可以用來事先確定哪些措施或措施的組合最能說明性能和/或成功,也許還要考慮到其他因素,如效果的可測量性和延遲性。這些見解可用于指導例如戰斗損失評估工作。算法可以自動產生多種假設,當數據/信息可用時,"虛擬分析師"可以協助對這些假設和信息進行推理,幫助人類分析師以結構化的方式更好地解釋復雜的情況。

4.0 討論:人工智能在軍事決策中的作用

在本節中,我們將討論人工智能技術在軍事決策中可以發揮的作用,并將這些作用與前面介紹的軍事決策系統聯系起來。這些作用是由上面的案例研究綜合而成的。不同的作用是沿著兩個層次結構的,從上到下:在 "過程"層面,不同但連貫的步驟/階段被執行;在 "個體"層面,人類(或團隊)負責執行決策過程的特定步驟。

在整個決策過程的層面上,有多個步驟可以區分。在前面介紹的決策系統觀點中,這些步驟是觀察、定位、決定和行動。在聯合定位案例研究中,這些對應于六個階段,由不同的人在不同的時間執行。在這個層面上,我們為人工智能技術定義了四個功能角色,以支持決策過程。

  • 感知:這個角色中的人工智能技術,主要以模式識別的形式,幫助處理大量的數據,如在圖像中尋找人,檢測數據流中的異常情況等。

  • 態勢理解:這個角色的功能是實現對當前或假設的作戰環境的理解[12],從而描述所有相關實體、它們之間的關系以及不可觀察的屬性,如它們的野心和目標。例如,對關于最近敵對活動的現有信息進行推理,結合關于他們的理論的一般知識,可以用來產生關于他們最可能的意圖的假設。

  • 計劃生成:在這個角色中,人工智能技術,例如搜索和優化,被用來生成旨在達到(或避免)某種目標情況的計劃、策略和行動方案。處理元標準,如計劃的穩健性或情況的實用性也是這個作用的一部分。顯然,在許多情況下,不確定性是行動環境所固有的,因此不能被忽視。盡管如此,對當前形勢的理解越好,預測能力就越強。

  • 學習:扮演這一角色的人工智能技術被用來更新有關作戰環境的知識。例如,在某個時間點,人們可能會發現一個被認為是正確的關于敵人理論的假設不再有效了。為了能夠保持正確的理解,這種新知識應該反映在所有其他決策步驟中。

在單個節點層面上,決策過程的單一步驟被執行,通常由一個或一組人類分析員和/或決策者負責。無論這一步需要什么,人工智能技術都可以在不同的合作角色中被使用,以支持人類。

  • 專家系統支持:在這個角色中,支持的形式就像一個經典的專家系統,以知識和優化結果的形式向人類決策者或分析員提供建議。重要的考慮因素是,例如,如何以人類能夠接受的方式向其提供建議。對可解釋人工智能的研究可能是一個方向。

  • 虛擬團隊成員:在這個角色中,人工智能技術被用來在人類和支持系統之間創造一種更平等的互動關系,積極為一個共同的目標工作。例如,虛擬團隊成員可以通過提出問題使假設明確化或挑戰偏見來幫助做出決定的(認知)過程。人類-人工智能的研究可能是一個追求的方向。

  • 自主決策:決策過程中的其他步驟的互動,專家系統和虛擬團隊成員支持的考慮同樣有效。例如,在其他決策中的人類需要能夠推斷出一個自主系統。

圖4顯示了在軍事決策系統視圖中繪制的人工智能的七個角色。當使用模擬和人工智能來支持決策過程時,應該始終考慮這些不同的角色是如何互動的,無論是在過程層面還是在個人層面。例如,在聯合目標定位的過程層面上,第二階段包括定位(目標系統分析)和決定(為達到預期效果而瞄準什么)。第三階段也包括定位(自身能力)和決定(如何實現預期效果)。這些階段共享相同的世界模型,在這個過程中引入人工智能支持將推動這些步驟的合并,這不是不可想象的。在個體層面上,例如再次考慮第2階段,分析員可以得到綜合態勢理解、規劃生成和學習技術的支持,以及虛擬團隊成員和專家系統支持技術的任何組合。

圖4:由建模和仿真支持的軍事決策周期的系統視圖,其中人工智能技術的功能(黃色)和協作(綠色)作用被描繪出來。

5.0 結論和進一步研究

在本文的第一部分,我們介紹了軍事決策的系統觀點,主要基于OODA循環,其中我們介紹了世界模型,作為向整個決策周期提供建模和仿真支持的核心手段。接下來,從我們的聯合目標定位案例研究中,我們推斷出人工智能可以為軍事決策做出貢獻的七個功能性和協作性角色。這些角色對應于決策步驟,或者對應于如何向負責該過程步驟的人提供支持。最后,我們將這些人工智能角色整合到決策系統視圖中。

本文的目標是為我們社區內人工智能的綜合觀點做出貢獻,并為軍事決策的人工智能各種研發奠定基礎。在開發支持軍事決策的模擬和人工智能時,我們建議同時考慮過程層面和單個節點層面。在過程層面上,通過使用建模和仿真可以獲得好處。在單個節點層面上,為人類分析員和決策者提供實際支持,人工智能技術可以通過不同的角色組合對此作出貢獻。鑒于決策過程的各個步驟都是不同的,并且提出了不同的要求,履行這些不同角色的人工智能技術需要作為一個整體來開發。

我們相信,隨著對這一主題的更多研究,軍事決策的速度和質量都可以得到改善。然而,非常重要的是,要持續關注特定的未來人工智能應用的附加值,以及研究這些應用可能對,例如,負責該過程的人的所需技能,甚至該過程本身的影響。最后需要的是一個系統,它的存在是因為它可以建立,而不是有人幫助。對于這一點,應該更普遍地回答如何限定然后量化應用人工智能進行具體軍事決策應用的附加價值的問題。這樣的見解反過來又會成為關于人工智能用于軍事決策的集體技術路線圖的寶貴基礎。

6.0 參考文獻

[1] Bloemen, A., Kerbusch, P., van der Wiel, W., Coalition Force Engagement Coordination, TNO Report TNO-2013-R12117, 2015.

[2] Connable B, Perry W, Doll A, et al. Modeling, Simulation, and Operations Analysis in Afghanistan and Iraq. Santa Monica, CA: RAND, 2014.

[3] Davis P., Kulick J., Egner M. Implications of Modern Decision Science for Military Decision-Support Systems. Santa Monica, CA: RAND, 2005.

[4] Kunc, M., Malpass, J., White, L.(2016). Behavioral Operational Research, Theory, Methodology and Practice. Palgrave Macmillan, London.

[5] Langley, P., Meadows, B., Sridharan, M., Choi, D. (2017). Explainable Agency for Intelligent Autonomous Systems. Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications (IAAI-17).

[6] NATO Allied Joint Doctrine For Joint Targeting AJP 3.9(B), 2015.

[7] NATO Allied Command Operations. Comprehensive Operations Planning Directive Interim V2.0.

[8] “OODA loop.” Wikipedia, The Free Encyclopedia. 10 Mar. 2018.//en.wikipedia.org/wiki/OODA_loop

[9] “Situation Awareness.” Wikipedia, The Free Encyclopedia. 17 Mar. 2018.

[10] Smit, S., Veldhuis, G., Ferdinandus,G., et al. KaV Advanced Visual Analytics, TNO Report DHWELSS-, 2016.

[11] Toubman, A., Poppinga, G., Roessingh, J. (2015). Modeling CGF Behaviour with Machine Learning Techniques: Requirements and Future Directions. Proceedings of Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015.

[12] “Understanding.” Wikipedia, The Free Encyclopedia. 18 Apr. 2018.

[13] Zacharias, G., MacMillan, J., van Hemel, S. (2008). Behavioral modeling and simulation: From individuals to societies. National Research Council, National Academies Press.

付費5元查看完整內容

1 引言

美國參謀長聯席會議主席(CJCS)最近就美軍新的聯合作戰概念(JWC)以及相關的新的全域聯合指揮與控制(JADC2)框架對其實現的重要性向國會作證。具體而言,他在2021年6月23日向美國眾議院表示:

  • JWC是一項多年長久的工作,旨在針對未來威脅的聯合作戰制定一個全面的方法,并為未來的部隊設計和發展提供指導。JWC的輔助概念描述了關鍵的作戰功能,包括火力、后勤、C2和信息優勢。聯合全域指揮與控制(JADC2)框架使得JWC和輔助概念的整體發展和實現成為可能。

JWC的基礎是全域作戰概念。這是美軍在優化協同效應過程中的下一步發展,這種協同效應是通過在空中、太空、海上、陸地和電磁波譜等所有領域的綜合行動而產生的。這一過程始于1986年戈德華特-尼科爾斯法案的通過,該法案旨在提高美國武裝部隊進行聯合(軍種間)和集成(聯盟間)作戰的能力。如果發展和實施得當,JWC將產生比今天的 "聯合"作戰更決定性、更強大的戰斗結果,在許多情況下,"聯合"作戰只是涉及軍種之間的沖突和整合。為了實現這一目標,美國國防部(DOD)需要認真地將理論轉化為現實。這意味著要采取漸進但具體的步驟來實現JADC2的目標,而不是在實施之前等待一個完整的解決方案。JADC2將需要大量的時間來設計,因為它涉及到現有概念、能力和服務觀點的巨大轉換。然而,為了加速這些工作可以通過快速改進當前的指揮和控制模式來完成。具體來說,現在是時候超越大型的、集中的、靜態的C2設施,轉向移動的、分布式的C2,有能力處理與區域空天聯合行動中心(CAOC)相同的信息量和多樣性。

由于它尋求所有領域的協同作用,包括來自不同領域的能力的互補性,而不僅僅是相加,JADC2的目標是尋求相互依賴,以提高有效性,并彌補每個領域的脆弱性。所期望的軍事效果將越來越多地由共享信息和相互授權的系統互動來產生。JADC2的愿景是通過數字連接的 "膠水"將資產結合起來,成為一個 "武器系統",在整個作戰區域內進行分解、分布式作戰,而不是在每個領域中建立一套互不相干的、單一的作戰系統。這將需要把每個平臺作為傳感器和 "效應器 "來對待。它將需要一個新的戰斗指揮架構和指揮與控制范式,以實現自動連接,就像今天的移動電話技術一樣。它還將需要安全、可靠和無縫地傳輸數據,而不需要人的互動。

2 設想中的轉型

實現JADC2的總體目標,并將其與實現自我形成、自我修復的綜合體所需的整合程度結合起來,將需要做出巨大的努力,而且并不容易。每個軍種和每個作戰司令部都將參與其中。它將需要克服組織、文化、訓練、采購和政策方面的幾個主要障礙。它將需要連接、決策和快速響應,需要有彈性的網絡和尚未達到的軍種和盟國之間的共享能力。

這些是眾多的、多方面的挑戰,我們的軍隊、軍種和作戰指揮部都在解決這些問題。然而,由于其復雜性,要實現一體化、相互依存、自我形成、自我修復的全域聯合和集成作戰的最終愿景還需要很多年,甚至幾十年。然而,我們所面臨的威脅正在增長,并需要今天的解決方案。因此,現在是時候對JADC2中那些現在就可以改變的要素采取行動,以應對我們今天面臨的威脅和挑戰。

每個軍種和作戰指揮部都有成熟的指揮和控制概念、設施和程序,這些在過去的沖突中證明是可行的。然而,目前存在的各種C2架構都需要進行廣泛的修改,以便在出現的現代威脅面前生存,更不用說運行。

【越來越多的信息獲取需要對指揮和控制進行重組,以促進對易逝目標的快速采取行動,并利用我們的技術能力。信息綜合和執行權力必須轉移到盡可能低的級別,而高級指揮官和參謀人員必須約束自己,以保持適當的作戰層級。】

在所有領域的成功行動的一個核心前提是對航空航天環境的控制。一旦建立,它將促進所有其他聯合和集成部隊的行動和移動自由--沒有它,有效的聯合或集成作戰是不可能的。因此,對航空航天作戰的有效指揮和控制是必須優先考慮的關鍵部分。

我們指揮與控制(C2)空中和太空部隊的能力受到三個主要因素的影響:威脅、技術和信息速度。自美國空軍的空天作戰中心(AOC)--AN/USQ-163 "獵鷹 "的設計、建立和運行以來,這三個領域的變化是巨大的,并在繼續加速。因此,現在是時候確定我們是否可以通過發展目前的作戰概念、組織和采購流程來實現現代化,或者我們必須尋求對這些影響目前戰區空天控制系統的每個要素進行根本性的改變。在提供答案之前,讓我們簡單看一下影響我們有效指揮和控制航空航天作戰能力的每一個趨勢。

3 未來的威脅和作戰環境

3.1 威脅

今天,當試圖在A2/AD環境中作戰時,同行的威脅使目前的C2手段處于不可接受的風險之中。30多年來,我們基本上一直在享受C2優勢,在航空航天領域不受競爭的影響。這些日子已經過去了。軍事競爭對手已經以前所未有的規模完成了現代化。他們已經迅速縮小了與美國、盟國和友好國家軍隊在包括飛機、航天器、導彈、武器、網絡、指揮和控制、干擾器、電子戰、數據鏈接和其他廣泛能力方面的差距。潛在的對手也研究了美國的戰爭方式,與其面對我們(美國)的戰斗力,不如讓我們(美國)遠離他們。他們已經采用并正在擴散反介入和區域拒止(A2/AD)能力,旨在拒絕美國及其盟友的行動自由。減輕這些A2/AD能力帶來了巨大的挑戰,促使我們在更大的風險和遠離潛在沖突地區的情況下行動。

A2/AD能力以三種方式威脅著我們指揮和控制空天作戰的能力。近距離的對手可以使用動能和非動能武器,從我們的天基資產中拒絕我們(美國)的通信和情報、監視和偵察(ISR),從而孤立我們(美國)的部隊并蒙蔽我們(美國)的視野。網絡攻擊正變得越來越復雜,可以破壞我們完善的空中和太空聯合作戰中心的運作。精確的遠程巡航導彈和彈道導彈現在威脅著這些大型、固定和脆弱的設施。作為產生戰略、計劃和空天資產任務指令的工廠,建設空天聯合作戰中心已經成為一個極其有利可圖的目標。

3.2 技術

新技術正在促成新的能力,以優化C2機制,達到預期效果。我們需要超越傳統文化對新技術的限制來思考。例如,下一代飛機在傳統術語中可能仍被標記為戰斗機、轟炸機、空運機等,但由于傳感器、處理能力、武器、能源生產和其他能力的微型化,在技術上它們有能力執行多種任務。它們實際上是飛行的 "傳感器效應器",可以形成由冗余節點和多殺傷路徑組成的高度彈性網絡的基礎,以盡量減少目前高度集中和有限的C2節點(如CAOC)的關鍵系統價值,這些節點敵人可以輕易地將其作為目標。

【JADC2將需要很多時間來設計,因為它涉及到對現有概念、能力和服務觀點的巨大轉變。然而,加速這些工作可以通過快速改進當前的指揮和控制模式來完成。】

這將需要領先的網絡能力、有保障的通信,以及解決我們的數據帶寬挑戰的不同方法。例如,為了解決來自先進傳感器的爆炸性數據增長,與其建造更大的管道來傳輸收集的數據,不如現在提高處理能力,使得機載數據的處理成為可能,并且只對用戶感興趣的內容進行分發。這種方法顛覆了我們今天處理情報、監視和偵察的方式。

快速的信息交流在戰斗的前沿尤其重要,因為實際數據的價值往往是短暫的,并隨著時間和環境的推移而減少。開發一種技術方法,在不同的用戶之間、在多個分類和盟國及伙伴國之間自動和快速地分享信息,將是創建未來部隊的一個關鍵。

古老的格言,"速度就是生命",不再僅僅是指飛行--它也是指快速發展的軟件工具,用于戰斗和勝利。我們必須跳出歷史上刻在我們集體心靈中的組織結構的思維。以網絡為中心的、相互依賴的、功能整合的作戰是未來軍事成功的關鍵。

3.3 信息傳遞速度

電信、傳感器、數據存儲和處理能力方面的重大進步每天都在出現。因此,瞄準周期已經從幾周到幾天發展到幾分鐘,從多架、專門和獨立的飛機發展到一架飛機在幾分鐘內 "發現、修復和完成 "的能力。越來越多的信息獲取需要對指揮和控制層次進行重組,以促進對易逝目標的快速介入,并利用我們的技術能力。信息綜合和執行權力必須轉移到盡可能低的級別,而高級指揮官和參謀人員必須約束自己,以保持適當的戰爭水平。

要超越大型的、集中的、靜態的指揮和控制設施,轉向移動的、分布式的C2,并有能力處理與今天的區域性聯合空天作戰中心相同的信息量和多樣性,將需要重新評估該部門如何處理信息流。這種未來能力的兩個最重要的方面將是通過它所提供的同步 "控制 "實現 "指揮 "的蛻變。

"指揮的藝術"將實現梅特卡夫定律的網絡價值(梅特卡夫定律指出,電信網絡的價值與系統連接用戶數量的平方成正比),而控制的科學將繼續應用摩爾定律的擴展技術來擴展人類能力。

4 空天C2的新架構

我們現在正處在一個威脅、技術和信息速度要求改變指揮和控制空天部隊的既定架構的關口。所有軍種都已認識到這一點,并已開始行動,為各自的領域制定新的作戰概念。面臨的挑戰是如何確保每個軍種的作戰概念都被整合到一個統一的聯合全域指揮和控制架構中。

該作戰云的開發理念是建立一個情報、監視和偵察、打擊、機動和維持綜合體,利用信息時代的技術進行高度互聯的分布式作戰,它將迎來一個完全不同的戰爭架構。JADC2的根本基礎是將準確的、高質量的信息下放到最低的信息節點,以達到預期的效果,而不考慮服務、領域或平臺。

美國空軍實現這一目標的方法是努力設計和開發一個先進的戰斗管理系統(ABMS)。ABMS的要素已經被定義,但它們還沒有發展成一個可執行的指揮和控制架構。要達到JADC2和ABMS所期望的最終狀態,即以安全、可靠和強大的方式在整個戰斗空間進行無處不在的無縫信息共享,將需要多年時間。鑒于重大威脅的快速演變和當前C2設施的脆弱性,軍方必須現在就修改當前的空天部隊的指揮和控制結構。

需要一個新的架構來支持一個作戰概念,以實現最近被納入美國空軍理論的集中式指揮、分布式控制和分布式執行的C2范式。建立一個新的作戰指揮架構不需要技術上的突破,因為已經存在的技術可以應對分布式指揮和控制功能的直接挑戰,使其不能通過對幾個關鍵的C2節點的打擊而被消除。

美國空軍一直在開發一個支持其新理論的作戰概念,即敏捷作戰部署(ACE)。敏捷作戰行動是一個概念,它在短時間內將部隊和資產分散到多個分離的地點,以使對手的計劃變得復雜。有了適當的C2系統,ACE可以從許多可防御、可持續和可轉移的地點將對手的目標置于危險之中。應用這一概念的細節取決于使用的戰場,但從根本上說,想法是一樣的,指揮和控制是這一概念成功的根本。

空天聯合作戰中心將仍然是在不太嚴重的地區沖突期間進行C2操作的可行手段。然而,為了實現JADC2的目標,該部門將必須向戰斗空間邊緣的作戰人員提供信息,而不依賴于傳統的聯合空天作戰中心模式,即數百人圍繞著獨立的任務區組織起來的小部門。

因此,該部門必須迅速超越我們今天所依賴的大型集中式聯合空天作戰中心結構,發展為一套更加靈活和分布式的流程和指揮與控制結構。同時,這個新架構必須能夠適應空戰管理系統和JADC2的發展。但鑒于這些項目的緩慢發展,我們不能等待開始改變空天部隊的C2架構。

這個新架構有許多選擇:建立加固的空天聯合作戰中心,并將功能遠程分配給指定的單位;將目前納入空天聯合作戰中心的規劃功能分配到多個地點,并在它們之間共享所產生的規劃;通過轉移與連接水平相對應的執行權力,建立基于作戰單位和其各自指揮要素之間連接程度退化的執行過程和程序。

無論選擇什么樣的發展方式,有一點是肯定的,美國空軍必須做出堅定的努力來分配必要的指揮和控制功能,以確保在有爭議的環境中有效使用空天部隊,而且這種努力必須現在就開始。

JADC2的根本基礎是將準確的、具有決策質量的信息下推到最低的信息節點,以達到預期的效果,而不考慮服務、領域或平臺。

作者:

David A. Deptula,美國空軍中將(退役),是弗吉尼亞州阿靈頓的米切爾航空航天研究院院長,也是美國空軍學院的高級軍事學者。他是1991年 "沙漠風暴 "行動空襲的主要策劃者;1990年代末伊拉克上空禁飛區行動的指揮官;2001年阿富汗上空空襲行動的指揮官;兩次擔任聯合特遣部隊指揮官;并擔任2005年南亞海嘯救援行動的空中指揮官。他是一名戰斗機飛行員,擁有超過3000個飛行小時--400個戰斗小時--包括F-15戰斗機的多個指揮任務。他曾擔任空軍第一個情報、監視和偵察(ISR)三星級主管,在那里他改造了美國的軍事ISR和無人機事務。

付費5元查看完整內容

引言

本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:

? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;

? 在 RTG 的北約成員國之間共享風險評估方法和結果;

? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。

軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。

北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。

本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。

圖一:網絡安全評估過程的五個主要步驟。

報告結構

第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。

執行總結

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。

絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。

付費5元查看完整內容

摘要

北約和各國迫切需要進行團結和聯合集體訓練,以確保任務準備就緒:目前和未來的行動是多國性質的,任務和系統慢慢變得更加復雜,需要詳細準備和迅速適應不斷變化的情況。由于可用資源少、訓練范圍有限、避免對手關注第五代戰術和系統能力的挑戰以及政治決策和部署之間準備時間有限,多國背景下的現場訓練和任務準備的機會減少了。模擬已經成為解決我們軍隊訓練需求的重要工具,各國正朝著通過分布式模擬(MTDS)能力采用國家任務訓練的方向發展。聯合部隊正在尋找實況和模擬訓練與演習之間的新平衡,以提供兩全其美的效果。

北約建模和仿真組(NMSG)的若干倡議為北約MTDS愿景和行動概念的發展貢獻了寶貴的投入(MSG-106 NETN, MSG-128 MTDS, MSG-169 LVC-T)。基于這些結果,當前/最近的NMSG活動(MSG-163北約標準演變、MSG-165 MTDS- ii、MSG-180 LVC-T)致力于為聯合和聯合作戰開發一個通用MTDS參考體系結構(MTDS RA)。最近完成的MTDS RA版本以構建模塊、互操作性標準和模式的形式定義了指導方針,用于實現和執行分布式模擬支持的綜合集體訓練和演習,獨立于應用領域(陸地、空中、海上)。此外,MSG-164 (M&S作為服務II)開發了一種技術參考體系結構(MSaaS TRA),其中包含用于實現所謂MSaaS能力的構建塊。這些構建模塊可以與MTDS RA相結合,以包括作為服務執行綜合集體訓練和演習的指導方針。

MTDS RA的當前版本提供了一個基線,以詳細說明和確定應進行進一步需求/技術開發的領域。未來更新的主題包括網絡作戰和影響、危機管理、實時系統集成、多域或混合作戰等。

聯合MTDS對北約和國家戰備至關重要。本文提供了MTDS RA的背景、目標和原則,以及實現持久的北約范圍內綜合性集體訓練能力的前進方向。聯合MTDS RA的維護和繼續發展將是幾個北約國家、伙伴國家和組織在NMSG主持下的合作努力。

付費5元查看完整內容
北京阿比特科技有限公司