亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

多目標跟蹤(MTT)在自主系統的制導、導航和控制中發揮著至關重要的作用。然而,它在計算復雜性、測量-跟蹤關聯模糊性、雜波和漏檢等方面提出了挑戰。

論文的前半部分探討了在移動平臺上使用攝像頭和光探測與測距(LiDAR)掃描儀進行多擴展目標跟蹤的問題。首先設計了一個貝葉斯框架,用于同時定位和映射以及檢測動態目標。開發了兩個隨機有限集濾波器來跟蹤提取的動態目標。首先,占格(OG)高斯混雜(GM)概率假設密度(PHD)濾波器聯合跟蹤目標運動狀態和目標形狀的改進占格圖表示。與傳統的 GM-PHD 過濾器相比,OG-GM-PHD 過濾器成功地重建了目標的形狀,并產生了較低的最優子模式分配(OSPA)誤差指標。第二種 MTT 過濾器(分類多重模型 (CMM) 標簽多重伯努利 (LMB))是為了利用與類別相關的運動特征而開發的。它融合了從圖像到點云的分類數據,并將物體類別概率納入跟蹤的目標狀態。這樣就能更好地實現測量與跟蹤之間的關聯,并利用與類別相關的運動和出生模型。CMM-LMB 過濾器在 KITTI 數據集和 CARLA 模擬器的模擬數據上進行了評估。在這兩種情況下,CMM-LMB 過濾器的 OSPA 誤差指標都低于多重模型 LMB 和 LMB 過濾器。

下半部分研究了使用窄視場和有限行動回轉率傳感器的 MTT 傳感器管理。空間態勢感知(SSA)的傳感器管理被選為一個應用場景。用于空間態勢感知(SSA)的經典傳感器管理算法往往只考慮直接回報。本論文開發了深度強化學習(DRL)智能體,以克服長期傳感器任務分配問題中問題規模的組合性增加。為了訓練和評估 DRL 智能體,開發了一個用于 SSA 傳感器任務分配的定制環境。DRL智能體采用基于群體訓練的近端策略優化方法進行訓練,其表現優于傳統的近視策略。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

數字工程和數字設計是美國空軍(USAF)的一個新興重點領域,尤其是在現代復雜系統中的應用。高復雜性系統的一個例子是優先進行廣域搜索和多視角目標確認的網絡合作自主彈藥群(NCAM)。首先,本研究討論了在基于模型的系統工程(MBSE)工具中建立行為模型的方法。然后,本研究介紹了 NCAM 在兩個環境中的并行建模工作:Cameo 系統建模器中的 MBSE 模型和高級仿真、集成和建模框架(AFSIM)中的基于物理的模型。環境中的每個數字模型都能為設計過程中的利益相關者帶來不同的好處,因此模型必須呈現一致且平行的信息。因此,這項研究還提出了在模型之間轉換設計信息的自動化方法。總之,這對協同工作的模型通過系統認知和數字場景模擬了解自主流程,從而與決策當局建立信任。

付費5元查看完整內容

現有的決策計算模型往往局限于特定的實驗設置。造成這種限制的主要原因是無法捕捉決策者對情況的不確定性。本文提出了一個計算框架,用于研究神經科學和心理學中不確定情況下的決策制定。框架主要側重于決策者對世界狀況的概率評估,即他們的 “信念”。具體來說,它基于部分可觀測馬爾可夫決策過程(POMDPs),結合貝葉斯推理和獎勵最大化來選擇行動。利用感知決策和社會決策方面的各種實驗數據,證明了基于信念的決策框架的可行性。框架解釋了感知決策實驗中決策者的實際表現與他們對實際表現的信念(即決策信心)之間的關系。它還說明了為什么在許多情況下這種評估會偏離現實。這種偏差通常被解釋為次優決策的證據,或選擇和信心的不同過程。我們的框架對這些解釋提出了挑戰,它表明,一個優化收益的規范貝葉斯決策者也會產生同樣的偏差。此外,在定量預測人類在社會決策任務中的行為方面,方法優于現有模型,并提供了對潛在過程的洞察。結果表明,在涉及大型群體的決策任務中,人類采用貝葉斯推理來模擬 “群體心理”,并對他人的決策做出預測。最后,將方法擴展到關于他人的多個推理層次(心智理論層次),并將服從作為群體決策的一種策略聯系起來。這個擴展框架可以解釋人類在各種集體群體決策任務中的行為,為大型群體中的合作與協調提供了新的理論。

圖 1.1: 基于信念的決策框架。智能體通過行動、觀察和獎勵與世界互動。智能體無法完全觀測到世界的狀態,只能根據觀測結果和智能體的內部世界模型,以概率方式表示世界的狀態。智能體的目標是根據當前狀態的概率分布來制定策略,即所謂的信念

付費5元查看完整內容

空間態勢感知是準確描述和預測空間環境狀態的能力,隨著運行衛星數量的增加,空間態勢感知已成為人們關注的話題。這一趨勢是由大型衛星星座的部署推動的,這些星座在完全部署后可能由數萬顆衛星組成。準確跟蹤空間物體對于預測和防止物體之間的碰撞非常重要,因為碰撞可能會對運行中的衛星造成災難性損害,并產生碎片云,危及其他衛星。然而,跟蹤空間物體非常復雜,部分原因是測量結果的來源不確定,這個問題被稱為數據模糊性。雖然存在多種能夠處理數據模糊性的目標跟蹤算法,但在太空環境中進行跟蹤還面臨其他挑戰。由于相對于可用傳感器資源而言,目標數量眾多,因此每個目標的可用觀測數據數量通常較少,而且由于上述數據模糊問題,許多觀測數據互不相關。最近興起的大型星群帶來了另一個問題,即相關衛星將利用低推力推進系統來保持編隊,這就要求具備機動目標跟蹤能力,以獲得最佳性能。在本論文中,我們將分析兩個問題,這兩個問題代表了運營商在不久的將來將面臨的空間物體跟蹤挑戰。我們將展示如何利用有限集統計開發適用的算法。有限集統計是一種數學框架,允許采用自上而下的方法開發具有所需功能的嚴格貝葉斯最優多目標過濾器。

分析的第一個問題是大型星座跟蹤問題。我們模擬了一個由 4,500 多顆低地球軌道衛星組成的星座,并使用 12 個地面近視傳感器網絡對其進行跟蹤。這些傳感器的任務由一個結合了信息論獎勵的成本函數來完成。我們還利用戰術重要性函數,將基于任務的目標(如有碰撞風險的物體的優先級)納入任務分配邏輯。收集到的數據將通過一個帶標記的多貝努利濾波器進行處理。濾波器產生的狀態目錄估計值用于激勵下一輪傳感器任務分配,從而形成一個用于綜合任務分配和跟蹤的自主閉環系統。經過五天的跟蹤期后,狀態目錄估計值將用于執行會合分析。我們將現有方法結合起來,為衛星間近距離接近的過濾和風險量化提供了一個計算效率高的工作流程。

分析的第二個問題是在存在機動目標時跟蹤多個目標。機動目標以不可預測的方式偏離其自然軌跡,通常需要專門的跟蹤算法才能獲得最佳性能。跟蹤此類目標的常用方法是交互式多模型濾波器,該濾波器可維持一組模型來表示目標的可能動態。未知動態可通過等效噪聲概念表示為白噪聲過程。這樣就能有效地跟蹤機動空間物體,但這種算法缺乏表征機動的能力。利用有限集統計,我們能夠開發出一種廣義標注多貝努利濾波器,允許整合任意動態模型。這樣,我們就能利用數據自適應方法,更具體地模擬未知動態,從而使濾波器除了進行機動目標跟蹤外,還能進行機動特征描述。我們還開發了一種基于考慮的最小二乘機動估計算法,該算法使用單次脈沖速度變化對未知動力學進行建模。這種機動的時間是通過多重假設法估算出來的。這種方法與我們提出的廣義標注多伯努利濾波器相結合,并應用于模擬地球靜止軌道衛星群,其中包括一顆執行未知機動的衛星。

大型星座跟蹤工作的結果表明,綜合任務分配和跟蹤算法能夠保持對所有模擬衛星的監護。在傳感器任務分配邏輯中加入了碰撞風險的衡量標準,從而提高了風險分析的準確性,但改進不大。我們假設,采用更通用的優化算法或不同的傳感器架構,可能會使基于任務目標的任務分配產生更大的影響。我們對機動目標跟蹤問題的研究結果表明,我們能夠以可接受的準確度描述機動動態。與實際機動相比,我們的表征絕對誤差相對較高,但我們能夠保持對所有目標的監護。在整個機動過程中,一致性指標保持穩定,這表明對估計的機動誤差不確定性進行了精確量化。未來的工作還包括將這項工作擴展到更大規模的場景,在這種場景中,由于機動檢測對計算效率的影響,機動檢測將成為一個更大的因素。此外,還需要進一步開展工作,將我們的算法擴展到低地軌道跟蹤場景中經常使用的非高斯狀態表示法。

圖 3.3:整合各種算法,形成自主風險感知衛星跟蹤系統。

付費5元查看完整內容

過去幾十年來,在安全、監視、情報收集和偵察等許多領域,對目標跟蹤(OT)應用的需求一直在增加。最近,對無人系統新定義的要求提高了人們對 OT 的興趣。機器學習、數據分析和深度學習的進步為識別和跟蹤感興趣的目標提供了便利;然而,持續跟蹤目前是許多研究項目感興趣的問題。本論文提出了一個系統,實現了一種持續跟蹤目標并根據其先前路徑預測其軌跡的方法,即使該目標在一段時間內被部分或完全隱藏。該系統分為兩個階段: 第一階段利用單個固定攝像機系統,第二階段由多個固定攝像機組成的網狀系統。第一階段系統由六個主要子系統組成:圖像處理、檢測算法、圖像減法器、圖像跟蹤、跟蹤預測器和反饋分析器。系統的第二階段增加了兩個主要子系統:協調管理器和相機控制器管理器。這些系統結合在一起,可以在目標隱藏的情況下實現合理的目標跟蹤連續性。

付費5元查看完整內容

通過與被稱為計算機生成兵力(CGF)的虛擬對手進行訓練,受訓戰斗機飛行員可以積累空戰行動所需的經驗,而其成本僅為使用真實飛機訓練的一小部分。但實際上,計算機生成兵力的種類并不豐富。這主要是由于缺乏 CGF 的行為模型。在本論文中,我們研究了空戰訓練模擬中 CGF 的行為模型在多大程度上可以通過使用機器學習自動生成。空戰領域非常復雜,在該領域內運行的機器學習方法必須適合該領域帶來的挑戰。我們的研究表明,動態腳本算法極大地促進了空戰行為模型的自動生成,同時又具有足夠的靈活性,可以根據挑戰的需要進行調整。然而,確保新生成行為模型的有效性仍是未來研究的一個關注點。

生成空戰行為模型

人工智能(ai)領域可以為行為建模過程提供一種替代方法,并通過糾正上一節中提到的兩種后果來提高模擬訓練的效果。這種替代方法是通過機器學習生成行為模型。機器學習程序在各種任務中的表現都優于人類,例如信用卡欺詐檢測、云計算資源分配,以及玩撲克和圍棋等游戲。對于此類任務,機器學習程序能夠通過以下三種特性的結合產生創造性的解決方案:(1)計算速度;(2)精確的約束滿足能力;(3)巧妙的學習算法。利用這三個特性并將其應用于行為模型的開發,我們就能獲得以下能力:(1) 以更快的速度開發行為模型;(2) 開發出比目前更多變化的行為模型。因此,使用機器學習程序開發行為模型有可能消除當前行為建模過程對訓練效果造成的兩種影響。

不過,在將機器學習應用于空戰模擬之前,我們必須先考慮空戰領域。空戰領域十分復雜,在這一領域內運行的機器學習方法必須適合該領域帶來的挑戰。五項挑戰:(a) 形成團隊合作,(b) 對 cgf 行為進行計算評估,(c) 有效重用已獲得的知識,(d) 驗證生成的行為模型,以及 (e) 生成可訪問的行為模型。這五大挑戰并非空戰領域所獨有。但是,這些挑戰需要適合該領域的解決方案。

研究問題

研究問題 1:能在多大程度上生成能產生團隊協調的空戰行為模型?

動態腳本使用獎勵函數來評估使用生成的行為模型的空戰 cgf 所顯示的行為。獎勵函數產生的獎勵用于調整新生成的行為模型,以尋找最佳模型。如前所述(見挑戰 b),空戰行為評估存在兩個問題。在文獻中,這兩個問題分別被稱為獎勵稀疏和獎勵不穩定(見第 4 章)。不過,文獻中提出的空戰行為獎勵函數并不總是考慮到這兩個問題。然而,這樣做可能會產生更理想的行為模型。這就引出了第二個研究問題。

研究問題 2:能在多大程度上改進空戰 cgf 的獎勵功能?

動態腳本將 cgf 在整個學習過程中積累的知識以權重值的形式存儲在規則庫中的規則上。每條規則的權重值表示該規則相對于規則庫中其他規則的重要性。就重復使用而言,在一個空戰場景中構建的知識也有可能在另一個空戰場景中得到有效應用。我們將知識重用置于遷移學習的背景下,即讓一個 cgf 在一個場景中學習,然后將其知識遷移到一個新的、未見過的場景中。這就引出了第三個研究問題。

研究問題 3:使用動態腳本構建的知識在多大程度上可以在不同場景下的 cgf 之間成功轉移?

我們的目標是將生成的行為模型用于模擬訓練。驗證模型是實現有效使用模型的重要一步。行為建模過程中的第 4 步說明了驗證的重要性。然而,由于行為模型驗證沒有放之四海而皆準的解決方案,我們首先必須確定驗證的正確方法。這就引出了第四個研究問題。

研究問題 4:我們應該如何驗證機器生成的空戰行為模型以用于模擬訓練?研究問題 4 的答案就是驗證程序。通過該程序,我們可以確定我們在研究中生成的行為模型的有效性。所選擇的研究方法引出了第五個研究問題。

研究問題 5:通過動態腳本生成的空戰行為模型在多大程度上可用于模擬訓練?

回答了這五個研究問題,我們就能回答問題陳述。

在第 1 章中,我們介紹了問題陳述和五個研究問題。此外,還介紹了解決研究問題的研究方法。

在第 2 章中,我們提供了有關四個主題的文獻背景信息(另見第 1.1 節): (1) 行為建模過程的詳細步驟;(2) 在模擬訓練中使用機器學習的潛在好處和缺點;(3) 過去使用機器學習生成空戰行為模型的方法;(4) 動態腳本及其在空戰模擬中的適用性。

在第 3 章中,我們介紹了團隊協調的三種方法:(1) 默契;(2) 中心;(3) 體面。我們通過實驗研究團隊協調方法的益處,然后回答研究問題 1。

在第 4 章中,我們將深入研究動態腳本編寫過程的一個特定部分,即獎勵功能。我們將展示三種不同獎勵函數的使用如何影響我們的 cgfs 的行為,然后回答研究問題 2。

在第 5 章中,我們研究了 cgf 在某種空戰場景中積累的知識在多大程度上可以成功轉移到不同空戰場景中的 cgf 上,然后回答了研究問題 3。

在第 6 章中,我們設計了一個驗證程序,通過該程序可以驗證為空戰 cgf 生成的行為模型。此外,我們還介紹了 atacc,然后回答了研究問題 4。

在第 7 章中,我們將驗證程序應用于戰斗機 4 艦模擬器中新生成的行為模型,然后回答研究問題 5。

在第 8 章中,我們將對五個研究問題的答案進行總結,從而結束本論文。最后,基于這些答案,我們提出了問題陳述的答案。之后,我們將對未來的工作提出兩點建議。

付費5元查看完整內容

本論文將雷達信號處理與數據驅動的人工神經網絡(ANN)方法相結合。信號處理算法通常基于對數據形成過程的建模假設。在某些情況下,這些模型足以設計出良好甚至最優的解決方案。

但在很多情況下,這些模型可能過于復雜,無法形成分析解決方案;可能過于簡化,導致實際結果與理論上的結果大相徑庭;可能是未知的,即多個已知模型或參數值中的一個可能適合數據,但我們不知道是哪個;或者過于復雜,導致解決方案的計算量過大。

數據驅動的方差網絡方法提供了彌合這些差距的簡單方法。我們在四項不同的研究中證明了這一點,在這些研究中,我們利用雷達數據模型來制定數據驅動型解決方案,這些解決方案既準確又具有計算效率。

我們將基于 ANN 的結果與計算要求極高的最小二乘法和窮舉匹配過濾法進行了比較。結果表明,ANN 的性能可與這些方法相媲美,但計算量卻很小。我們在使用各種參數值的模型采樣數據上訓練人工智能網絡。這自然可以處理漂移和未知參數值,它們可能會改變數據,但不會改變所需的預測結果。我們的研究表明,根據簡單模型的數據訓練出的 ANN 分類器的實際表現可能比理論預期的要差得多。我們通過將有限的真實數據與合成模型數據相結合來改善這種情況。在所有情況下,我們都使用了易于評估的模型。然而,這些模型的分析方法并不簡單,無法創建分析解決方案。

特別是,我們提出了一種實現非相干脈沖壓縮的方法,可在單脈沖寬度內分辨目標。我們提出了一種檢測微弱目標軌跡的方法,該方法無需事先假設目標加速度、信噪比等。我們介紹了在訓練無人機和非無人機目標分類器時納入不完美模型數據的不同方法。最后,我們介紹了一種估算海面多徑傳播路徑差的方法,用于目標跟蹤。

付費5元查看完整內容

本文的主要重點是開發一種低成本、魯棒性和高效的合作定位解決方案,以幫助無人自主飛行器在全球定位系統缺失或性能下降的條件下進行導航

首先,推導出固定翼無人機(UAV)和多旋翼無人機的完全可觀測性條件。創建了一個相對位置測量圖(RPMG),圖中的節點是車輛或已知特征(地標),它們之間的邊代表測量結果。利用圖論和線性代數概念,得出了可觀測矩陣最大秩的條件,并建立了可觀測矩陣秩與系統中可用測量值之間的關系。該分析條件的缺點之一是必須在所有時間時刻保持一個連通的 RPMG。因此,我們提出了一種離散時間可觀測性條件,即一個時間間隔內的 RPMG 的聯合必須是相連的。

接下來,將討論無人飛行器 (UV) 緊密協調和控制的一個基本問題。在各種應用中,飛行器的慣性位置并不重要。在這種情況下,車輛之間的相對姿態和方位對開發控制器非常有用。眾所周知,擴展卡爾曼濾波器(EKF)的性能非常出色,前提是它的初始化接近真實位置并能接收到測量結果。對于沒有任何全球定位系統(GPS)測量數據或網絡延遲嚴重(需要重新初始化濾波器)的長距離行駛車輛,已知先驗信息的假設是無效的。為了規避這些問題,我們開發了一種多假設卡爾曼濾波器(MHEKF),該濾波器在初始化過程中沒有先驗信息,這意味著相關的不確定性非常大。

最后,解決了地面車輛的分布式合作定位問題。集中式合作定位需要大量計算。我們開發了一種分布式合作定位算法,使組內的每輛車都能估計自己的慣性狀態。該算法是為自主地面車輛開發的,在仿真中僅使用測距數據。

圖 1.1:合作定位的相對位置測量圖,其中塔作為地標(已知興趣點),不同的 UV 相互合作。

付費5元查看完整內容

本文為太空域感知資源分配(SDARA)問題提出了一個新的目標函數,并介紹了一種新的算法來最大化這一新的目標函數。該 SDARA 問題旨在最大限度地增加所看到的目標總數,同時最大限度地降低資源成本。為此,目標主要由地球同步軌道帶中的物體組成,而觀測者則由地球同步軌道、低地球軌道和地面光學傳感器組成。假定這些傳感器是異構的,并具有不同的相關任務成本。

被稱為 "分塊貪婪 "算法的新算法能在可控時間內提供該目標函數的近似區域最大值。分塊貪婪算法是武器目標分配算法和貪婪算法的混合體。該算法將被證明優于用于解決 SDARA 問題的普通算法。

付費5元查看完整內容

艦船集成項目辦公室(PMW760)對其權限范圍內所有無人系統都能使用的統一、有凝聚力的通信協議的前景很感興趣。數據分發服務(DDS)是使用點對點鏈路進行這種內聚通信的主要候選協議。本論文的目的是評估 DDS 在符合海軍用例標準的網絡架構中的性能。提出了一個包含衛星通信(SATCOM)和無線保真(WiFi)鏈路的網絡架構,以測試 DDS 在場景設置的限制下在網絡節點之間執行內聚通信的能力。使用網絡模擬器 Mininet 來設置網絡參數,并研究各個點對點鏈接在不同數據樣本大小下的吞吐量和延遲性能。使用實時創新 Perftest 軟件工具進行模擬,測量不同網絡配置(理想、抖動和多流)下的吞吐量和延遲。在理想配置和抖動配置下,對可靠通信和最佳努力通信以及實施和未實施 DDS 安全性進行了模擬。還對多流量配置進行了模擬,以評估同時多流量數據(在網絡節點內并行運行的流量數據)如何爭奪網絡資源并影響性能。

建議的網絡架構如圖 7 所示。任務指揮官駐扎在總部,對由現場指揮官、支援艇、拖車和兩架無人機組成的任務單元實施指揮和控制。場景設置如下:

  • 任務指揮官位于總部,通過總部 WiFi 與網絡其他部分連接。他還控制任務地點的黑色無人機。
  • 支援艇位于海上,通過 SATCOM 直接與衛星連接。
  • 拖車位于任務現場,與衛星連接,為現場的任務單元提供 WiFi。
  • 現場指揮官位于任務現場,與拖車 WiFi 接入點 (AP) 連接。他轉發拖車 WiFi 信號,為無人機提供通信。現場指揮官還控制白色無人機。
  • 黑色和白色無人機連接到現場指揮官轉發的無人機通信 WiFi 接入點。
  • 任務指揮官、輔助飛行器和現場指揮官可以通過語音通信進行對話。
  • 任務指揮官和現場指揮官分別從黑色無人機和白色無人機接收視頻數據。支援艇也與任務指揮官和現場指揮官共享視頻數據。
付費5元查看完整內容

在這項工作中,我們解決了雷達波形優化和目標跟蹤的問題。提出了一種基于控制論方法的優化波形設計和目標跟蹤算法,其中波形參數是通過最小化跟蹤均方誤差(MSE)而自適應設計的。在這項工作中,采取了幾種方法來提高雷達跟蹤性能。首先,卡爾曼濾波器被用來估計目標位置,用它來優化波形參數。實驗結果表明,所提出的算法有能力在笛卡爾空間內跟蹤飛行目標,它提供了對目標位置和目標速度笛卡爾矢量以及徑向速度的準確估計。該算法根據估計矢量在飛行中調整波形參數。在文獻中,多普勒效應理論被大量用于估計目標速度。在某些條件下,如跟蹤高速目標或惡劣的海洋和天氣條件下,多普勒效應就不那么有效。因此,在這第一個方法中,引入了一種依賴于卡爾曼濾波估計的算法,而不依賴于多普勒效應。一個具有實時自適應參數的低通濾波器被應用于估計的速度矢量,并提取準確的速度估計。此外,從一個現實的角度來解決雷達跟蹤問題,承認目標運動不能像我們提出的使用卡爾曼濾波器那樣用矩陣來描述,因此引入了交互式多模型算法來估計目標位置。通過模擬,我們證明了所提算法的良好性能,并證明波形優化可以提高雷達的跟蹤性能。最后,考慮從兩個天線而不是一個天線收集信息,并使用其中一個數據融合算法,以及IMM算法,我們能夠減少跟蹤誤差,并為跟蹤問題提供一個更穩健可靠的解決方案。

圖 1. 大腦/認知雷達感知-行動周期。

認知被定義為參與認識、學習和理解事物的心理過程。這個定義介紹了定義CR的三個主要成分:

  • 系統與環境持續互動并感知其地標的能力,包括潛在的目標和障礙物;這使得相控陣天線成為CR的主要組成部分,因為它們能夠快速掃描環境。

  • 智能地處理接收到的回波,并提取有關目標和周圍環境的測量值的能力。

  • 能夠提取有關目標和環境的信息,并相應地使用它來做出有關波形和目標運動估計的決定。

認知型雷達在某種程度上模仿了大腦的學習方式,并根據感官采取行動,遵循一個類似的循環:感知、學習、調整、行動。它們不斷地從環境中學習,并作出決定以提高跟蹤性能。類似的循環,即眾所周知的感知-行動循環(PAC),在解釋大腦如何工作或描述一些智能系統的文獻中被多次提及([2][3][4])。引用[2],神經科學家Joaquin Fuster將感知-行動循環描述為 "在處理目標導向行為的過程中,信息從環境到感覺結構,再到運動結構,再次回到環境,再到感覺結構,如此循環往復"。圖1解釋了與認知雷達相關的大腦的運行周期。在這項工作中,我們討論了這個閉環循環的所有步驟,這些步驟制約著CR的性能。提出了一個系統模型,并進一步討論了以估計和波形優化過程為重點的內容。

在文獻中,討論了兩種主要的波形選擇方法:控制論和信息論。在這項工作中,考慮了控制理論方法中的波形選擇標準。雷達波形參數主要通過最小化跟蹤均方誤差(MSE)來確定。

CR有一個閉環的工作循環。該系統依靠接收器的反饋來收集關于目標和環境的知識。這些知識然后被用來優化發射波形,并改進對目標的探測、跟蹤、估計和識別。這個概念在2006年由S.Haykin[1]在文獻中首次提出,他寫道,我們引用[1]"整個雷達系統構成了一個動態的封閉反饋回路,包括發射器、環境和接收器。

CR的運行周期(即上述閉環)從發射器對環境的照射開始。然后,從環境中反彈出來的傳輸波形(即目標回波、雜波等)被接收器截獲。關于目標和環境的有用信息從接收到的回波中提取出來,然后更新一個信息庫(記憶塊),在下一個周期由目標估計器(TE)作為一組關于環境的先驗知識使用。根據TE提供的估計結果,波形被優化。通常考慮用貝葉斯方法來實現目標估計器。

在CR中,提取的信息不僅在接收機層面發揮作用,而且在發射機層面通過改變波形和一些相關參數,如脈沖重復頻率(PRF)、脈沖寬度、脈沖數N和雷達發射時間表來發揮作用。這方面是CR與經典的自適應雷達的區別,后者只能在接收層面使用提取的信息。

波形優化設計作為一個重要的研究課題出現在信號處理界,因為它在許多領域都有廣泛的應用,如通信系統、聲納,以及在我們感興趣的情況下,改善雷達系統的性能。文獻中討論了許多設計標準,其中我們提到了最大信噪比(SINR)標準[9]、最大探測概率標準[14]、最大互感信息(MI)[8]標準和最小化均方誤差標準(MMSE)[10]、[11]。這些設計標準方法可以分為兩類:控制理論方法,其目的是為連續運行的動態系統開發一個控制模型;信息理論方法,更側重于研究信息流和從接收的測量數據中提取更多的目標信息。本文采用了控制理論方法,通過最小化跟蹤MSE來確定最佳波形選擇/設計。

付費5元查看完整內容
北京阿比特科技有限公司