亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

大多數大型在線推薦系統,如新聞推送排名、人員推薦、工作推薦等,通常都有多個實用工具或指標需要同時優化。經過訓練以優化單一效用的機器學習模型通過參數組合在一起,生成最終的排名函數。這些組合參數驅動業務指標。找到正確的參數選擇通常是通過在線A/B實驗,這是非常復雜和耗時的,特別是考慮到這些參數對指標的非線性影響。

在本教程中,我們將討論如何應用貝葉斯優化技術為這樣復雜的在線系統獲取參數,以平衡競爭性指標。首先,我們將深入介紹貝葉斯優化,包括一些基礎知識以及該領域的最新進展。其次,我們將討論如何將一個真實世界的推薦系統問題制定為一個可以通過貝葉斯優化解決的黑盒優化問題。我們將專注于一些關鍵問題,如新聞推送排名、人員推薦、工作推薦等。第三,我們將討論解決方案的架構,以及我們如何能夠為大規模系統部署它。最后,我們將討論該領域的擴展和一些未來的發展方向。

//sites.google.com/view/ijcai2020-linkedin-bayesopt/home

付費5元查看完整內容

相關內容

推薦系統,是指根據用戶的習慣、偏好或興趣,從不斷到來的大規模信息中識別滿足用戶興趣的信息的過程。推薦推薦任務中的信息往往稱為物品(Item)。根據具體應用背景的不同,這些物品可以是新聞、電影、音樂、廣告、商品等各種對象。推薦系統利用電子商務網站向客戶提供商品信息和建議,幫助用戶決定應該購買什么產品,模擬銷售人員幫助客戶完成購買過程。個性化推薦是根據用戶的興趣特點和購買行為,向用戶推薦用戶感興趣的信息和商品。隨著電子商務規模的不斷擴大,商品個數和種類快速增長,顧客需要花費大量的時間才能找到自己想買的商品。這種瀏覽大量無關的信息和產品過程無疑會使淹沒在信息過載問題中的消費者不斷流失。為了解決這些問題,個性化推薦系統應運而生。個性化推薦系統是建立在海量數據挖掘基礎上的一種高級商務智能平臺,以幫助電子商務網站為其顧客購物提供完全個性化的決策支持和信息服務。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

2021年第14屆國際網絡搜索與數據挖掘會議WSDM將在2021年3月8日到12日于線上舉行。今年此次會議共收到了603份有效投稿,最終錄取篇數為112篇,錄取率為18.6%。在WSDM上,有關于《偏見感知推薦系統的進展》教程值得關注!

排名和推薦系統在當今的網絡平臺上扮演著關鍵角色,肯定會影響到大量用戶的信息搜索行為。然而,這些系統是根據經常傳遞不平衡和不平等的數據進行訓練的,這些模式可能在系統提供給最終用戶的結果中被捕捉和強調,從而產生偏見,提供不公平的結果。鑒于偏見信息尋求成為一個威脅,

(1) 研究跨學科概念和問題空間,

(2) 制定和設計一個bias-aware算法管道,和

(3)和減輕落地的偏見的影響,同時保留底層系統的有效性,正在迅速成為熱門的研究熱點。

本教程是圍繞這個主題組織的,向WSDM社區介紹了在評估和緩解推薦系統中的數據和算法偏差方面的最新進展。我們將首先介紹概念基礎,通過調研當前的技術狀態和描述真實世界的例子,從幾個角度(例如,倫理和系統的目標)偏見如何影響推薦算法。

本教程將繼續系統地介紹算法解決方案,以便在推薦設計過程中發現、評估和減少偏見。然后,一個實用的部分將向與會者提供處理前、處理中和處理后消除偏見算法的具體實現,利用開源工具和公共數據集。在本部分中,教程參與者將參與偏倚對策的設計,并闡明對利益相關者的影響。最后,我們將分析這個充滿活力和迅速發展的研究領域中出現的開放問題和未來的方向,從而結束本教程。

//biasinrecsys.github.io/wsdm2021/

付費5元查看完整內容

人工智能的一個基本任務是學習。深度神經網絡已經被證明可以完美地處理所有的學習范式,即有監督學習、無監督學習和強化學習。然而,傳統的深度學習方法利用云計算設施,不能很好地擴展到計算資源低的自治代理。即使在云計算中,它們也受到計算和內存的限制,不能用來為假設有數十億神經元的網絡的代理建立適當的大型物理世界模型。這些問題在過去幾年中通過可擴展深度學習的新興主題得到了解決,該主題在訓練之前和整個過程中利用了神經網絡中的靜態和自適應稀疏連接。本教程將分兩部分介紹這些研究方向,重點是理論進展、實際應用和實踐經驗。

//sites.google.com/view/ijcai2020-sparse-training/home

付費5元查看完整內容

神經架構搜索(NAS)是一個很有前途的領域。首先,我將討論圍繞NAS建立科學社區的各種工作,包括基準測試、最佳實踐和開放源碼框架。然后,我將討論該領域幾個令人興奮的方向:(1)廣泛的NAS加速技術;(2)在Auto-PyTorch中結合NAS +超參數優化,實現現成的AutoML;(3)神經集成搜索(NES)的擴展問題定義,它搜索一組互補的架構,而不是像NAS中搜索的單一架構。

付費5元查看完整內容

Google 研究科學家Mathieu Blondel在PSL大學的“機器學習的對偶性”課程材料。主題包括共軛函數,平滑技術,Fenchel對偶性,Fenchel-Young損失和塊對偶坐標上升算法。

//mblondel.org/teaching/duality-2020.pdf

付費5元查看完整內容

第14屆推薦系統頂級會議ACM RecSys在9月22日到26日在線舉行。來自意大利Polytechnic University of Turin做了關于對抗推薦系統的教程《Adversarial Learning for Recommendation: Applications for Security and Generative Tasks – Concept to Code》,186頁ppt,干貨內容,值得關注。

//recsys.acm.org/recsys20/tutorials/#content-tab-1-3-tab

對抗式機器學習(AML)是從識別計算機視覺任務中的漏洞(如圖像分類)開始,研究現代機器學習(ML)推薦系統中的安全問題的研究領域。

在本教程中,我們將全面概述AML技術在雙重分類中的應用:(i)用于攻擊/防御目的的AML,以及(ii)用于構建基于GAN的推薦模型的AML。此外,我們將把RS中的AML表示與兩個實際操作會話(分別針對前面的分類)集成在一起,以顯示AML應用程序的有效性,并在許多推薦任務中推進新的想法和進展。

本教程分為四個部分。首先,我們總結了目前最先進的推薦模型,包括深度學習模型,并定義了AML的基本原理。在此基礎上,我們提出了針對RSs的攻擊/防御策略的對抗性推薦框架和基于GAN實踐環節。最后,我們總結了這兩種應用的開放挑戰和可能的未來工作。

付費5元查看完整內容

異常檢測已經得到了廣泛的研究和應用。建立一個有效的異常檢測系統需要研究者和開發者從嘈雜的數據中學習復雜的結構,識別動態異常模式,用有限的標簽檢測異常。與經典方法相比,近年來深度學習技術的進步極大地提高了異常檢測的性能,并將異常檢測擴展到廣泛的應用領域。本教程將幫助讀者全面理解各種應用領域中基于深度學習的異常檢測技術。首先,我們概述了異常檢測問題,介紹了在深度模型時代之前采用的方法,并列出了它們所面臨的挑戰。然后我們調查了最先進的深度學習模型,范圍從構建塊神經網絡結構,如MLP, CNN,和LSTM,到更復雜的結構,如自動編碼器,生成模型(VAE, GAN,基于流的模型),到深度單類檢測模型,等等。此外,我們舉例說明了遷移學習和強化學習等技術如何在異常檢測問題中改善標簽稀疏性問題,以及在實際中如何收集和充分利用用戶標簽。其次,我們討論來自LinkedIn內外的真實世界用例。本教程最后討論了未來的趨勢。

//sites.google.com/view/kdd2020deepeye/home

付費5元查看完整內容

隨著推薦任務的日益多樣化和推薦模型的日益復雜,開發出一套能夠很好地適應新的推薦任務的推薦系統變得越來越具有挑戰性。在本教程中,我們將重點討論自動機器學習(AutoML)技術如何有益于推薦系統的設計和使用。具體地說,我們將從一個完整的范圍開始描述什么是可以自動推薦系統。然后,我們將在此范圍內對特征工程、超參數優化/神經結構搜索和算法選擇三個重要的主題進行詳細闡述。將介紹、總結和討論這些主題下的核心問題和最近的工作。

付費5元查看完整內容

交互式信息檢索:模型、算法和評估

由于信息檢索(IR)通常是一個交互過程,因此研究交互式信息檢索(IIR)是很重要的,在IIR中,我們將嘗試建模和優化整個交互式檢索過程(而不是單個查詢),同時考慮用戶可能與搜索引擎交互的許多不同方式。本教程系統地回顧了IIR的研究進展,重點介紹了IIR的模型、算法和評估策略的最新進展。首先對IIR的研究進行了廣泛的概述,然后介紹了使用合作博弈框架進行IIR的形式化模型,并涵蓋了決策理論模型,如接口卡模型和IIR的概率排序原理。接下來,它提供了一個審查一些代表特定的信息檢索的技術和算法,如各種形式的反饋技術和多樣化的搜索結果,然后討論了應該如何評價一個信息檢索系統和多種策略提出最近使用模擬的用戶評價信息檢索。本教程最后簡要討論了IIR中的主要開放挑戰和一些最有前途的未來研究方向。

視頻地址:

//sigir-preview.baai.ac.cn/vod-0726/tut0008.mp4

付費5元查看完整內容

【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。這周會議已經召開。來自美國Linkedin、AWS等幾位學者共同給了關于在工業界中可解釋人工智能的報告,講述了XAI概念、方法以及面臨的挑戰和經驗教訓。

人工智能在我們的日常生活中扮演著越來越重要的角色。此外,隨著基于人工智能的解決方案在招聘、貸款、刑事司法、醫療和教育等領域的普及,人工智能對個人和職業的影響將是深遠的。人工智能模型在這些領域所起的主導作用已經導致人們越來越關注這些模型中的潛在偏見,以及對模型透明性和可解釋性的需求。此外,模型可解釋性是在需要可靠性和安全性的高風險領域(如醫療和自動化交通)以及具有重大經濟意義的關鍵工業應用(如預測維護、自然資源勘探和氣候變化建模)中建立信任和采用人工智能系統的先決條件。

因此,人工智能的研究人員和實踐者將他們的注意力集中在可解釋的人工智能上,以幫助他們更好地信任和理解大規模的模型。研究界面臨的挑戰包括 (i) 定義模型可解釋性,(ii) 為理解模型行為制定可解釋性任務,并為這些任務開發解決方案,最后 (iii)設計評估模型在可解釋性任務中的性能的措施。

在本教程中,我們將概述AI中的模型解譯性和可解釋性、關鍵規則/法律以及作為AI/ML系統的一部分提供可解釋性的技術/工具。然后,我們將關注可解釋性技術在工業中的應用,在此我們提出了有效使用可解釋性技術的實踐挑戰/指導方針,以及在幾個網絡規模的機器學習和數據挖掘應用中部署可解釋模型的經驗教訓。我們將介紹不同公司的案例研究,涉及的應用領域包括搜索和推薦系統、銷售、貸款和欺詐檢測。最后,根據我們在工業界的經驗,我們將確定數據挖掘/機器學習社區的開放問題和研究方向。

//sites.google.com/view/www20-explainable-ai-tutorial

付費5元查看完整內容
北京阿比特科技有限公司