亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: CURL: Contrastive Unsupervised Representations for Reinforcement Learning

摘要:

我們提出了CURL:用于強化學習的對比無監督表示法。CURL使用對比學習從原始像素中提取高級特征,并在提取的特征之上執行off-policy控制。在DeepMind控制套件和Atari游戲中,在100K交互步驟基準測試中,CURL在復雜任務上的表現優于先前基于模型和非模型的基于像素的方法,分別提高了2.8倍和1.6倍的性能。在DeepMind控制套件中,CURL是第一個基于圖像的算法,它的效率和性能幾乎與使用基于狀態的特性的方法不相上下。

付費5元查看完整內容

相關內容

強化學習(RL)是機器學習的一個領域,與軟件代理應如何在環境中采取行動以最大化累積獎勵的概念有關。除了監督學習和非監督學習外,強化學習是三種基本的機器學習范式之一。 強化學習與監督學習的不同之處在于,不需要呈現帶標簽的輸入/輸出對,也不需要顯式糾正次優動作。相反,重點是在探索(未知領域)和利用(當前知識)之間找到平衡。 該環境通常以馬爾可夫決策過程(MDP)的形式陳述,因為針對這種情況的許多強化學習算法都使用動態編程技術。經典動態規劃方法和強化學習算法之間的主要區別在于,后者不假設MDP的確切數學模型,并且針對無法采用精確方法的大型MDP。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

論文標題:CURL: Contrastive Unsupervised Representations for ReinforcementLearning(CURL:用于強化學習的對比無監督表示)

論文來源:ICML 2020 論文下載://www.zhuanzhi.ai/paper/6fb5994c1f98b326b45fb83ce319f0b9

代碼鏈接:

摘要:

我們提出CURL:用于強化學習的對比無監督表示法。CURL使用表示學習從原始像素中提取高級特征,并在提取的特征上執行off-policy控制。在DeepMind控制套件和Atari游戲中,CURL在復雜任務中的表現優于之前基于像素的方法,無論是基于模型的還是無模型的,在100K環境和交互步驟的基準測試中,分別獲得1.9倍和1.6倍的性能提升。在DeepMind控制套件中,CURL是第一個與使用基于狀態特征的方法的采樣效率和性能接近的基于圖像的算法。

付費5元查看完整內容

We present CURL: Contrastive Unsupervised Representations for Reinforcement Learning. CURL extracts high-level features from raw pixels using contrastive learning and performs off-policy control on top of the extracted features. CURL outperforms prior pixel-based methods, both model-based and model-free, on complex tasks in the DeepMind Control Suite and Atari Games showing 1.9x and 1.6x performance gains at the 100K environment and interaction steps benchmarks respectively. On the DeepMind Control Suite, CURL is the first image-based algorithm to nearly match the sample-efficiency and performance of methods that use state-based features.

交叉熵是圖像分類模型監督訓練中應用最廣泛的損失函數。在這篇論文中,我們提出了一種新的訓練方法,在不同架構和數據擴充的監督學習任務中,它的表現始終優于交叉熵。我們修改了批量對比損失,這是最近被證明在自監督學習強大表示是非常有效的。我們能夠比交叉熵更有效地利用標簽信息。在嵌入空間中,將同一類的點聚在一起,同時將不同類的樣本聚在一起。除此之外,我們還利用了關鍵的成分,如大批量和標準化嵌入,這些已經被證明有利于自監督學習。在ResNet-50和ResNet-200上,我們的交叉熵性能都超過了1%,在使用自動增廣數據增強的方法中,我們設置了78.8%的最新水平。這一損失也清楚地表明,在校準和準確性方面,對標準基準的自然損壞具有魯棒性。與交叉熵相比,我們的監督對比損失更穩定的超參數設置,如優化或數據擴充。

付費5元查看完整內容

題目

跨語言表示學習,Unsupervised Cross-lingual Representation Learning at Scale

關鍵詞

自然語言處理,表示學習,跨語言,人工智能

簡介

本文表明,針對多種跨語言轉換任務,大規模地對多語言語言模型進行預訓練可以顯著提高性能。 我們使用超過2 TB的經過過濾的CommonCrawl數據在一百種語言上訓練了基于Transformer的屏蔽語言模型。 我們的模型稱為XLM-R,在各種跨語言基準測試中,其性能明顯優于多語言BERT(mBERT),包括XNLI的平均精度為+ 13.8%,MLQA的平均F1得分為+ 12.3%,NER的平均F1得分為+ 2.1%。 XLM-R在低資源語言上表現特別出色,與以前的XLM模型相比,斯瓦希里語的XNLI準確性提高了11.8%,烏爾都語的準確性提高了9.2%。 我們還對獲得這些收益所需的關鍵因素進行了詳細的實證評估,包括(1)積極轉移和能力稀釋以及(2)大規模資源資源的高低性能之間的權衡。 最后,我們首次展示了在不犧牲每種語言性能的情況下進行多語言建模的可能性。 XLM-R在GLUE和XNLI基準測試中具有強大的單語言模型,因此非常具有競爭力。 我們將公開提供XLM-R代碼,數據和模型。

作者

Alexis Conneau, Kartikay Khandelwal等。

付費5元查看完整內容

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

NeurIPS 2019(Neural Information Processing Systems)將在12月8日-14日在加拿大溫哥華舉行。NeurIPS 是全球最受矚目的AI、機器學習頂級學術會議之一,每年全球的人工智能愛好者和科學家都會在這里聚集,發布最新研究。今天小編整理了表示學習相關論文。

  1. Self-attention with Functional Time Representation Learning

作者: Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan

摘要:在自然語言處理中,具有self-attention的序列模型已經取得了很好的效果。self-attention具有模型靈活性、計算復雜性和可解釋性等優點,正逐漸成為事件序列模型的重要組成部分。然而,像大多數其他的序列模型一樣,自我注意并不能解釋事件之間的時間跨度,因此它捕捉的是序列信號而不是時間模式。在不依賴遞歸網絡結構的情況下,self-attention通過位置編碼來識別事件的順序。為了彌補時間無關和時間相關事件序列建模之間的差距,我們引入了一個嵌入時間跨度到高維空間的功能特征映射。通過構造相關的平移不變時間核函數,揭示了經典函數函數分析結果下特征圖的函數形式,即Bochner定理和Mercer定理。我們提出了幾個模型來學習函數性時間表示以及與事件表示的交互。這些方法是在各種連續時間事件序列預測任務下對真實數據集進行評估的。實驗結果表明,所提出的方法與基線模型相比,具有更好的性能,同時也能捕獲有用的時間-事件交互。
論文鏈接:
//papers.nips.cc/paper/9720-self-attention-with-functional-time-representation-learning

  1. Large Scale Adversarial Representation Learning

作者:Jeff Donahue, Karen Simonyan

摘要:對抗訓練生成模型(GANs)最近取得了引人注目的圖像合成結果。GANs在無監督的表現學習中盡管在早期取得了的成功,但是它們已經被基于自監督的方法所取代。在這項工作中,我們證明了圖像生成質量的進步轉化為極大地改進了表示學習性能。我們的方法BigBiGAN建立在最先進的BigGAN模型之上,通過添加編碼器和修改鑒別器將其擴展到表示學習。我們廣泛地評估了這些BigBiGAN模型的表示學習和生成能力,證明了這些基于生成的模型在ImageNet的無監督表示學習方面達到了最新的水平,并在無條件生成圖像方面取得了令人信服的結果。

論文鏈接:

  1. Rethinking Kernel Methods for Node Representation Learning on Graphs

作者:Yu Tian, Long Zhao, Xi Peng, Dimitris Metaxas

摘要:圖核是度量圖相似性的核心方法,是圖分類的標準工具。然而,作為與圖表示學習相關的一個問題,使用核方法進行節點分類仍然是不適定的,目前最先進的方法大多基于啟發式。在這里,我們提出了一個新的基于核的節點分類理論框架,它可以彌補這兩個圖上表示學習問題之間的差距。我們的方法是由圖核方法驅動的,但是擴展到學習捕獲圖中結構信息的節點表示。我們從理論上證明了我們的公式與任何半正定核一樣強大。為了有效地學習內核,我們提出了一種新的節點特征聚合機制和在訓練階段使用的數據驅動的相似度度量。更重要的是,我們的框架是靈活的,并補充了其他基于圖形的深度學習模型,如圖卷積網絡(GCNs)。我們在一些標準節點分類基準上對我們的方法進行了經驗評估,并證明我們的模型設置了最新的技術狀態。
論文鏈接:

  1. Continual Unsupervised Representation Learning

作者:Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, Raia Hadsell

摘要:持續學習旨在提高現代學習系統處理非平穩分布的能力,通常是通過嘗試按順序學習一系列任務。該領域的現有技術主要考慮監督或強化學習任務,并經常假設對任務標簽和邊界有充分的認識。在這項工作中,我們提出了一種方法(CURL)來處理一個更普遍的問題,我們稱之為無監督連續學習。重點是在不了解任務身份的情況下學習表示,我們將探索任務之間的突然變化、從一個任務到另一個任務的平穩過渡,甚至是數據重組時的場景。提出的方法直接在模型中執行任務推斷,能夠在其生命周期內動態擴展以捕獲新概念,并結合其他基于排練的技術來處理災難性遺忘。我們用MNIST和Omniglot演示了CURL在無監督學習環境中的有效性,在這種環境中,沒有標簽可以確保沒有關于任務的信息泄露。此外,與現有技術相比,我們在i.i.中表現出了較強的性能。在i.i.d的設置下,或將該技術應用于監督任務(如漸進式課堂學習)時。 論文鏈接:

  1. Unsupervised Scalable Representation Learning for Multivariate Time Series

作者: Jean-Yves Franceschi, Aymeric Dieuleveut, Martin Jaggi

摘要:由于時間序列在實際應用中具有高度可變的長度和稀疏標記,因此對機器學習算法而言,時間序列是一種具有挑戰性的數據類型。在本文中,我們提出了一種學習時間序列通用嵌入的無監督方法來解決這一問題。與以前的工作不同,它的長度是可伸縮的,我們通過深入實驗和比較來展示學習表示的質量、可移植性和實用性。為此,我們將基于因果擴張卷積的編碼器與基于時間負采樣的新三重態損耗相結合,獲得了可變長度和多元時間序列的通用表示。
論文鏈接:

  1. A Refined Margin Distribution Analysis for Forest Representation Learning

作者:Shen-Huan Lyu, Liang Yang, Zhi-Hua Zhou

摘要:在本文中,我們將森林表示學習方法casForest作為一個加法模型,并證明當與邊際標準差相對于邊際均值的邊際比率足夠小時,泛化誤差可以以O(ln m/m)為界。這激勵我們優化比例。為此,我們設計了一種邊際分布的權重調整方法,使深林模型的邊際比較小。實驗驗證了邊緣分布與泛化性能之間的關系。我們注意到,本研究從邊緣理論的角度對casForest提供了一個新的理解,并進一步指導了逐層的森林表示學習。

論文鏈接:

  1. Adversarial Fisher Vectors for Unsupervised Representation Learning

作者:Shuangfei Zhai, Walter Talbott, Carlos Guestrin, Joshua Susskind

摘要:我們通過基于深度能量的模型(EBMs)來研究生成對抗網絡(GANs),目的是利用從這個公式推導出的密度模型。與傳統的鑒別器在達到收斂時學習一個常數函數的觀點不同,這里我們證明了它可以為后續的任務提供有用的信息,例如分類的特征提取。具體來說,在EBM公式中,鑒別器學習一個非歸一化密度函數(即,負能量項),它描述了數據流形。我們建議通過從EBM中獲得相應的Fisher分數和Fisher信息來評估生成器和鑒別器。我們證明了通過假設生成的示例形成了對學習密度的估計,費雪信息和歸一化費雪向量都很容易計算。我們還證明了我們能夠推導出例子之間和例子集之間的距離度量。我們進行的實驗表明,在分類和感知相似性任務中,甘氏神經網絡誘導的費雪向量作為無監督特征提取器表現出了競爭力。代碼地址:
論文鏈接:

  1. vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

作者:Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang

摘要:本文重點研究了圖數據分析的兩個基本任務:社區檢測和節點表示學習,它們分別捕獲圖數據的全局結構和局部結構。在現有的文獻中,這兩個任務通常是獨立研究的,但實際上是高度相關的。提出了一種協作學習社區成員和節點表示的概率生成模型vGraph。具體地說,我們假設每個節點都可以表示為群落的混合,并且每個群落都定義為節點上的多項分布。混合系數和群落分布均由節點和群落的低維表示參數化。我們設計了一種有效的變分推理算法,通過反向傳播進行優化,使相鄰節點的社區成員關系在潛在空間中相似。在多個真實圖上的實驗結果表明,vGraph在社區檢測和節點表示學習兩方面都非常有效,在兩方面都優于許多有競爭力的基線。結果表明,該vGraph框架具有良好的靈活性,可以方便地擴展到層次社區的檢測。
論文鏈接:

付費5元查看完整內容

論文題目: A Divergence Minimization Perspective on Imitation Learning Methods

論文摘要: 在許多情況下,希望通過專家演示的學習或引導來學習決策和控制策略。這種模仿學習(IL)框架下最常見的方法是行為克隆(BC)和逆強化學習(IRL)。IRL的最新方法已經證明了可以通過訪問非常有限的一組演示來學習有效策略的能力,一種情況BC方法經常失敗。不幸的是,由于變化的多種因素,直接比較這些方法并不能提供足夠的直覺來理解這種性能差異。在這項工作中,我們提出了基于散度最小化的IL算法的統一概率觀點。我們提出了f-MAX,這是AIRL的一種泛化概括,它是一種最新的IRL方法。 f-MAX使我們能夠關聯以前的IRL方法,例如GAIL和AIRL,并了解它們的算法特性。通過散度最小化的鏡頭,我們可以找出BC和成功的IRL方法之間的差異,并在模擬的高維連續控制域上經驗地評估這些細微差別。我們的發現最終確定了IRL的州際匹配目標是其卓越績效的最大貢獻。最后,我們將對IL方法的新理解應用于狀態-邊際匹配的問題,其中我們證明了在模擬推臂環境中,我們可以使用簡單的手動指定狀態分布來教給代理各種行為,而無需獎勵函數或專家。

論文作者: Richard Zemel ,Vector人工智能研究所的聯合創始人兼研究總監,多倫多大學機器學習工業研究主席,加拿大高級研究所高級研究員,研究興趣包括:圖像和文本的生成模型,基于圖的機器學習,少量數據學習,詞典,單詞列表和公平性。

github鏈接: //github.com/KamyarGh/rl_swiss/blob/master/reproducing/fmax_paper.md

付費5元查看完整內容

While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universal unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.

Meta-learning is a powerful tool that builds on multi-task learning to learn how to quickly adapt a model to new tasks. In the context of reinforcement learning, meta-learning algorithms can acquire reinforcement learning procedures to solve new problems more efficiently by meta-learning prior tasks. The performance of meta-learning algorithms critically depends on the tasks available for meta-training: in the same way that supervised learning algorithms generalize best to test points drawn from the same distribution as the training points, meta-learning methods generalize best to tasks from the same distribution as the meta-training tasks. In effect, meta-reinforcement learning offloads the design burden from algorithm design to task design. If we can automate the process of task design as well, we can devise a meta-learning algorithm that is truly automated. In this work, we take a step in this direction, proposing a family of unsupervised meta-learning algorithms for reinforcement learning. We describe a general recipe for unsupervised meta-reinforcement learning, and describe an effective instantiation of this approach based on a recently proposed unsupervised exploration technique and model-agnostic meta-learning. We also discuss practical and conceptual considerations for developing unsupervised meta-learning methods. Our experimental results demonstrate that unsupervised meta-reinforcement learning effectively acquires accelerated reinforcement learning procedures without the need for manual task design, significantly exceeds the performance of learning from scratch, and even matches performance of meta-learning methods that use hand-specified task distributions.

北京阿比特科技有限公司