亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

數字工程和數字設計是美國空軍(USAF)的一個新興重點領域,尤其是在現代復雜系統中的應用。高復雜性系統的一個例子是優先進行廣域搜索和多視角目標確認的網絡合作自主彈藥群(NCAM)。首先,本研究討論了在基于模型的系統工程(MBSE)工具中建立行為模型的方法。然后,本研究介紹了 NCAM 在兩個環境中的并行建模工作:Cameo 系統建模器中的 MBSE 模型和高級仿真、集成和建模框架(AFSIM)中的基于物理的模型。環境中的每個數字模型都能為設計過程中的利益相關者帶來不同的好處,因此模型必須呈現一致且平行的信息。因此,這項研究還提出了在模型之間轉換設計信息的自動化方法。總之,這對協同工作的模型通過系統認知和數字場景模擬了解自主流程,從而與決策當局建立信任。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

要優化人類與有人駕駛和無人駕駛戰車組成的異質團隊的協同工作效果,就必須了解關鍵任務所需的通信和協調。這些知識可用于指導這些互動的人體工學界面設計,以及團隊合作效果的評估方法。該項目系統地研究了下一代戰車(NCGV)概念所涉及的任務,以制定人類-自主團隊互動分類法,并確定適用于該環境的初步措施。

最終目標是開發能夠衡量 NGCV 環境下人類-自主團隊合作有效性的指標和模型。由于無法使用實際運行中的機器人戰車(RCV)或現有經驗豐富的機器人戰車乘員,我們的方法可細分為工作說明書中的三項任務和嵌入式可交付成果:

  • 任務 1(第 2 節)介紹了 NGCV 的背景以及在從移動到接觸行動期間的相關互動。

  • 任務 2(第 3 節)為裝甲排的核心基線任務和潛在的交互策略制定交互分類法,特別是根據相關文獻和有關作戰車輛以往經驗的主題訪談為 RCV 操作員的任務制定交互分類法。

  • 任務 3(第 4 節)以任務 1 和任務 2 為基礎,提出了一個全面的團隊合作有效性模型,并建議了團隊層面的團隊合作有效性衡量標準,重點關注團隊狀態,包括團隊態勢感知、團隊信任、團隊工作量和團隊應變能力。這些衡量標準也為以后的實證測試提供了測試平臺要求。許多想法都很新穎,有別于傳統的團隊合作有效性靜態和二元測量方法。它們的優缺點也包括在內。

未來,這些已確定的基于互動的衡量標準需要在涉及人類、自主性和互動的團隊任務中進行實證測試。然后,我們的目標是構建和定義衡量標準,并找出在人類-自主團隊合作背景下定義團隊效率的衡量標準之間的背景變化和相互關系。

隨著人工智能和機器學習技術的進步,技術越來越能夠成為團隊的正式成員,而不是監督或控制設備。未來的士兵不僅要與同伴互動,還要與多種形式的機器人(包括下一代戰車 [NGCV])、智能輔助決策系統以及能感知其當前生理狀態的可穿戴設備互動。有人駕駛車輛需要與無人駕駛車輛互動。挑戰在于如何讓這些異構和分布式智能體作為一個有效的團隊進行互動,同時管理工作量并保持團隊的態勢感知(SA)、恢復力和信任。為應對這一挑戰,本文介紹的研究重點是確定新穎的人類-智能體交互模型、措施以及人類-智能體團隊合作有效性的衡量標準。

1.1 人類-自主性編隊協同(HAT)

最近,包括軍事團隊在內的團隊已擴展到包括智能人工體(Burke 等人,2004 年;Salas 等人,2008 年)。智能體被定義為 "任何可通過傳感器感知環境并通過效應器對環境采取行動的物體"(Russell 和 Norvig,2016 年,第 34 頁)。這也包括非人類(即人工)實體,如機器人、車輛和車輛中的其他自動化系統。人類-自動駕駛團隊指的是由人類和智能體共同組成的團隊,他們相互依存地行動,以實現團隊層面的目標。與傳統的全人類團隊相比,當協調行動能更安全、更高效地完成任務,或達到全人類團隊以前無法達到的更高績效水平時,這些人類-自主團隊可能更受青睞。例如,在倒塌的建筑物中穿行對于人類來說可能是危險、困難或不可能的,但對于城市搜救行動來說卻是至關重要的(Burke 等人,2004 年)。

未來的自主戰車可能會利用多種控制結構與其他智能體進行協調。現有的一些人機交互控制模型包括遠程操作、監督控制(Sheridan,2002 年)以及各種共享控制模型(Allen 等,1999 年;Chen 和 Barnes,2014 年;Johnson 等,2014 年)。每種模式都涉及實現能力各異的多個人類和智能體之間有效協調的基本策略。在戰場上,任何個體都不可能完全了解局勢。相反,需要積極整合不同的視角來協調努力,實現集體目標。團隊層面的認知過程,如計劃、推理、決策和行動(即團隊認知)都需要團隊互動(Cooke 等人,2013 年)。在開發 NGCV 以支持有效的 HAT 設計時,需要對團隊互動和協調測量進行研究。

1.2 下一代戰車(NGCV)的背景

NGCV 是未來軍用車輛的一個系列,旨在利用現代技術發展移動防護火力,保護士兵的生命安全。在 NGCV 中,團隊組成可能會有所不同,例如乘員人數和作戰車輛。本研究中的概念版 NGCV 包括七名乘員、一輛載人戰車(MCV* )和兩輛作為僚機的無人機器人戰車(RCV),以提高乘員的生存能力和殺傷力。然而,在與移動中的有人駕駛戰車分離并坐在其中的情況下操作無人戰車,會改變當前許多任務的性質,這就需要適當地重新分配功能并提供有效的界面,以支持人類決策和團隊表現。當問題空間充滿不確定性和可能性時,這一點尤其具有挑戰性。

在一種設想的使用變化中,NGCV 的排由兩個部分組成(圖 1),每個部分包括一輛 MCV 和兩輛無人遙控車。每輛車主要由兩人操作,一個分隊的所有操作員都坐在該分隊的 MCV 車內,第七人可能擔任車長和分隊長。其中一名分隊長(又稱車長)可能擔任排長,負責監督一個排中的兩個分隊;另一名車長可能擔任排長。排長還可能與排外的實體進行互動,包括連長、地區指揮官和其他步兵單元。作為未來裝甲戰斗的一部分,NGCV 排應能夠執行進攻、防御和穩定任務,以支持統一的陸地行動。我們選擇了一個 NGCV 排在運動接觸(MTC)場景中的部分,作為第一階段詳細研究的可控部分。

圖 1 NGCV 排的可能坐姿結構。A-F 是車輛的標記,每輛車由同一 MCV 中的兩人控制,顏色與所控制的車輛相同(例如,A1 和 A2 控制 RCV A,均為淺藍色)。分隊長的顏色為灰色(S1pl = 排長,S2 = 排中士),可分別擔任車輛指揮官和監督 1 分區和 2 分區,而 S1pl 還負責監督整個排。

1.3 當前工作

本報告的目標是開發能夠衡量 HAT 在 NGCV 環境中有效性的指標和模型。由于無法使用實際運行中的 NGCV 或現有經驗豐富的 RCV 人員,我們的方法分為三項任務:

  • 任務 1(第 2 節): NGCV 的背景以及 MTC 運行期間的相關互動

  • 任務 2(第 3 節): 裝甲排核心基線任務的交互分類法和潛在的交互策略

  • 任務 3(第 4 節): 綜合團隊合作有效性模型和團隊層面的團隊合作有效性潛在衡量標準建議

圖 12 排中的通信渠道。為了跟蹤每次互動,我們使用了互動標簽,例如 "1T1":T 前的數字 = 第一節,T = 兩人小組/小隊,T 后的數字 = 互動的 ID 代碼;本排以外的實體 = 主要是連長。

付費5元查看完整內容

碎片和子彈等穿透性彈道射彈造成的傷害是沖突中軍人(和平民)傷亡以及恐怖事件傷亡的主要原因。

本研究項目的主要目的是開發便于在物理和虛擬環境中評估穿透彈道射彈傷害的模型。

該領域的現有模型和文獻僅限于范圍較窄的場景(如特定的射彈類型),或對模型的驗證有限。

除了廣泛的原始數據集和新穎的數據分析技術外,還整理了肌肉組織的彈道數據和文獻中的模擬物,從而對皮膚和肌肉組織模擬物在傷口彈道學研究中與碎片和子彈相關的有效性進行了明確的評估。

開發的一系列物理和虛擬模型適用于評估彈道和爆炸場景中穿透性射彈的風險。

被認為特別新穎的是開發了一種新的碎片,通過預測眼睛穿透和皮膚穿孔的風險來評估低密度和低能量碎片的危害,并估計射彈的沖擊速度。

所開發的一系列物理和虛擬模型已用于深入了解(和描述)在使用真實組織或組織模擬物時影響物理測試結果的目標因素。

利用這些模型改進了英國武裝部隊和警察的戰術、技術、程序和設備,最終減少了傷害,挽救了生命。

圖 2:模型聯系概述。箭頭表示數據流/模型開發的方向(MDFPIM = 多離散碎片物理損傷模型)。

付費5元查看完整內容

多目標跟蹤(MTT)在自主系統的制導、導航和控制中發揮著至關重要的作用。然而,它在計算復雜性、測量-跟蹤關聯模糊性、雜波和漏檢等方面提出了挑戰。

論文的前半部分探討了在移動平臺上使用攝像頭和光探測與測距(LiDAR)掃描儀進行多擴展目標跟蹤的問題。首先設計了一個貝葉斯框架,用于同時定位和映射以及檢測動態目標。開發了兩個隨機有限集濾波器來跟蹤提取的動態目標。首先,占格(OG)高斯混雜(GM)概率假設密度(PHD)濾波器聯合跟蹤目標運動狀態和目標形狀的改進占格圖表示。與傳統的 GM-PHD 過濾器相比,OG-GM-PHD 過濾器成功地重建了目標的形狀,并產生了較低的最優子模式分配(OSPA)誤差指標。第二種 MTT 過濾器(分類多重模型 (CMM) 標簽多重伯努利 (LMB))是為了利用與類別相關的運動特征而開發的。它融合了從圖像到點云的分類數據,并將物體類別概率納入跟蹤的目標狀態。這樣就能更好地實現測量與跟蹤之間的關聯,并利用與類別相關的運動和出生模型。CMM-LMB 過濾器在 KITTI 數據集和 CARLA 模擬器的模擬數據上進行了評估。在這兩種情況下,CMM-LMB 過濾器的 OSPA 誤差指標都低于多重模型 LMB 和 LMB 過濾器。

下半部分研究了使用窄視場和有限行動回轉率傳感器的 MTT 傳感器管理。空間態勢感知(SSA)的傳感器管理被選為一個應用場景。用于空間態勢感知(SSA)的經典傳感器管理算法往往只考慮直接回報。本論文開發了深度強化學習(DRL)智能體,以克服長期傳感器任務分配問題中問題規模的組合性增加。為了訓練和評估 DRL 智能體,開發了一個用于 SSA 傳感器任務分配的定制環境。DRL智能體采用基于群體訓練的近端策略優化方法進行訓練,其表現優于傳統的近視策略。

付費5元查看完整內容

本論文為有限時間范圍內的魯棒性分析和綜合提供了理論和計算工具。這項工作的動機之一是對導彈攔截系統性能進行可靠評估,這也將有助于此類系統的穩健設計。典型的性能指標具有無限時間范圍的性質,以穩定性為中心,并依賴于頻域概念,如增益/相位裕度。對于在有限時間范圍內運行的系統(如許多發射場景),這些指標可能不夠充分。相反,本論文側重于時域指標,例如,在考慮干擾、模型不確定性/可變性和初始條件的影響的同時,對系統在視界最后時間的狀態進行約束。建議的方法是沿軌跡對動力學進行數值線性化,以獲得線性時變(LTV)系統。然后在線性化系統上進行分析或綜合,該系統可捕捉到標稱軌跡周圍的一階擾動。與原始非線性模型相比,這種方法犧牲了一些精度,但卻能使用線性系統工具。建議的最壞情況 LTV 分析還提供了具體的不良干擾和不確定參數,可在高保真非線性仿真中進一步研究。

導彈防御: 威脅環境正在以許多前所未有的方式迅速演變,這主要是由于現有導彈能力的增強和無人駕駛飛行器的更加靈活。任何導彈防御系統的首要目標都是保護國土、文明和戰略資產(如航空母艦)。這些復雜的工程系統必須探測、跟蹤和攔截來襲的威脅導彈,在它們到達各自目標之前將其摧毀。目前,最常見的方法之一是使用攔截導彈,通過與威脅導彈碰撞(即命中摧毀)或在其附近爆炸(即定向破片)使其失效。

目前的局限性: 單一攔截器與威脅交戰的性能可能會因多種因素而下降,包括外部干擾(如陣風)、未建模的靈活動態、傳感器噪聲、跟蹤不準確、致動器飽和、威脅的規避機動等。這對單個攔截器系統的精度造成了極大的影響。因此,需要發射多個攔截器來提高成功的可能性。然而,這并不總是可行的;例如,一艘小型海軍艦艇可能只有有限的艦載導彈資源。替代方法包括反火箭、火炮和迫擊炮(C-RAM)系統或 CIWS 雷達控制速射炮,發射多發炮彈,直到成功識別并摧毀威脅。當同時受到多個威脅的攻擊時,這種防御能力很容易被壓垮。有些威脅導彈具有很強的機動性,可使用多種誘餌和反制手段,因此很難被攔截。此外,如果不能在短時間內做出反應,可能會造成災難性后果。總之,目前的多層導彈防御系統嚴重缺乏性能保證。

目標:這項研究的主要目標是開發理論和計算工具,用于對在有限時間范圍內運行的系統進行魯棒性分析。重點是快速可靠地計算適當的魯棒性指標,以確定最壞情況下的性能。這種分析可用于補充現有的蒙特卡洛方法,以便在設計迭代的早期發現邊緣情況,或確定二元結果(如任務成功或在最壞情況下失敗)。

挑戰: 總體而言,由于存在許多不確定性、干擾和參數變化,最壞情況分析問題是非線性和非凸的。目前還沒有任何數值上可靠的工具可用于此類分析。即使存在這樣的工具,其適用范圍也很可能有限,因為它們要么計算速度很慢,無法保證收斂,要么只適用于學術范例。例如,考慮在 F-16 飛機上應用非線性動力算法進行最壞情況軌跡分析[8]。這種算法不僅缺乏收斂性保證,而且計算速度很慢。得出最壞情況下的參數和陣風組合所需的時間(4 到 4.5 小時)與蒙特卡洛模擬所需的時間大致相同。

方法: 方法主要是沿標稱軌跡對系統的動態進行數值線性化,并評估由此產生的線性時變(LTV)系統的穩健性。這種線性化系統只捕捉標稱軌跡周圍的一階擾動。我們利用系統的線性特性,通過解決凸優化問題,為 LTV 性能提供正式保證。然而,這需要犧牲原始不確定非線性系統的精度(即以精度換取計算效益)。這種近似分析只需要一次非線性模擬,速度明顯更快。擬議的有限視界線性化分析還提供了最壞情況下的性能證明(如特定的 "壞 "干擾、參數等),可在非線性模擬中進一步分析。

付費5元查看完整內容

這項工作研究了在任務式指揮設備中嵌入模擬器的實用性和有效性。其目標是僅使用戰區作戰計劃作為模擬輸入,向操作員隱藏所有模擬器細節,使其無需學習新工具。本文討論了一種原型功能,該功能可根據 SitaWare 中生成的作戰計劃以及嵌入式無頭 MTWS 和 OneSAF 模擬器的模擬結果,生成行動方案(COA)分析。在輸入作戰計劃后,指揮官選擇要執行的模擬運行次數,并按下按鈕啟動模擬,模擬在后臺的運行速度比實時運行更快。模擬運行完成后,指揮官可通過圖形和圖表查看結果,對多次運行進行比較。預計未來的能力將允許指揮官模擬任何梯隊和命令,用于訓練和兵棋推演。

付費5元查看完整內容

通過與被稱為計算機生成兵力(CGF)的虛擬對手進行訓練,受訓戰斗機飛行員可以積累空戰行動所需的經驗,而其成本僅為使用真實飛機訓練的一小部分。但實際上,計算機生成兵力的種類并不豐富。這主要是由于缺乏 CGF 的行為模型。在本論文中,我們研究了空戰訓練模擬中 CGF 的行為模型在多大程度上可以通過使用機器學習自動生成。空戰領域非常復雜,在該領域內運行的機器學習方法必須適合該領域帶來的挑戰。我們的研究表明,動態腳本算法極大地促進了空戰行為模型的自動生成,同時又具有足夠的靈活性,可以根據挑戰的需要進行調整。然而,確保新生成行為模型的有效性仍是未來研究的一個關注點。

生成空戰行為模型

人工智能(ai)領域可以為行為建模過程提供一種替代方法,并通過糾正上一節中提到的兩種后果來提高模擬訓練的效果。這種替代方法是通過機器學習生成行為模型。機器學習程序在各種任務中的表現都優于人類,例如信用卡欺詐檢測、云計算資源分配,以及玩撲克和圍棋等游戲。對于此類任務,機器學習程序能夠通過以下三種特性的結合產生創造性的解決方案:(1)計算速度;(2)精確的約束滿足能力;(3)巧妙的學習算法。利用這三個特性并將其應用于行為模型的開發,我們就能獲得以下能力:(1) 以更快的速度開發行為模型;(2) 開發出比目前更多變化的行為模型。因此,使用機器學習程序開發行為模型有可能消除當前行為建模過程對訓練效果造成的兩種影響。

不過,在將機器學習應用于空戰模擬之前,我們必須先考慮空戰領域。空戰領域十分復雜,在這一領域內運行的機器學習方法必須適合該領域帶來的挑戰。五項挑戰:(a) 形成團隊合作,(b) 對 cgf 行為進行計算評估,(c) 有效重用已獲得的知識,(d) 驗證生成的行為模型,以及 (e) 生成可訪問的行為模型。這五大挑戰并非空戰領域所獨有。但是,這些挑戰需要適合該領域的解決方案。

研究問題

研究問題 1:能在多大程度上生成能產生團隊協調的空戰行為模型?

動態腳本使用獎勵函數來評估使用生成的行為模型的空戰 cgf 所顯示的行為。獎勵函數產生的獎勵用于調整新生成的行為模型,以尋找最佳模型。如前所述(見挑戰 b),空戰行為評估存在兩個問題。在文獻中,這兩個問題分別被稱為獎勵稀疏和獎勵不穩定(見第 4 章)。不過,文獻中提出的空戰行為獎勵函數并不總是考慮到這兩個問題。然而,這樣做可能會產生更理想的行為模型。這就引出了第二個研究問題。

研究問題 2:能在多大程度上改進空戰 cgf 的獎勵功能?

動態腳本將 cgf 在整個學習過程中積累的知識以權重值的形式存儲在規則庫中的規則上。每條規則的權重值表示該規則相對于規則庫中其他規則的重要性。就重復使用而言,在一個空戰場景中構建的知識也有可能在另一個空戰場景中得到有效應用。我們將知識重用置于遷移學習的背景下,即讓一個 cgf 在一個場景中學習,然后將其知識遷移到一個新的、未見過的場景中。這就引出了第三個研究問題。

研究問題 3:使用動態腳本構建的知識在多大程度上可以在不同場景下的 cgf 之間成功轉移?

我們的目標是將生成的行為模型用于模擬訓練。驗證模型是實現有效使用模型的重要一步。行為建模過程中的第 4 步說明了驗證的重要性。然而,由于行為模型驗證沒有放之四海而皆準的解決方案,我們首先必須確定驗證的正確方法。這就引出了第四個研究問題。

研究問題 4:我們應該如何驗證機器生成的空戰行為模型以用于模擬訓練?研究問題 4 的答案就是驗證程序。通過該程序,我們可以確定我們在研究中生成的行為模型的有效性。所選擇的研究方法引出了第五個研究問題。

研究問題 5:通過動態腳本生成的空戰行為模型在多大程度上可用于模擬訓練?

回答了這五個研究問題,我們就能回答問題陳述。

在第 1 章中,我們介紹了問題陳述和五個研究問題。此外,還介紹了解決研究問題的研究方法。

在第 2 章中,我們提供了有關四個主題的文獻背景信息(另見第 1.1 節): (1) 行為建模過程的詳細步驟;(2) 在模擬訓練中使用機器學習的潛在好處和缺點;(3) 過去使用機器學習生成空戰行為模型的方法;(4) 動態腳本及其在空戰模擬中的適用性。

在第 3 章中,我們介紹了團隊協調的三種方法:(1) 默契;(2) 中心;(3) 體面。我們通過實驗研究團隊協調方法的益處,然后回答研究問題 1。

在第 4 章中,我們將深入研究動態腳本編寫過程的一個特定部分,即獎勵功能。我們將展示三種不同獎勵函數的使用如何影響我們的 cgfs 的行為,然后回答研究問題 2。

在第 5 章中,我們研究了 cgf 在某種空戰場景中積累的知識在多大程度上可以成功轉移到不同空戰場景中的 cgf 上,然后回答了研究問題 3。

在第 6 章中,我們設計了一個驗證程序,通過該程序可以驗證為空戰 cgf 生成的行為模型。此外,我們還介紹了 atacc,然后回答了研究問題 4。

在第 7 章中,我們將驗證程序應用于戰斗機 4 艦模擬器中新生成的行為模型,然后回答研究問題 5。

在第 8 章中,我們將對五個研究問題的答案進行總結,從而結束本論文。最后,基于這些答案,我們提出了問題陳述的答案。之后,我們將對未來的工作提出兩點建議。

付費5元查看完整內容

美國海軍正在重組其艦隊結構。美海軍正在探索使用無人潛航器 (UUV) 平臺來補充艦隊的可行性。目前的 UUV 只能提供最低限度的監視和水雷探測能力;一種解決方案是在 UUV 平臺上增加攻擊性和增強型探測能力。本研究采用基于模型的系統工程(MBSE)方法,在聯合戰區模擬級全球作戰環境中探索具有增強能力的 UUV 的效果。該方法包括概念原型開發過程、作戰概念、效果衡量標準、不同的 UUV 因素(速度、組成和聲納類型)以及實驗設計。在對 540 次模擬運行的輸出結果進行分析后,結果證明所有三個因素對 UUV 的作戰性能都有重要影響,并表明使用先進的 UUV 可以提高特遣部隊的能力。此外,實驗還揭示了 UUV 的組成與探測和交戰速度之間的強相關性,并證實了使用主動聲納在作戰中的優勢,從而形成了 UUV 功能的交換空間。這項研究證明了 MBSE 在為未來艦隊進行可行性評估方面的實用性。

2016 財年,美國參議院軍事委員會下令海軍將艦隊規模擴大到 355 艘。然而,建造設施的缺乏阻礙了這一工作。負責預算的海軍副助理部長布萊恩-盧瑟少將估計,355 艘艦艇的目標要到 2050 年代才能實現(Larter 2018)。因此,美國海軍正在探索潛在的艦隊重組方案。海軍對用無人系統來補充傳統的有人海軍資產非常感興趣。無人潛航器 (UUV) 就是這樣一種系統。由于高層對艦隊和無人系統都很感興趣,海軍研究辦公室(N9)要求提供測試 UUV 未來能力的方法和流程,以及開展此類研究的實驗環境或工具。此外,目前的無人潛航器主要用于支持水雷戰和小型監視任務(美國防部,2007 年),因此還不了解其對其他角色的影響。

本研究的目的是在計算機輔助兵棋推演中使用基于模型的系統工程(MBSE)方法,特別是聯合戰區級模擬全球行動(JTLS-GO),以探索先進的 UUV 能力作為未來美國海軍艦隊資產的影響,以及作為日益減少的潛艇部隊的替代品的影響

MBSE 方法是一個多步驟過程,從頭至尾探索整個項目。通過這種方法,我們開發出了一種先進的 UUV 概念和 "眼鏡蛇黃金 2018"(CG18)小插圖或作戰概念(CONOP),這是一種六國(太平洋司令部主辦)指揮所演習(CPX)。小插圖的創建允許對 CG18 進行反復檢查,以確定 UUV 可以解決的能力不足問題。在這種情況下,虛擬演習的重點是敵方(索諾拉)特遣部隊與盟軍特遣部隊(包括 USS Benfold (DDG-65) 和 RSS Endurance (LS-207))之間的互動。實際演習的結果包括上述艦艇的傷亡。造成這些傷亡的原因是缺乏態勢感知和進攻火力。這些問題為在模擬中注入 UUV 以增強傳感器和火力提供了機會和動力。隨后,確定和建立新能力的作戰要求和限制的過程隨之展開。新的模擬 UUV 設計必須能夠提供額外的進攻和偵察能力。衡量無人潛航器的性能如何以及哪些屬性需要改變,從而制定了效能衡量標準(MOE)和性能衡量標準(MOPs)。這些衡量標準有助于指導實驗設計(DOE)的制定,從而指導名義 UUV 的實驗和評估。

性能指標包括探測效果和敵方減員。關注的性能因素(屬性)包括 UUV 速度、UUV 數量(UUV 艦隊組成)和聲納類型(主動或被動)。DOE 包括對這些因素在三個不同值(水平)下的測試。不同水平的因素組合產生了 18 個設計點。

JTLS-GO 模型是由 Rolands and Associates 設計的事件驅動兵棋推演模擬,用于測試多方聯合戰役和行動(Rolands and Associates 2018)。該項目測試戰爭的多個層面,包括政治、戰略、作戰和戰術層面。

雖然 JTLS-GO 在模擬交戰方面很有用,但根據 Cayirci 和 Marincic(2009 年)的說法,其功能是培訓總部人員更有效地指揮和控制單元。因此,僅使用 JTLS-GO 測試未來概念是不可行的,因為這需要大量資源。為了充分利用 CG18 的人的反應和結果,作者在 NPS 仿真實驗和高效設計(SEED)中心的幫助下,將原始 JTLS-GO 仿真程序轉換為自動化計算機輔助兵棋推演(CAW)仿真。這種轉換允許對未來能力進行多次重復模擬,以便進行統計分析。

這項工作涉及 540 次模擬運行,耗費了 810 個小時的計算機時間。通過回歸分析、趨勢分析和分區樹分析,得出了以下結論:

1.通過在 JTLS-GO 中的 CG18 自動版本中建立建模和實驗環境,MBSE 方法為評估未來 UUV 能力對作戰的影響提供了途徑。

JTLS-GO 中的 CG18 提供了一個框架,利用 MBSE 方法來定義操作差距、創建 UUV 原型、定義測量方式和內容(MOE 和因素)并快速進行實驗。MBSE 所要求的有條不紊和一絲不茍的努力表明,應用這一過程有利于探索 UUV 的未來能力,同時也表明它如何為考察未來艦隊的一系列能力提供機會。

2.UUV 的存在為提供態勢感知和攻擊火力提供了額外的能力,減少了水面的脆弱性。

即使增加了效果最差的因子組合的 UUV,也產生了積極的結果:3 個 "索諾蘭 "單元被擊斃,60% 的單元被發現。采用首選探測因子值的 UUV 使 RSS Endurance (LS-207) 在 30 次模擬中擊沉了 12 次。與此同時,USS Benfold (DDG-65) 在使用這些 UUV 的 30 次模擬演習中只擊沉了 2 次。當環境中存在具有優先損耗因子值的 UUV 時,RSS Endurance (LS-207) 在 30 次模擬中擊沉了 10 次,USS Benfold (DDG-65) 在 30 次模擬中擊沉了 2 次。因此,UUV 的性能導致模擬環境中盟軍傷亡人數減少。

3.主動聲納提高了殺傷力和探測能力,但在速度和 UUV 艦隊組成方面,并不是越多越好。

表 ES-1 列出了實驗中最佳和最差的 UUV 配置。根據該表,推薦的最佳組合是一支中等規模的 UUV 艦隊,以 8 節的速度航行并配備主動聲納。這種配置平均可摧毀近 88% 的敵方目標。

采用自動 JTLS-GO 仿真軟件包的 MBSE 方法所得出的結果可為先進的 UUV 性能提供深入見解,而無需投入大量人力和物力。海軍在規劃其未來架構的過程中,應考慮使用此類工具對平臺進行評估。此外,海軍還應考慮增加先進的 UUV 平臺以補充艦隊。

付費5元查看完整內容

在本技術說明中,報告了有關傳感器技術和避讓方法的最新研究與開發文獻綜述,這些技術和方法可用于未來在有人-無人協同(MUM-T)行動中在小型無人系統上實施感知與避讓(SAA)能力。

在傳感器技術方面,研究了協作和非協作傳感器,其中非協作傳感器又分為主動和被動傳感器。我們認為:(1) 被動非協作傳感器在尺寸、重量和功率(SWAP)方面比其他傳感器更有優勢。被動工作可確保無人平臺在惡劣環境中的安全。為了補充單個傳感器能力的約束和限制,我們還認為,(2) 傳感器和數據融合的趨勢和未來需求前景廣闊,能夠在動態、不確定的環境中進行連續和彈性測量。此外,我們還認為應關注無人系統領域正在開發的 (3) 新型傳感器套件。

在探測和規避方法方面,我們按照 SAA 流程進行了全面研究,從探測沖突、危險或潛在威脅,到跟蹤目標(物體)的運動;評估風險和可信度;根據評估參數確定沖突的優先級;然后宣布或確認沖突以及沖突的程度;確定正確的沖突解決方法;隨后下達命令并最終執行。為了支持這一過程,我們審查了各種 SAA 算法,包括探測算法、跟蹤算法和規避策略。我們認為,(4)基于學習的智能算法需要列入未來 SAA 的要求中,因為它們具有支持任務的自適應能力。

最后,從不同的使用案例中回顧了支持 MUM-T 行動的 SAA。我們認為,(5) 與蜂群式小型 UxV 的人機系統接口可提供半自主的 SAA 能力,而人的參與程度有限。這種集成的人機交互提供了智能決策支持工具。該系統旨在使單個人類操作員能夠有效地指揮、監控和監督一個 UxV 系統。根據技術重點的發展趨勢,我們的最終觀點是:(6) 就研發進展而言,現階段實現無士兵參與的完全自主還為時過早,但我們將積極關注該領域的最新發展。

付費5元查看完整內容

作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。

在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。

通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。

本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。

在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。

付費5元查看完整內容

數字工程和數字設計是美國空軍(USAF)的一個新興重點領域,特別是用于現代復雜系統。高復雜度系統的一個例子是網絡合作自主彈藥群(NCAM),它優先考慮廣域搜索和多視角目標確認。首先,本研究討論了在基于模型的系統工程(MBSE)工具中建立行為模型的方法。然后,本研究介紹了NCAM在兩個環境中的并行建模工作:Cameo系統建模器中的MBSE模型,以及仿真、集成和建模高級框架(AFSIM)中的基于物理學的模型。每個數字模型在其環境中都為設計過程中的利益相關者提供了不同的好處,所以這些模型必須呈現出一致和平行的信息。因此,這項研究也提出了在模型之間翻譯設計信息的自動化方法。總的來說,這對協同工作的模型通過系統認知和數字場景模擬對自主過程的理解,與決策部門建立信任關系。

引言

1.1 一般問題

在始于1903年萊特兄弟首次飛行的重于空氣的飛行歷史中,美國軍隊促進了空對地攻擊能力的持續和快速發展。最初,飛行在軍事上的應用僅限于1909年美國陸軍信號部隊的偵察和監視;然而,第一次世界大戰和后來的第二次世界大戰的爆發創造了軍用飛機技術和理論的繁榮。到1946年,簡單的偵察雙翼飛機被可以超過音速的噴氣機所取代。美國看到了這種快速發展的技術的可行性,并在1947年創建了獨立的美國空軍(USAF)服務。空中力量的勢頭一直持續到現在,現代美國空軍的飛機可以隱藏他們的雷達信號,并精確地投擲制導彈藥,在地面上的同一個洞里投擲5枚炸彈!這就是美國空軍。

在美國空軍這個令人難以置信的組合中,一個合乎邏輯的下一個能力是合作和自主的彈藥,它利用相互通信來尋找、識別和打擊一個目標,同時評估對目標的損害。國防部研究與工程助理部長(USD(R&E))對這種能力有兩個關鍵定義。

  • "自動化。該系統的功能沒有或很少有人類操作者的參與。然而,系統的性能被限制在它被設計為做的具體行動上。通常,這些都是定義明確的任務,有預先確定的反應(即基于規則的簡單反應)。

  • 自主性。系統有一套基于智能的能力,使其能夠對系統部署前沒有預先編程或預期的情況做出反應(即基于決策的反應)。自治系統具有一定程度的自治和自我指導行為(由人類代理決策)"。[4]

目前的制導彈藥非常嚴格地遵循自動化的定義。通過激光或全球定位手動指定目標,然后彈藥執行程序化的行動以擊中指定位置。在這種情況下,控制權被操作者緊緊抓住,對目標開火的決定需要多個人為步驟。這些人為步驟使操作者對自動化有一種信任感,因為扣動扳機時風險最小化;與操作者使用無制導彈藥相比,彈藥利用其自動化技術更準確地擊中目標。當討論下一步的自主化發展時,人們有一種理性的擔心,即人類通常控制的決定將由自主系統的機器大腦來代替。這種不信任導致人們對部署旨在自主摧毀目標的武器猶豫不決。

理解與系統自主決策相關的行為是建立對自主性信任的絕佳方式。有多種方法可以將行為理解傳達給人類評估者:首先是提供描述系統各個方面的正式文件,接下來是創建一個數字模型,用圖表表示系統結構和行為,另一個是運行涵蓋廣泛場景的模擬,最后演示可以證明物理系統在測試和評估中的能力。文檔方法一直是所有國防部采購的標準,可以追溯到手繪示意圖的設計時代。然而,最近,國防部對使用建模和仿真來記錄和管理系統表示了興趣。已經出現的一個概念是數字孿生,系統的每個方面都被虛擬建模,以實現快速的修改原型和精確的配置控制。[5]這種數字孿生的焦點也為它所代表的系統的物理結構和行為創造了清晰的、可瀏覽的數據,從而使系統得到合理的理解。

1.2 問題陳述

如Reed[6]所示,基于模型的系統工程(MBSE)已經迅速被美國空軍的數字工程工作所采用,用于程序和系統結構建模項目。然而,復雜系統的行為MBSE建模在美國空軍的相同項目中并不常見。對于自主系統,算法的復雜性和這些自主系統協作時出現的突發行為使得評估邏輯行為和性能影響變得困難。對系統行為進行建模的能力是MBSE過程所固有的,但MBSE模型通常缺乏提供詳細的基于物理學的模型的能力,無法對系統的運行情況進行性能評估。有一些專門建立的基于物理的仿真平臺,如高級仿真、集成和建模框架(AFSIM),就是為了這后一種目的而存在的,但它們往往與MBSE工具中的定義模型脫節[3]。一種將復雜系統的MBSE行為模型和同一復雜系統的基于物理學的仿真模型聯系起來的方法和工具是必要的。要確保這對模型之間的行為一致,需要有能力在建模平臺之間傳輸設計數據。

1.3 研究目標和問題

本研究的目的是建立一個復雜的合作彈藥系統的行為MBSE模型,并建立一個自動和可重復的方法,將數據從MBSE模型轉移到AFSIM場景中,以執行相同的合作彈藥行為的模擬。MBSE模型將足以驗證單個自主彈藥的邏輯行為,以及在合作概念中同一彈藥的數量。AFSIM模擬將反過來為建模者提供反饋,以便對彈藥模型進行潛在的修改,從而實現更高的性能。

合作彈藥模型的研究問題包括:

  • SysML在行為建模中的優勢和劣勢是什么?

  • 哪些MBSE元素和/或屬性適合翻譯成AFSIM的原生語言用于情景模擬?

  • SysML數字模型在多大程度上可以代表AFSIM模擬中使用的合作彈藥的行為?

  • 在SysML模型和AFSIM場景之間可以利用哪些自動和可重復的方法進行數據交換?

1.4 方法學總結

這項研究必須首先確定連接點和集成到AFSIM的所需變量,這將有助于定義合作彈藥的MBSE系統模型的邏輯接口。這些接口有助于定義合作彈藥的MBSE模型的邊界,并為整合到AFSIM的場景模型提供數據點。設計和測試的關鍵領域是:為AFSIM實體所需的變量和基本方程建模;提供從MBSE模型到AFSIM的彈藥和場景參數的自動導出可用性;以及確定MBSE模型中會影響模擬的可修改區域。基于對連接點的評估,研究將轉向創建一個MBSE模型,以保持連接點,同時建立與AFSIM模型平行的行為。MBSE模型中的行為將根據AFSIM模型的情況進行評估。

1.5 假設和局限性

本研究僅限于虛擬彈藥的建模和模擬。此外,本研究定義的合作彈藥概念是名義上的;因此,彈藥模型將由名義上的數據填充。

1.6 提綱

第2章是對與彈藥建模、AFSIM集成、自主無人機系統行為建模和美國空軍先進彈藥的歷史應用有關的出版物的文獻回顧。第3章介紹了合作彈藥概念的設計方法和將數據自動傳輸到AFSIM場景模擬的方法。第4章討論了已完成的網絡化合作自主彈藥(NCAM)MBSE模型的行為分析、自動轉換結果和平行模型之間的比較。第5章總結了研究的重要發現,并推薦了未來的研究課題。

付費5元查看完整內容
北京阿比特科技有限公司