摘要: 近年來,無人機因其運行成本低、機動性強等獨特優勢被廣泛應用于軍民各復雜領域;同時,復雜多樣的任務對無人機系統的可靠性和安全性提出了更高的要求。無人機故障診斷技術能夠及時準確地提供診斷結果,有助于無人機的維護、保養與維修,對提升無人機的作戰效能具有重要意義。因此,從無人機的飛控系統剖析各類常見故障的機理,并進行故障歸類。主要圍繞飛控系統中的傳感器、執行器和其他部件的故障診斷技術,分析總結了無人機故障診斷技術的研究方法和現狀。探討了無人機故障診斷技術面臨的主要挑戰,并指出了未來的發展方向;旨在為無人機故障診斷技術領域研究人員提供一定參考,促進我國無人機故障診斷技術水平的提升。無人機作為新興技術,在軍事、民用、農業等多個領 域有著廣泛的應用,尤其是軍事領域,它的研究和應用 給軍事作戰帶來了重大的改變,使軍隊的作戰能力得到 了極大的提升[1]。然而,隨著無人機的大量應用,無人機 發生事故的頻率也迅速增加,據數據統計,它發生的事 故大約31%是由于人為因素,而約59%是由于設備故障 導致的,其余的是由環境因素所導致[2]。其中,無人機飛 控系統一般包括傳感器、執行機構和機載計算機三大部分,是最容易發生故障的系統。 無人機飛控系統的作用相當于人類的大腦,能夠對 無人機飛行姿態和運動參數進行實時控制。因此,飛控 系統的健康是無人機可靠安全的重要保證[3]。無人機的 故障診斷技術是指在無人機系統出現故障時,利用各種 測量手段,對故障造成的影響進行量化分析,以確定故 障的類型、位置和原因,并給出有效的維修方案,以解決 故障問題[4]。近年來,海內外的學者對無人機飛控系統 的故障診斷技術進行大量研究,旨在通過深入分析無人 機的故障原因,為無人機的安全和可靠性提供保障,并 且能夠有效地降低故障維修和更換的成本[5]。 從2010至2022年期間與無人機故障診斷相關的大 量文獻來看,具體時間分布如圖 1 所示,學者針對無人 機故障診斷技術研究穩中有進,總體上呈現遞增趨勢。 特別是 2016 年后一直保持較大的遞增趨勢,表明世界 范圍內無人機故障診斷技術研究已經引起眾多學者的 廣泛關注,意味著無人機故障診斷技術具有重要研究價 值。由于政府對無人機研究的大力支持以及各研究機 構對無人機故障診斷技術的研究投入,使得無人機故障 診斷技術得到大大提升。文獻所涉及的無人機故障研究類別、對象、方法及 區域分布如圖 2 所示。圖中顯示國內外對于無人機故 障診斷技術的研究多集中在無人機飛控系統中的傳感 器和執行機構兩個方面。隨著各個結構的故障類型存 在較大差異,針對不同的部件研究了不同的診斷方法。例如,在無人機傳感器的故障研究中,神經網絡法被許 多學者在無人機傳感器故障診斷的研究方面廣泛應用, 將神經網絡法應用于無人機傳感器的故障診斷,避免了 復雜數學模型的建立。而在執行機構的故障研究中,深 度自編碼器和優化的卡爾曼濾波器等應用最為廣泛,這 兩種方法的使用提高了故障診斷的精確度以及適應噪 聲的能力。 本文主要對無人機飛控系統進行各類常見故障機 理的分析,并對無人機故障診斷技術的研究現狀、應用 及發展趨勢進行整理、分析和歸納,為無人機故障診斷 技術的深入研究提供參考和借鑒。
從現階段的技術發展看,機器智能從計算、分析等多方面已經超越人類,智能化必將成為指揮控制系統的未來 發展方向。論文對指揮控制系統現狀進行了闡述,對未來指揮控制系統發展進行了設想,為我軍指揮控制系統的完善和發 展提出建議。
指揮控制系統是在聯合作戰背景下,通過對資 源的組織、協調和決策,可為協同作戰行動提供精 準高效指揮支持的中樞系統,是作戰體系中不可或 缺的一部分。隨著各領域科學的發展與進步,現代 戰場環境態勢復雜多變,對抗節奏較比過去明顯加 快,數據量空前龐大。面對錯綜復雜的戰爭環境, 人工智能技術可為指揮控制系統提供支持,在戰爭 需求和技術進步的推動下,發展智能化指揮控制系 統將是世界各國的必然選擇。 然而,發展指揮控制智能化要走的路還很長。 本文從指揮控制系統及典型的人工智能系統及產 品的發展現狀出發,結合人工智能技術對指揮控制 系統的應用進行展開,提出指揮控制系統智能化的 發展思路,為我國發展指揮控制智能化提供參考。
摘要: 無人機集群以其具備的應用優勢及發展前景,成為當前人工智能領域研究者關注的熱點之一,而非完全信息下的無人機集群對抗技術,因其集群結構變化的高動態性以及環境信息復雜多變且不能完全感知的特點,成為對集群協同性與智能性要求最高的研究方向之一,其研究成果可以促進智能化無人系統的快速發展和廣泛應用。該文全面回顧了非完全信息環境下無人機集群對抗研究的最新進展,按照包以德循環理論的思路將無人機集群對抗過程劃分為態勢評估、意圖推斷、任務規劃與機動決策4個相互銜接的關鍵組成部分,并進一步將其細分為8個子研究目標。通過分析比較近年來的相關研究,著重闡述了無人機集群對抗領域各項任務的研究重點和難點以及已取得的成果,并討論了無人機集群對抗技術所面臨的挑戰,包括大規模異構集群的協同控制、非完全信息的處理、復雜決策過程的建模以及實際應用任務的應對等。
無人機(Unmanned Aerial Vehicle, UAV)因其低維護成本和高機動性,在民用與軍事領域成為研究熱點[1,2]。單一無人機能力有限,易損壞導致任務失敗,因此研究重心轉向無人機集群,以實現群體智能,提高效率和性能。無人機集群技術的發展進一步促進了無人機集群對抗的研究,多架無人機可以高度協同執行戰術行動,如打擊、掩護和情報搜集等,增強了其在軍事和安全領域的應用,成為軍事和安全領域的重要研究方向。同時,這一技術也推動了工業、物流和農業領域的自動化生產和管理,促進了智能應用技術的發展。 無人機集群對抗要求無人機具備自主判斷、規劃、和決策能力,并能實現集群間的信息交互和協同行動。多種算法的配合形成完整系統,以提高任務執行效率和精確度。無人機集群對抗廣泛應用于軍事和安全領域,如對恐怖組織的打擊、軍事突襲、領空防御、海上巡邏等,能提高作戰效率,降低成本和人員傷亡。此外,為了滿足更復雜的任務需求,設計了不同類型的無人機以及由不同無人系統組成的異構集群[3,4],這對無人系統的適應力和自主性提出了更高的要求。
在無人機集群對抗中,真實對抗環境往往存在非完全信息環境,集群無法獲取完整的信息,包括友機、敵機以及其他環境信息。這些特點通常由通信干擾、數據傳輸帶寬限制、通信距離限制、敵方決策誤導、突發障礙物威脅、極端氣候等多種因素引起。因此,非完全信息問題成為當前無人機控制領域的熱點和難點之一。為了幫助研究人員應對這一問題,本文總結了近年來非完全信息下無人機集群對抗的研究現狀。 提升無人機在非完全信息環境下的決策能力具有重要意義,但也帶來了很大的挑戰。非完全信息條件使模型更加貼近真實應用場景,增強了模型可行性和實用性。要突破這一難關,不僅需要更先進的硬件設計、感知算法和通訊技術,方法研究也是關鍵,它是提高無人機集群智能化的核心。非完全信息條件會增加信息處理難度,需要研究者提出更高效靈活的對抗策略與方法,增強方法的魯棒性。現有研究通過多種任務算法配合使用,以提高無人機智能化水平,推動無人機集群模型向實用性方向發展。
非完全信息下無人機集群對抗研究,參考由美國空軍軍事戰略家John Boyd提出的包以德循環(Observe-Orient-Decide-Act Loop, OODA Loop)理論,可以分成幾個階段。OODA循環描述了空戰中飛行員決策過程,由觀察、定位、決策、執行組成,強調的是比敵人具備更靈活的觀察與反應能力,能夠快而準確的在敵人的決策周期中瓦解敵人招式而取得優勢[5]。參照此循環結構及其各部分的內在邏輯關系,本文將復雜的無人機對抗過程對應地分解為如圖1所示的多階段循環研究任務,包括態勢評估、意圖推斷、任務規劃、機動決策4個主要部分。通過OODA循環不斷迭代,無人機集群能夠快速適應并響應環境中的變化與不確定性,快速理解環境,識別目標意圖,靈活地調整策略,進而采取有利的行動。
根據OODA循環環節,并結合近年來的研究進展情況,本文進一步將非完全信息下的無人機集群對抗研究的具體內容分解為8個子任務,如表1所示。OODA循環的觀察階段對應態勢評估,涵蓋對抗態勢評估研究與威脅因素評估研究。定位階段則對應敵機行為的意圖推斷,無人機集群進一步對收集到的敵機行為數據進行分析,通過對敵機行為的預測與識別對潛在的意圖進行推斷,進而快速響應、精準打擊,獲得決策優勢。OODA循環的決策階段需要制定最佳行動方案,對應任務規劃研究,包括目標分配與航跡規劃兩部分。機動決策對應于OODA循環中的執行階段,其核心研究涵蓋協同對抗與追蹤合圍兩部分內容,在執行階段將觀察、定位與決策結果轉化為具體的無人機集群自主協同機動決策。
在無人機集群對抗的OODA循環中,態勢評估和意圖推斷主要進行非完全信息環境下的數據處理與分析,為決策提供依據。而任務規劃與機動決策側重于集群內外信息融合的綜合決策,有很高的協同性與靈活性要求。隨對抗進展, OODA循環持續迭代至對抗結束,以優化無人機集群的作戰效能。下面分別從態勢評估、意圖推斷、任務規劃與機動決策這四個方面對無人機集群對抗的研究現狀做進一步的闡述。
近年來,無人機已廣泛應用于電力巡檢、森林保護、快遞配送、交通監控等領域,無人機技術得到飛速發展。 無人機 具有數量多、體積小、速度快等特點,無人機進入非隔離空域成為必然趨勢,而沖突探測與解脫技術也成了當下的重點研究方 向。 沖突探測與解脫技術的提高對無人機飛行安全和飛行效益具有重要意義。 系統地梳理了當下中外的研究成果,對無人 機沖突探測與解脫問題進行了概述。 綜述了沖突探測與解脫的模型,從理論模型的角度闡述了沖突解脫的目標和約束條件; 并從方法論的角度對沖突探測與解脫的常用方法進行了總結。 最后從現有研究的不足出發,對無人機沖突探測與解脫未來 的研究趨勢和方向進行了展望。 隨著無人機技術的迅速發展,無人機數量急劇 增加。 2021 年底,《“十四五” 民用航空發展規劃》 提出要著力提升同行服務水平,大力引導無人機創 新發展[1] 。 無人機憑借其靈活度高、低能耗和實時 監控能力,已廣泛應用于監測、成像等領域。 無人 機數量的迅速增加給空域交通安全帶來了挑戰。 當前風險主要集中于無人機故障、無人機“黑飛”對 行人和基礎設施的風險,以及無人機飛行沖突的風 險。 為了在不同應用場景下保障無人機的飛行安 全,提高空域運行效率,沖突探測與解脫技術作為 保障無人機飛行安全的關鍵技術,需要進行重點 研究。 現整理中外有關無人機沖突探測與解脫的相 關文獻。 首先介紹無人機沖突探測與解脫的相關 概念;其次對無人機沖突探測方法進行總結;然后 從理論模型的角度介紹當下無人機沖突解脫的目標及約束條件,并介紹主要解脫方法;最后對未來 可研究方向進行展望。
無人機的任意使用對公共安全和個人隱私構成了極大威脅,因此近年來反無人機已成為一個非常重要的新興領域,越來越多的研究希望通過更精確的無人機探測跟蹤技術和引進新機能、新概念技術來更好地反制無人機,從而保證國防安全、公共安全和個人隱私等.基于此,對國內外反無人機技術進展進行分析總結,首先,對基于雷達、光電、無線和聲傳感器以及多傳感器信息融合算法的無人機檢測和分類方法的研究工作進行全面的綜述;然后,對現有反無人機技術體系的組成及相關系統的優缺點進行綜述,討論了現有的反無人機技術、典型的反無人機系統以及無人機集群對抗技術;最后,對反無人機領域的研究前景進行展望,為解決低空安全問題奠定基礎. 態勢感知、威脅檢測和跟蹤對于廣泛的軍事和海事應用至關重要.由于無人機商業化程度逐漸提高, 它對軍事和民用的威脅也日益增大.因此在軍事和民用等領域, 反無人機將越來越重要, 各國在加緊研究無人機的同時, 亦大力發展反無人機產業, 實現“攻防一體”.反無人機技術得到了蓬勃發展, 大有百花爭艷、百家爭鳴的態勢.因此, 對反無人機研究現狀進行總結具有十分重要的意義, 這可以為目前的研究提供一些新的思路以及改進的方向. 反無人機是指通過一系列技術手段與設備對無人機進行反制, 使公共安全、公民隱私、國家安全等得到保障.目前反無人機技術存在以下難點.
無人機逐漸隱身化、微小化, 且探測環境復雜. 在外型方面, 隨著納米復合材料、智能蒙皮結構等前沿技術的突破, 小型化、微小型化將成為無人機未來的發展趨勢, 這將會導致信噪比低, 回波信號極易被雜波淹沒.另一方面, 針對各探測手段無人機采用了復合材料、防紅外反射技術等實現隱身化, 將大大增加探測難度.而在探測環境方面, 探測常常受到地形地物干擾, 導致信號衰減、信噪比低、目標被遮擋.
無人機偵察-防御-攻擊一體化, 作戰效能成倍提高, 增加了防空系統的難度.近年來, 無人機逐漸發展為偵察-防御-攻擊一體化, 能夠實現多角色功能轉換, 給目前的反無人機系統帶來了極大挑戰.
無人機系統信息處理高速化、智能化, 信息傳遞多樣化, 傳感器系統綜合化, 增大了反偵察和干擾的難度.伴隨深度學習、大數據的浪潮, 以人工智能為核心的無人機研究逐步開展, 并且成果顯著.此外, 為增強無人機通信效率和抗干擾能力, 在其內部還安裝了高速信息處理機, 信息處理速度得到很大提高.同時為了提高無人機的探測偵察能力, 許多無人機系統安裝了由雷達、紅外等多種異類傳感器構成的傳感器系統, 可進行準確的態勢感知, 綜合化水平越來越高.此長彼消, 這使得其偵察能力大大提高的同時, 也加大了對其進行干擾、欺騙、偽裝的難度.
無人機集群相關研究方興未艾, 傳統防空系統難以應對.相比于單個無人機, 集群無人機不僅作戰效能高、靈活性強, 而且作戰成本可控、效費比高, 近年來已成為各軍事強國爭先研究的一種新型作戰樣式.戰場上, 集群攻擊將使得作戰成本極不對稱, 效費交換劣勢明顯.除此之外, 隨著技術的成熟, 集群式微型機亦發展迅速, 已成為美、俄、以等國軍方重點關注的內容, 比如美國的小精靈計劃.而隨著復眼戰術、蜂群策略逐步完善, 未來將出現更多的作戰樣式.
總而言之, 無論是無人機的外形逐漸隱身化、微型化, 還是系統一體化、綜合化, 信息處理高效化, 抑或是作戰方式集群化, 都使反無人機技術面臨重重困難, 但也反映出反無人機研究勢在必行.這些是挑戰, 也是機遇, 將大大推動反無人機技術的發展.
當前的反無人機技術體系主要由探測跟蹤和預警技術、毀傷技術、干擾技術和偽裝欺騙技術4大部分組成[1], 其作戰過程如圖 1所示.
第1步是對無人機進行探測識別, 然后再根據實際情況, 選擇對其進行欺騙干擾的軟損傷還是火力打擊的硬摧毀.除此之外, 己方須進行一定的偽裝防護以降低敵方無人機的偵察效率和效果.從圖 1可以看出, 探測預警技術是后3種技術的基礎和關鍵, 并且由于各國反無人機技術都采取嚴格的保密措施, 能夠查找到的公開技術有限, 而無人機作為一種檢測目標, 對其進行探測和識別的公開研究較多.因此本文首先對無人機探測技術進行詳細總結, 然后介紹其他3種對抗技術, 并簡要介紹目前一些典型的反無人機系統, 最后針對集群無人機描述反制措施.
隨著軍用地面無人系統研究的深入,單一的地面無人機動平臺或任務載荷很難滿足現代戰場的需求,只有任務載荷和機動平臺協同發展,地面無人系統才能在戰場中真正形成戰斗力。為進一步推動任務載荷與機動底盤協同技術的發展,綜述了搭載任務載荷軍用地面無人系統的發展背景、研究現狀及技術特點,分別從多層次多維度的環境建模、基于多模態數據的通行度估計、基于多智能體協同建模的協同規劃控制優化方法三方面對其關鍵技術進行闡述,總結了相關的研究框架和重點,并對搭載任務載荷軍用地面無人系統未來的發展方向進行了展望。
近年來,由于軍用地面無人系統在戰場中的廣 闊應用前景,世界各國紛紛投入大量的研制資源, 軍用無人系統發展迅猛[1]。軍用地面無人系統一般 由地面無人機動平臺與具有執行特定任務的上裝任 務載荷構成,如偵察設備[2-4]、火力打擊設備[5-6]、排 爆設備[7-8]等。軍用地面無人系統在執行協同打擊、 機動偵察等復合任務中,可以獲取多模態的態勢信 息[9],通過集中式算法快速處理多源信息進而下達 作戰指令;而有人作戰系統中車長、炮長、駕駛員 需要三人協同完成任務,因此在安全性、可靠性、 靈活性上軍用無人系統均具有優勢。順應陸軍新型 的非接觸、非對稱、零傷亡的作戰模式,搭載任務 載荷的軍用地面無人系統開始成為戰場環境中重要 的作戰力[10]。2015年,俄羅斯首次將軍用地面無人 系統投入敘利亞戰場,利用地面無人系統與無人機 形成空地一體戰斗集群系統,俄軍以零傷亡的代價 消滅了近兩百名恐怖分子。2020年7月,美國陸軍將 重型無人戰車納入作戰部隊單位,參加了科羅拉多 州卡森堡的士兵作戰試驗,成功完成相關測試。2023 年,在俄烏沖突中,俄羅斯在烏克蘭軍事沖突區中 投入“馬克”軍用無人打擊系統。
無人機具有體積小、靈活性強、航拍視野廣等特點,廣泛應用于警用巡查、城市交通監管、天氣監測、 電力巡檢、應急救援救災等行業。近年來,隨著計算機視覺領域的蓬勃發展,基于深度學習的目標檢測 技術逐漸應用于無人機領域,并不斷得到改進和加強。本文系統性地闡述了基于深度學習的目標檢測技 術發展歷程和研究現狀。針對現階段無人機航拍影像小目標多、背景復雜、目標尺度變化大的特性,歸 納和分析了近期對無人機目標檢測的相關研究。最后,展望了基于深度學習的無人機目標檢測技術的未 來發展趨勢。 隨著科技的發展,無人機(UAV)已經擺脫了過去的軍事用途,逐漸擴展到民用和商用領域。隨著無 人機技術的發展,基于深度學習的目標檢測技術已成為無人機應用領域的重要研究內容[1]。將目標檢測 技術應用于無人機上,實現在航拍視角下對地面場景的目標檢測和識別。然而,在無人機航拍圖像中, 檢測對象多為小目標,受航拍視角影響,目標尺度變化較大;圖像背景復雜,目標對象易被遮擋。給無 人機的目標檢測帶來了諸多挑戰[2]。常規的目標檢測算法應用于無人機上難以保證檢測精確度,優化無 人機的目標檢測性能成為了無人機應用領域的重要研究內容[3] [4]。本文首先介紹基于深度學習的目標檢 測研究進展,然后總結現階段無人機領域目標檢測的研究難點,針對小目標檢測、背景復雜、多尺度變 化三個方面進行改進和優化的各類方法進行了闡述。最后,對未來無人機目標檢測的研究方向做出了展 望。
摘要:小目標檢測是針對圖像中像素占比少的目標,借助計算機視覺在圖像中找到并判斷該目標所屬類別的目標檢測技術。與目前應用較為成熟的大尺度、中尺度目標檢測不同,小目標自身存在著語義信息少、覆蓋面積小等先天不足,導致小目標的檢測效果并不理想,因此如何提高小目標的檢測效果依然是計算機視覺領域的一大難題。對近年來國內外小目標檢測領域研究成果進行了梳理,以小目標檢測技術為核心,首先對關于小目標的定義、檢測難點進行分析;隨后將能有效提高小目標檢測精度的方法進行分類匯總,并介紹了各種方法的應用與優缺點;最后對未來小目標檢測領域發展趨勢進行了預測與展望。
【摘要】 人機對話技術作為人工智能領域的重要研究內容,它是人與機器的一種新型交互方式,受到學術界和工業界的廣泛關注。近些年來,得益于深度學習技術在自然語言領域的突破性進展,極大地促進了人機對話技術的發展。將深度學習融入人機對話系統技術中,不但使得端到端的方法成為可能,而且提取出的特征向量非常有效幾乎完全取代了人工特征。本文首先回顧了人機對話系統的發展歷程,介紹了人機對話系統的兩種類型,任務型對話系統和非任務型對話系統。其次,本文從理論模型、研究進展、可用性及存在的問題與挑戰等角度深度剖析了任務型對話系統的兩種方法,管道方法和端到端方法。重點分析深度學習技術和強化學習技術的具有代表性的前沿算法,并與傳統方法進行對比。最后,對任務型人機對話系統目前的評估方法和存在的問題進行總結,并展望了任務型對話系統的未來研究方向。
//tow.cnki.net/kcms/detail/detail.aspx?filename=JSJX20191105000&dbcode=CRJT_CJFD&dbname=CAPJLAST&v=