隨著軍用地面無人系統研究的深入,單一的地面無人機動平臺或任務載荷很難滿足現代戰場的需求,只有任務載荷和機動平臺協同發展,地面無人系統才能在戰場中真正形成戰斗力。為進一步推動任務載荷與機動底盤協同技術的發展,綜述了搭載任務載荷軍用地面無人系統的發展背景、研究現狀及技術特點,分別從多層次多維度的環境建模、基于多模態數據的通行度估計、基于多智能體協同建模的協同規劃控制優化方法三方面對其關鍵技術進行闡述,總結了相關的研究框架和重點,并對搭載任務載荷軍用地面無人系統未來的發展方向進行了展望。
近年來,由于軍用地面無人系統在戰場中的廣 闊應用前景,世界各國紛紛投入大量的研制資源, 軍用無人系統發展迅猛[1]。軍用地面無人系統一般 由地面無人機動平臺與具有執行特定任務的上裝任 務載荷構成,如偵察設備[2-4]、火力打擊設備[5-6]、排 爆設備[7-8]等。軍用地面無人系統在執行協同打擊、 機動偵察等復合任務中,可以獲取多模態的態勢信 息[9],通過集中式算法快速處理多源信息進而下達 作戰指令;而有人作戰系統中車長、炮長、駕駛員 需要三人協同完成任務,因此在安全性、可靠性、 靈活性上軍用無人系統均具有優勢。順應陸軍新型 的非接觸、非對稱、零傷亡的作戰模式,搭載任務 載荷的軍用地面無人系統開始成為戰場環境中重要 的作戰力[10]。2015年,俄羅斯首次將軍用地面無人 系統投入敘利亞戰場,利用地面無人系統與無人機 形成空地一體戰斗集群系統,俄軍以零傷亡的代價 消滅了近兩百名恐怖分子。2020年7月,美國陸軍將 重型無人戰車納入作戰部隊單位,參加了科羅拉多 州卡森堡的士兵作戰試驗,成功完成相關測試。2023 年,在俄烏沖突中,俄羅斯在烏克蘭軍事沖突區中 投入“馬克”軍用無人打擊系統。
近年來,美國國防部和各軍種相繼發布一系列指導性文件,建立了反無人機發展戰略,在突 出反無人機作戰技術優勢的同時更加注重體系建設。 文中以美軍反無人機發展現狀為背景,研究 行業動態、技術發展趨勢與威脅研判,對美軍反無人機作戰理念加以研究。 重點分析其技術項目投 入和軍事應用,從反無人機通過探測技術、高功率微波和激光武器系統的開發與研制及相應電子對 抗技術機理角度歸納總結,通過作戰現狀研究分析美軍反無人機未來發展趨勢,提出啟示與建議。
近年來,無人機技術的飛速進步使得其在商業 與軍事領域的運用得到更多拓展。 繼戰機、武裝直 升機和精確制導武器之后,無人機系統以其具備的 優秀偵察、打擊能力成為戰場防空新威脅。 從美國 防部陸續發布的文件來看,美軍正加緊提升其賽博 空間和電磁戰領域的集成融合,尤其以反無人機作 戰能力研究為重點之一提出了多項重大戰略性 舉措。
空天防御裝備體系具有組成要素多、分布時空廣、協同鉸鏈深、博弈對抗強的特點,對裝備要 素進行作戰管理是提升作戰效能的必要手段,國內外實踐證明,也是最有效的手段之一。分析了 空天防御裝備作戰管理的基本內涵、特點以及國外發展現狀,提出了空天防御裝備作戰管理后續 發展的思考及建議。 以信息技術為代表的第三次科技革命,促進了 生產自動化、管理現代化、科技手段現代化和國防 技術現代化[1] ,其中“管理現代化”催生了現代管理 理論方法及其實踐應用;“國防技術現代化”在大幅 提升單裝作戰能力的同時,也有力推動廣域分布單 裝通過有機組合形成復雜作戰體系的體系化作戰 能力生成,實現以整體性的互補優勢突破傳統單裝 各自能力邊界,極大提升了整體作戰能力和戰爭規 模烈度,由此催生了體系化作戰的新型戰爭形態。 作戰管理[2-4]是聚合單裝要素形成復雜作戰體 系及體系化作戰能力的關鍵環節之一,因此備受關 注。在此背景下,本文分析了作戰管理的概念內 涵、特點及國外典型作戰管理系統發展現狀,結合 空天防御裝備體系作戰管理的實踐應用經驗,提出 了空天防御裝備作戰管理后續發展的思考與建議。
通過異型無人機(unmanned aerial vehicle, UAV)的協同作戰, 可極大豐富空中作戰樣式, 提高空戰戰損比. 雙機編隊是最基 本的協同作戰單元, 具有較大的研究價值. 針對無人機協同空戰可能面臨的不同空中態勢, 分別設計殲擊無人機和電子干擾無人 機的機動決策模式, 通過不同模式下的算法切換實現更好的協同作戰. 基于一致性理論設計了無人機的編隊飛行與伴隨干擾算法. 根據動態的空戰對抗特性, 設計自適應的動態柵格環境, 可更好地支撐路徑規劃與機動決策. 分別使用改進的蟻群算法(ant colony algorithm, ACO)和 Q-learning 算法構建無人機的機動決策和沖突解脫算法, 可實現無人機在空戰機動的同時避免相撞事故的發生. 最后以戰損比為指標, 通過協同空戰仿真證明了協同機動決策算法的有效性.無人作戰飛機 (unmanned combat aerial vehicle, UCAV)作為未來空戰的重要角色, 實現其空戰過程 智能化是各軍事強國研究的關鍵方向[1] . 美國作為航 空和人工智能技術最發達的國家, 在無人作戰系統 的研究上同樣走在世界最前沿. 早在 2016 年, 美國 的智能空戰模擬系統便能以 100%的概率戰勝退役 的空軍上校[2] . 2017 年 3 月, 美國空軍與洛·馬公司 基于無人化的 F-16 對“忠誠僚機”概念關鍵性技術 展開驗證, 包括開放式系統架構的軟件集成環境和 無人機的自主任務規劃功能, 旨在實現有人機與無 人機的協同作戰[3-4] . 在美軍的 2013 版《無人機系統 綜合路線圖》中, 更是計劃到 2030 年前后實現無人 機編隊的自主協同偵察與攻擊功能. 因此, 我國同樣 應當加大無人作戰飛機自主決策技術的研究, 否則 難以在未來的空戰場上取得優勢. 無人機協同空戰對抗既涉及空中的自主避撞, 又涉及戰術的協同機動決策, 相對單機對抗和同型 機協同機動決策具有更大的技術難度和復雜度. 從 國內外的研究現狀來看, 主要仍基于同機型的對抗 決策或協同機動決策研究, 對于異型機之間的協同 機動決策還仍有不足. NGUYEN 使用線性二階模型 構建無人機編隊模型, 使用一致性理論設計集群的 編隊控制算法[5] , 但該研究主要關注動目標的協同追 蹤問題, 對于更復雜的協同控制決策則并沒有涉及. ZHEN 提出了一種智能自組織算法[6] , 該算法可實現 多無人機對抗的目標分配問題, 主要方法是將全局 問題分解為局部問題并進行優化計算. 但該研究主 要關注對地目標的協同攻擊, 態勢相對簡單. 朱星宇 基于 Q-Learning 算法構建無人機的機動決策模型[7] , 而無人機之間的協同目標分配則是使用納什均衡理 論, 由此實現多無人機空戰機動決策. 研究中既考慮 了沖突解脫問題, 也考慮了態勢問題, 具有較好的參 考價值. 魏瀟龍基于改進蟻群算法研究了無人機的 自主沖突解脫問題[8] , 具有一定參考價值. 本文對異型機之間的空戰協同決策問題展開研 究, 主要分析電子干擾無人機與空戰無人機之間的 自主協同決策方法. 在探討電子干擾伴隨支援戰術 機動方法基礎上, 基于一致性理論設計了無人機之 間的編隊控制方法, 使用蟻群算法實現我方無人機 之間的沖突解脫與戰術機動, 使用改進的 Q-learning 算法設計敵對無人機的空戰機動決策算法, 最后通 過空戰仿真驗證協同機動算法的有效性。
無人機具有體積小、靈活性強、航拍視野廣等特點,廣泛應用于警用巡查、城市交通監管、天氣監測、 電力巡檢、應急救援救災等行業。近年來,隨著計算機視覺領域的蓬勃發展,基于深度學習的目標檢測 技術逐漸應用于無人機領域,并不斷得到改進和加強。本文系統性地闡述了基于深度學習的目標檢測技 術發展歷程和研究現狀。針對現階段無人機航拍影像小目標多、背景復雜、目標尺度變化大的特性,歸 納和分析了近期對無人機目標檢測的相關研究。最后,展望了基于深度學習的無人機目標檢測技術的未 來發展趨勢。 隨著科技的發展,無人機(UAV)已經擺脫了過去的軍事用途,逐漸擴展到民用和商用領域。隨著無 人機技術的發展,基于深度學習的目標檢測技術已成為無人機應用領域的重要研究內容[1]。將目標檢測 技術應用于無人機上,實現在航拍視角下對地面場景的目標檢測和識別。然而,在無人機航拍圖像中, 檢測對象多為小目標,受航拍視角影響,目標尺度變化較大;圖像背景復雜,目標對象易被遮擋。給無 人機的目標檢測帶來了諸多挑戰[2]。常規的目標檢測算法應用于無人機上難以保證檢測精確度,優化無 人機的目標檢測性能成為了無人機應用領域的重要研究內容[3] [4]。本文首先介紹基于深度學習的目標檢 測研究進展,然后總結現階段無人機領域目標檢測的研究難點,針對小目標檢測、背景復雜、多尺度變 化三個方面進行改進和優化的各類方法進行了闡述。最后,對未來無人機目標檢測的研究方向做出了展 望。
無人集群系統是近年來國內外軍事領域的研究重點, 正在推動無人作戰樣式由 “單平臺遙控作戰” 向海陸空協作的 “智能群體作戰” 轉變. 綜述了近年來國內外在無人集群系統方面的最新研究進展, 包括軍事、國防和學術領域在無人系統自主 協同技術方面的探索和實踐, 闡述了無人集群系統相關的關鍵技術, 包括多 Agent 系統自主協同、多 Agent 系統態勢共識、未 知系統動力學、群體智能理論與技術、機器學習方法、行為決策方法以及實驗場景模擬等, 分析了不同關鍵技術的技術特征、 面臨挑戰和發展趨勢.
2018 年美國國防部頒布《國防部人工智能戰略 摘要》, 強調人工智能技術在軍事領域的應用, 并于 同年發布了無人集群系統并行作戰場景[1]. 2017 年 至今美國戰略和預算評估中心連續發布針對中俄兩 國的馬賽克式集群作戰等顛覆性作戰模式, 打造全 球范圍內的武器系統協同作戰[2] . 我國國務院在 2017 年提出《新一代人工智能發 展規劃》, 倡導人工智能領域的軍民融合, 以加快國 防技術的成果轉化, 并為指揮決策、軍事論證和國防 科研提供有力支撐[3] . 其中, 以群體智能為核心技術 的無人集群系統自主協同作戰是未來戰爭重要樣式, 美軍已經啟動高度自主智能化集群武器裝備的研究. 我軍也在積極探索利用人工智能算法提高無人系統 的智能化水平, 以取得戰爭主動權. 進一步看, 現代 戰爭中戰場環境瞬息萬變, 僅僅通過單系統的協作 不可能完全掌握戰場環境和態勢, 海、陸、空多類智 能系統的協同感知、聯合攻擊必將成為未來戰爭的 作戰模式. 2020 年 1 月, 中國科學院發布的《2019 年 人工智能發展白皮書》中, 將” 群體智能技術” 列為 了 8 大人工智能關鍵技術之一[4] . 同時, 無人裝備具 有低成本、小型化、功能單一、組網靈活等特性, 使 得無人裝備集群作戰通過數量優勢來打擊敵人. 在 網絡環境下, 這類由異質、異智系統 (智能體) 通過 彼此之間的信息交互構成的多維異構無人集群系統, 看作是異構智能群體系統, 即多智能體 (Agent) 系統. 其中, Agent 是對外界的刺激作出適當反應的實體, 不是被動的接受消息和控制. 展望未來, 誰懂得如何最好地使用無人集群智 能系統, 誰就有望在戰爭中取得巨大優勢.
目的 對軍事領域中人機協作的應用現狀和理論現狀進行歸納與分析,指出未來的發展趨勢,旨 在為人機協作軍事系統的技術發展和設計研究提供理論方向。方法 以無人機系統、無人車系統、無人 艇系統的實際應用場景為代表,分析人機協作的軍事應用現狀;剖析軍事背景下國內外人機協作任務分 配、人機交互方式、人機交互界面設計、人機協作效能評估的研究進展;綜合前人的研究現狀對未來的 研究發展趨勢進行總結。結論 根據國內外研究的現狀、熱點與趨勢可知,人機協作的任務分配需綜合 考慮人員行為和任務時序等因素,以提高人機協作效率,探尋更優的分配模式;多模態智能交互將成為 未來人與無人集群交互的主流形態,多通道結合的信息交流將改變操作員與指控系統互動的方式,實現 人與無人集群的高效交互;態勢認知是未來智能戰場面臨的挑戰,人機協作為智能態勢認知領域的研究 奠定了基礎。
隨著戰場信息化趨勢的發展,現代化戰場的整體 規模不斷擴大,戰場要素也愈加復雜,涉及多目標任 務和多資源的體系化作戰成為了主要的戰爭形態。人 機協作是指發生在人和自動化之間的協同交互,通常 被稱作 Human-Agent Teaming 或者 Human-Automation Collaboration[1]。在軍事層面,龐大的有人/無人協同 系統會參與到信息化戰場的協同作業中,復雜的操作 任務和作戰資源需要作戰體系具備規劃任務和自主 完成目標的能力[2]。因此,在復雜多變的戰場環境下, 自主規劃系統及監督指揮人員的協同作業顯得至關 重要[3]。人機協同作戰一直是軍事領域的研究熱點, 是指將無人系統與有人系統進行有機融合,基于共享 任務或信息的形式完成共同目標,這是智能化戰爭中 具有代表性的作戰方式之一[4]。基于對相關領域的研 究及應用資料的調查,美軍于 2003 年的伊拉克戰爭 中首次實現了有人/無人機協同作戰,通過有人機指 揮“MQ-1 捕食者”無人機發射導彈,實現作戰目標 物的發射打擊任務[5]。當前,國內外對無人機領域的 人機協作應用研究愈加廣泛。為實現資源的最大化利 用,通常采用單一操作員監督多個無人機的作戰模 式,但這種方式往往會增加人機系統的總體操作負 荷[6]。例如,美國在 2018 年的“拒止環境下無人機 協同作戰 CODE”項目中采用單一操作員控制多架無 人機的模式,執行偵察、打擊等作戰任務[7]。隨著未 來作戰化的趨勢向協同一體化的方向發展,在操作者 層面和武器平臺層面,實現資源的合理利用及充分配 置是人機協同作業的重要目標。 隨著人工智能、大數據等技術的發展,智能計算 等高新技術廣泛應用于軍事領域中的指揮控制系統、 無人作戰系統及輔助決策系統等自動化系統[8]。上述 系統注重人工智能技術的應用,突破了戰場環境下人 類生理疲勞等方面的限制,通過與人類合作來執行作 戰任務,形成人機協同作戰系統。人機協同作戰主要 有以下三種類型:第一種是智能化無人系統指引有人 系統實施作戰;第二種是智能化無人系統輔助有人系 統實施作戰;第三種是智能化無人系統掩護有人系統 實施作戰[4]。在人機協作系統中,智能系統運行速度 快,適用于執行規范化的繁雜任務,而人擔任監督規 劃的角色,通常在指定或突發階段,與智能系統聯合 完成協同作業[3]。然而,值得注意的是,雖然當前的 自動化系統能夠在一定程度上實現智能化任務,但是 在態勢感知及知識理解等方面仍存在固化思維,難以 完全替代人類[9]。例如,在指揮控制系統中,人類可 以發揮態勢感知的能力優勢,分析敵方的作戰意圖, 合理地分配作戰任務。而自動化系統主要是程序化的 定量感知,對動態的戰場環境感知的靈活度較低[10]。 總體來說,智能化作戰系統距離全自主性仍有較大差 距,需要和操作人員聯合完成作戰任務。 綜上所述,人和智能系統相互配合、執行任務, 可以發揮各自的優勢,提高作戰效率。人機協作過程 涉及任務分配、人機交互、效能評估等諸多方面,只 有實現各層面的高效融合和技術突破,才能達到理想 的協同作戰效果。然而,在動態、大規模的作戰環境 下,受限于智能技術的發展程度及未知的戰場態勢等 因素,人機協同技術仍處于探索階段,有許多工程技 術方面的難題需要解決,比如如何實現合理的協同任 務分配、如何實現靈活的人機交互等問題。因此,現 階段的研究重點是探究如何將人的經驗知識與機器智 能高效融合,最大化地發揮人機協同作戰系統的效能。
無人機蜂群作戰已經成為軍事領域的熱點,世界各軍事強國對其關注度日益增加。為了深化對無人機蜂群作 戰的理解與認識,首先簡要介紹了概念起源,然后重點對作戰樣式、作戰優勢等進行了分析,最后以無人機蜂群作戰的軍事 應用為牽引,總結了無人機蜂群作戰深入發展需要攻克的關鍵技術難題。自海灣戰爭以來,無人機在戰爭中的應用領域 不斷拓展,深刻影響著戰爭的走向。隨著無人機的 不斷發展完善,其應用范圍不斷擴大、規模數量不 斷增多、作戰樣式不斷翻新,作戰運用已從空中偵 察、戰場監視、電子對抗向通信中繼、精確打擊和后 裝保障等領域延申,正在逐步由輔助作戰手段向基 本作戰手段過渡。綜合來看,無人機在軍事上可代 替有人機執行四類任務,即 4D 任務(枯燥乏味、環 境惡劣、危險性高、深入敵方;Dull,Dirty,Danger? ous and Deep)。 20世紀60年代,法國生物學家皮埃爾·保羅開 始了關于智能蜂群(Swarm Intelligence)的研究。通 過對自然界各類昆蟲群體的深入觀察分析,皮埃 爾·保羅發現某類昆蟲群體內部存在高度結構化的 組織,個體之間分工明確,協同工作,能夠完成遠遠 超出單一個體能力的復雜任務。其中,蟻群是最具 代表性的群體,單體之間通過簡單的信號傳遞,就 能實現較成熟的溝通協調,從而表現出某種規模化 的集群智能行為。在此現象的基礎上,人類不斷深 入研究昆蟲之間的集群行為,最終得出了如蟻群算 法(ACS)和粒子群優化算法(PSO)等諸多智能集群 算法。
具有沉浸顯示、智能輔助、自然化人機交互等先進控制能力的新型無人機地面站已成為當前無人機控制領域的研究熱點。為分析其中的技術脈絡,系統性地梳理國內外一系列無人機先進地面站的功能要點及設計理念,在此基礎上從無人機地面站指揮控制的觀察—判斷—決策—行動回路出發,歸納提煉了其技術體系構成,分析指出了其中的任務環境構建、戰場態勢沉浸式顯示、智能化輔助決策和自然化人機交互等關鍵技術,并對各項技術的主要研究方法進行了深入剖析,還對無人機先進地面站目前存在的挑戰和未來發展趨勢進行了研判。該研究對新型地面站的研制具有指導和借鑒意義。
在目標檢測技術的驅動下,被賦予智能感知能力的無人機得以實現高效靈活的數據收集能力。隨著無人機 的普及與智能技術的成熟,無人機視角下的目標檢測在諸多領域中作為關鍵核心技術,具有重要的研究意義。為了 進一步促進無人機視角下目標檢測研究的發展,本文對無人機視角下的目標檢測算法進行了全面的總結,并對已有 算法進行了歸類、分析和比較。首先,介紹無人機視角下的目標檢測概念,并總結了無人機視角下目標檢測所面臨 的目標尺度、空間分布、樣本數量、類別語義以及優化目標等五大不均衡挑戰。**在介紹現有研究方法的基礎上,本 文特別整理并介紹了無人機視角下目標檢測算法在交通監控、電力巡檢、作物分析和災害救援等實際場景中的應用。**然后,重點闡述從數據增強策略、多尺度特征融合、區域聚焦策略、多任務學習、以及模型輕量化等方面來提升無 人機視角下目標檢測性能的方法,總結這些方法的優缺點并分析了其與現存挑戰之間的關聯性。之后,全面介紹基 于無人機視角的目標檢測數據集,并呈現已有算法在兩個較為常用的公共數據集上的性能評估。最后本文對無人機 視角下目標檢測技術的未來發展方向進行了展望。
0. 引言
計算機視覺技術為無人機賦予了自主感知、分 析和決策能力,而目標檢測則是提高無人機感知能 力的關鍵技術之一。無人機結合智能目標檢測技術 可充分發揮其高機動性優勢,在廣闊的空中視野中 定位感興趣目標,進而實現靈活高效的數據收集能 力。在目標檢測技術的驅動下,無人機在交通監控 (Byun 等,2021)、電力巡檢(Abdelfattah 等, 2020)、作物分析(Osco 等,2021a)和災害救援 (Bo?i?-?tuli? 等,2019)等多個領域中展現出廣闊 的應用前景。例如在交通監控領域,無人機可以空 中飛行進行偵測,不受道路限制,具有速度快、自 由度高、視野寬廣等優點。當交通事故等突發事件 發生時,無人機可以第一時間進行響應,到達現場 進行圖像采集與分析,為應急救援與管理提供及時 有效的數據支撐。在深度學習的驅動下,目標檢測 技術獲得了長足的發展,取得了諸多令人矚目的成 就。然而,大多數研究聚焦于地面視頻監控圖像的 分析,面向無人機視角圖像的目標檢測還未得到充 分的研究。目前,即使是最好的目標檢測算法,在 無人機圖像上的平均精確率也難以達到40%(Cao 等,2021)。
**無人機視角下的目標檢測之所以難,其主要原 因在于無人機圖像存在尺度變化、疏密分布、目標 數量較多且小目標占比較高等問題,特別是無人機 高分辨率圖像高計算需求與現階段低功耗芯片有 限算力之間的矛盾難以平衡。**相對于地面視角拍攝 的自然圖像,無人機視角下的廣闊視場意味著更為 復雜的場景和更加多樣的目標,在提供更為豐富的 可視化信息的同時,也帶來了更多無用噪聲的干擾。特別是無人機視角下,圖像中的目標往往因遠端拍 攝、背景遮擋或光照影響等因素檢測難度較大,需 要使用高分辨率圖像提供更多的信息以達到較好 的檢測效果。這極大地增加了目標檢測算法的計算 開銷與內存需求,特別是直接使用未經過特殊設計 的通用目標檢測算法將帶來難以承受的計算開銷 與內存需求,進一步加劇了目標檢測的難度。在實 際應用場景中,往往面臨著類似于識別車輛種類這 種細粒度分類的問題,這些相似目標給模型正確識 別目標帶來了巨大的挑戰。此外,受限于現實世界 中的目標數量,無人機視角下某些類別的樣本數量 往往極為有限,這種數據不均衡的狀況也對模型的 學習能力提出了更高的要求。因此,緊密地結合智能目標檢測技術,針對無 人機圖像的特性設計行之有效的方法,促使模型學 習理解無人機視角下的視覺數據,對于無人機在實 際場景中充分發揮其效用是至關重要的。無人機視 角下的目標檢測在應用廣泛的同時面臨著諸多挑 戰,具有深刻的現實意義與重要的研究意義。對無 人機視角下的目標檢測展開研究將有助于推動目 標檢測領域的進一步發展,增強目標檢測在面對真 實場景時的應用能力。
目標檢測作為計算機視覺領域的基礎研究,已 有學者對此進行研究與總結,并發表許多優秀的綜 述。Zou等人(2019)梳理了400多篇關于目標檢測 技術發展的論文,系統而全面地展現了目標檢測領 域。Oksuz等人(2020)則從目標檢測中存在的類別 不平衡、尺度不平衡、空間不平衡以及優化目標不 平衡等四大不平衡問題出發,對現有的目標檢測算 法進行了深入的總結。Chen等人(2020)則從小目 標四大基礎方法的角度出發,總結并分析了小目標 檢測的相關優化思路。曹家樂等人(2022)回顧并 總結了基于單目相機的視覺目標檢測方法,并對比 介紹了單目目標檢測和雙目目標檢測的國內外研 究進展情況。然而,以上綜述對于無人機視角下目 標檢測的關注不夠,未能系統地梳理無人機視角下 的目標檢測方法和面臨的挑戰。 **聚焦到無人機視角下的目標檢測,Mittal等人 (2020)關注低空無人機數據集,評估并總結了當 前流行的目標檢測算法,但是局限于簡單的性能對 比,沒有深入的總結分析。**Sambolek等人(2020) 介紹了在搜索和救援行動中使用無人機的可能性, 并提供了在無人機圖像中檢測相關人員的方法概 述。Srivastava等人(2021)則關注無人機圖像的車 輛檢測,從提高精度和減少計算開銷兩個方面回顧 了這些工作。Bouguettaya等人(2021)則關注于無 人機視角下的車輛檢測應用,總結并介紹了多種網 絡結構對于改善車輛檢測的貢獻。江波等人(2021) 對常見的航空影像數據集進行了梳理,并對近期的 無人機目標檢測研究進行了歸納和分析。楊浩然等 人(2022a)則對目標檢測相關算法進行了簡單的優 缺點分析。然而,這些綜述對于無人機視角下面臨 的挑戰總結不夠系統,算法方面的趨勢總結較為薄 弱,而且對于目標檢測算法的實際應用闡述也較少。
與以往關注通用領域的目標檢測綜述或僅關 注于無人機相關的特定應用場景下的綜述不同,**本 文著重于對無人機視角下的目標檢測這一意義重大且極具挑戰性的研究領域進行系統且深入的分 析與總結。**本文首先簡要闡述無人機視角下目標檢 測的重要研究意義,然后將對無人機視角下目標檢 測領域中存在的挑戰進行系統的歸納和總結,隨之 將介紹并分析無人機視角下的目標檢測優化思路, 包括數據增強、多尺度特征融合、區域聚焦策略、 多任務學習、模型輕量化以及其他優化策略等。本 文將特別展示無人機視角下目標檢測算法的應用, 闡明該研究的實際意義。此外,本文將介紹無人機 視角下適用于檢測任務的相關數據集,并在常用的 數據集上分析對比現有算法的檢測性能。最后,對 本文內容進行簡要的總結,并討論無人機視角下的 目標檢測未來可能的研究方向和發展趨勢。