亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著推薦任務的日益多樣化和推薦模型的日益復雜,開發出一套能夠很好地適應新的推薦任務的推薦系統變得越來越具有挑戰性。在本教程中,我們將重點討論自動機器學習(AutoML)技術如何有益于推薦系統的設計和使用。具體地說,我們將從一個完整的范圍開始描述什么是可以自動推薦系統。然后,我們將在此范圍內對特征工程、超參數優化/神經結構搜索和算法選擇三個重要的主題進行詳細闡述。將介紹、總結和討論這些主題下的核心問題和最近的工作。

付費5元查看完整內容

相關內容

推薦系統,是指根據用戶的習慣、偏好或興趣,從不斷到來的大規模信息中識別滿足用戶興趣的信息的過程。推薦推薦任務中的信息往往稱為物品(Item)。根據具體應用背景的不同,這些物品可以是新聞、電影、音樂、廣告、商品等各種對象。推薦系統利用電子商務網站向客戶提供商品信息和建議,幫助用戶決定應該購買什么產品,模擬銷售人員幫助客戶完成購買過程。個性化推薦是根據用戶的興趣特點和購買行為,向用戶推薦用戶感興趣的信息和商品。隨著電子商務規模的不斷擴大,商品個數和種類快速增長,顧客需要花費大量的時間才能找到自己想買的商品。這種瀏覽大量無關的信息和產品過程無疑會使淹沒在信息過載問題中的消費者不斷流失。為了解決這些問題,個性化推薦系統應運而生。個性化推薦系統是建立在海量數據挖掘基礎上的一種高級商務智能平臺,以幫助電子商務網站為其顧客購物提供完全個性化的決策支持和信息服務。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

第14屆推薦系統頂級會議ACM RecSys在9月22日到26日在線舉行。來自意大利Polytechnic University of Turin做了關于對抗推薦系統的教程《Adversarial Learning for Recommendation: Applications for Security and Generative Tasks – Concept to Code》,186頁ppt,干貨內容,值得關注。

//recsys.acm.org/recsys20/tutorials/#content-tab-1-3-tab

對抗式機器學習(AML)是從識別計算機視覺任務中的漏洞(如圖像分類)開始,研究現代機器學習(ML)推薦系統中的安全問題的研究領域。

在本教程中,我們將全面概述AML技術在雙重分類中的應用:(i)用于攻擊/防御目的的AML,以及(ii)用于構建基于GAN的推薦模型的AML。此外,我們將把RS中的AML表示與兩個實際操作會話(分別針對前面的分類)集成在一起,以顯示AML應用程序的有效性,并在許多推薦任務中推進新的想法和進展。

本教程分為四個部分。首先,我們總結了目前最先進的推薦模型,包括深度學習模型,并定義了AML的基本原理。在此基礎上,我們提出了針對RSs的攻擊/防御策略的對抗性推薦框架和基于GAN實踐環節。最后,我們總結了這兩種應用的開放挑戰和可能的未來工作。

付費5元查看完整內容

在當今的信息和計算社會中,復雜系統常常被建模為與異質結構關系、非結構化屬性/內容、時間上下文或它們的組合相關聯的多模態網絡。多模態網絡中豐富的信息要求在進行特征工程時既要有一個領域的理解,又要有一個大的探索性搜索空間,以建立針對不同目的的定制化智能解決方案。因此,在多模態網絡中,通過表示學習自動發現特征已成為許多應用的必要。在本教程中,我們系統地回顧了多模態網絡表示學習的領域,包括一系列最近的方法和應用。這些方法將分別從無監督、半監督和監督學習的角度進行分類和介紹,并分別給出相應的實際應用。最后,我們總結了本教程并進行了公開討論。本教程的作者是這一領域活躍且富有成效的研究人員。

//chuxuzhang.github.io/KDD20_Tutorial.html

  • Part 1: Introduction and Overview 導論與概述 (Nitesh Chawla) (1:00-1:10pm) [slide] [video]
  • Part 2: Supervised Methods and Applications 監督方法與應用 2-1: User and behavior modeling (Meng Jiang) (1:10-1- :50pm) [slide] [video] 2-2: Cybersecurity and health intelligence (Yanfang Ye) (1:50-2:20pm) [slide] [video] 2-3: Relation learning (Chuxu Zhang) (2:20-2:35pm) [slide] [video] Coffee Break (2:35-3:00pm)
  • Part 3: Semi-supervised Methods and Applications 半監督方法與應用 3-1: Attributed network embedding (Xiangliang Zhang) (3:00-3:25pm) [slide] [video] 3-2: Graph alignment (Xiangliang Zhang) (3:25-3:40pm) [slide] [video]
  • Part 4: Unsupervised Methods and Applications 無監督方法與應用 4-1: Heterogeneous graph representation learning (Chuxu Zhang) (3:40-4:00pm) [slide] [video] 4-2: Graph neural network for dynamic graph and unsupervised anomaly detection (Meng Jiang) (4:00-4:20pm) [slide] [video] Part 5: Conclusions (Chuxu Zhang) (4:20-5:00pm) [slide] [video] 結論
付費5元查看完整內容

題目: AutoML: A Survey of the State-of-the-Art

摘要:

深度學習(DL)技術已滲透到我們生活的方方面面,并為我們帶來了極大的便利。但是,針對特定任務構建高質量的DL系統高度依賴于人類的專業知識,這阻礙了DL在更多領域的應用。自動機器學習(AutoML)成為在無需人工協助的情況下構建DL系統的有前途的解決方案,并且越來越多的研究人員專注于AutoML。在本文中,對AutoML中的最新技術(SOTA)進行了全面而最新的回顧。首先,根據管道介紹AutoML方法,涵蓋數據準備,特征工程,超參數優化和神經體系結構搜索(NAS)。我們更加關注NAS,因為它是AutoML的非常熱門的子主題。然后總結了具有代表性的NAS算法在CIFAR-10和ImageNet數據集上的性能,并進一步討論了NAS方法的一些值得研究的方向:一階段/兩階段NAS,單次NAS以及聯合超參數和體系結構優化。最后,討論了現有AutoML方法的一些未解決的問題,以供將來研究。

付費5元查看完整內容

主題: Deep Learning on Knowledge Graph for Recommender System: A Survey

摘要: 最近的研究表明,知識圖譜(KG)在提供有價值的外部知識以改進推薦系統(RS)方面是有效的。知識圖譜能夠編碼連接兩個對象和一個或多個相關屬性的高階關系。借助于新興的GNN,可以從KG中提取對象特征和關系,這是成功推薦的一個重要因素。本文對基于GNN的知識感知深度推薦系統進行了綜述。具體來說,我們討論了最新的框架,重點是它們的核心組件,即圖嵌入模塊,以及它們如何解決實際的推薦問題,如可伸縮性、冷啟動等。我們進一步總結了常用的基準數據集、評估指標以及開源代碼。最后,我們對調查結果進行了總結,并提出了這一快速發展領域的潛在研究方向。

付費5元查看完整內容

題目: A Survey on Knowledge Graph-Based Recommender Systems

摘要:

為了解決信息爆炸問題,提高用戶在各種在線應用中的體驗,人們開發了推薦系統來模擬用戶的偏好。盡管人們已經為更個性化的推薦做了很多努力,但是推薦系統仍然面臨著一些挑戰,如數據稀疏和冷啟動。近年來,以知識圖為輔助信息的推薦生成引起了人們的極大興趣。這種方法不僅可以緩解上述問題,使推薦更加準確,而且可以為推薦項目提供解釋。本文對基于知識圖的推薦系統進行了系統的研究。我們收集了最近在這一領域發表的論文,并從兩個角度對其進行了總結。一方面,我們通過研究論文如何利用知識圖進行精確和可解釋的推薦來研究所提出的算法。另一方面,我們介紹了這些工作中使用的數據集。最后,提出了該領域的幾個潛在研究方向。

付費5元查看完整內容

【導讀】新加坡國立大學的Xiang Wang、Tat-Seng Chua,以及來自中國科學技術大學的Xiangnan He在WSDM 2020會議上通過教程《Learning and Reasoning on Graph for Recommendation》介紹了基于圖學習和推理的推薦系統,涵蓋了基于隨機游走的推薦系統、基于網絡嵌入的推薦系統,基于圖神經網絡的推薦系統等內容。

Tutorial摘要:

推薦方法構建預測模型來估計用戶-項目交互的可能性。之前的模型在很大程度上遵循了一種通用的監督學習范式——將每個交互視為一個單獨的數據實例,并基于“信息孤島”進行預測。但是,這些方法忽略了數據實例之間的關系,這可能導致性能不佳,特別是在稀疏場景中。此外,建立在單獨數據實例上的模型很難展示推薦背后的原因,這使得推薦過程難以理解。

在本教程中,我們將從圖學習的角度重新討論推薦問題。用于推薦的公共數據源可以組織成圖,例如用戶-項目交互(二部圖)、社交網絡、項目知識圖(異構圖)等。這種基于圖的組織將孤立的數據實例連接起來,為開發高階連接帶來了好處,這些連接為協作過濾、基于內容的過濾、社會影響建模和知識感知推理編碼有意義的模式。隨著最近圖形神經網絡(GNNs)的成功,基于圖形的模型顯示了成為下一代推薦系統技術的潛力。本教程對基于圖的推薦學習方法進行了回顧,重點介紹了GNNs的最新發展和先進的推薦知識。通過在教程中介紹這一新興而有前景的領域,我們希望觀眾能夠對空間有更深刻的理解和準確的洞察,激發更多的想法和討論,促進技術的發展。

Tutorial大綱:

付費5元查看完整內容

** 簡介:**

推薦方法構造了預測模型,以估計用戶與項目交互的可能性。先前的模型在很大程度上遵循一般的監督學習范式-將每個交互視為一個單獨的數據實例,并基于“信息孤島”進行預測。但是,此類方法忽略了數據實例之間的關系,這可能導致性能欠佳,尤其是對于稀疏場景。此外,建立在單獨數據實例上的模型幾乎無法顯示出推薦背后的原因,從而使過程難以理解。

在本教程中,我們將從圖學習的角度重新審視推薦問題。可以將用于推薦的通用數據源組織成圖形,例如用戶-項目交互(二分圖),社交網絡,項目知識圖(異構圖)等。這種基于圖的組織將孤立的數據實例連接起來,從而為利用高階連通性帶來了好處,這些高階連通性對有意義的模式進行了編碼,以進行協作過濾,基于內容的過濾,社會影響力建模和知識感知推理。結合圖神經網絡(GNN)的最新成功,基于圖的模型已展現出成為下一代推薦系統技術的潛力。本教程對基于圖的學??習方法進行了回顧,以提出建議,特別關注GNN的最新發展和知識圖譜增強的建議。通過在本教程中介紹這個新興而有前途的領域,我們希望觀眾可以對空間有深入的了解和準確的見解,激發更多的想法和討論,并促進技術的發展。

目錄:

作者簡介:

王翔是新加坡國立大學(NUS)計算機學院的研究員。 他獲得了博士學位。 他于2019年獲得國大計算機科學博士學位。他的研究興趣包括推薦系統,信息檢索和數據挖掘。 在SIGIR,KDD,WWW和AAAI等頂級會議上,他擁有20多種出版物,包括TOIS和TKDE等期刊。 他曾擔任CCIS 2019的本地主席,包括SIGIR,CIKM和MM在內的頂級會議的PC成員以及TKDE和TOIS等著名期刊的定期審稿人。

付費5元查看完整內容

In this proposal we present the idea of a "macro recommender system", and "micro recommender system". Both systems can be considered as a recommender system for recommendation algorithms. A macro recommender system recommends the best performing recommendation algorithm to an organization that wants to build a recommender system. This way, an organization does not need to test many algorithms over long periods to find the best one for their particular platform. A micro recommender system recommends the best performing recommendation algorithm for each individual recommendation request. This proposal is based on the premise that there is no single-best algorithm for all users, items, and contexts. For instance, a micro recommender system might recommend one algorithm when recommendations for an elderly male user in the evening should be created. When recommendations for a young female user in the morning should be given, the micro recommender system might recommend a different algorithm.

北京阿比特科技有限公司