亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

推薦系統通常從用戶項目偏好數據(如評級和點擊)中學習。這種信息在本質上是稀疏的,即,觀察到的用戶-項目偏好通常只代表可能的交互的不到5%。緩解數據稀疏性的一個有希望的方向是利用輔助信息,這些輔助信息可能編碼關于用戶如何消費商品的額外線索。這類數據(稱為模態)的例子包括社交網絡、商品的描述性文本、產品圖片。本教程的目的是全面回顧最近的進展,以表示、轉換和合并不同的模態到推薦模型中。此外,通過實際操作,我們考慮跨模態比較,以調研不同方法和模態的重要性。實際操作將通過Cornac (//cornac.preferred.ai)進行,這是一個多模態推薦系統的比較框架。

本教程的結構如下。在概述了偏好模型的重要家族之后,我們將討論如何將多模態推薦系統與代表特定模態的模型(用戶-項目偏好之外的輔助數據)結合起來設計。隨后,我們深入研究三個主要的感興趣的模態,即:文本、圖像和圖形,同時識別在每個模態下的相關算法。接下來是對跨模態使用的調研,包括應該依賴哪個模態,為一種模態設計的模型是否可以與另一種模態工作,以及為給定模態使用哪個模型。

本教程適用于尋求應用經驗的實踐者,以及對多模態推薦系統近期和未來研究方向感興趣的研究人員。要求具備Python和機器學習的基本知識。雖然熟悉推薦系統是加分項,但不是必須的。請帶上你自己的筆記本電腦。

目錄內容:

推薦系統概述 Brief overview of recommender systems (20 minutes) 多模態推薦系統導論 Introduction to multimodal recommender systems (20 minutes) Hands-on: Starting with the Cornac framework (10 minutes) 模態探究 Exploration into each modality (90 minutes):

  • Text modality
  • Image modality
  • Network modality

跨模態利用 Cross-modal utilization (30 minutes) Future directions (10 minutes)

付費5元查看完整內容

相關內容

社交網絡和分子圖等結構化的圖形數據在現實世界中隨處可見。設計先進的圖結構數據表示學習算法,促進下游任務的完成,具有重要的研究意義。圖神經網絡(GNNs)將深度神經網絡模型推廣到圖結構數據,為從節點級或圖級有效學習圖結構數據表示開辟了一條新途徑。由于其強大的表示學習能力,GNN在從推薦、自然語言處理到醫療保健等各種應用中獲得了實際意義。近年來,它已成為一個熱門的研究課題,越來越受到機器學習和數據挖掘界的關注。本教程涵蓋了相關和有趣的主題,包括使用GNNs在圖結構數據上的表示學習、GNNs的魯棒性、GNNs的可擴展性和基于GNNs的應用程序。

目錄內容:

  • 引言 Introduction
  • 基礎 Foundations
  • 模型 Models
  • 應用 Applications

//cse.msu.edu/~wangy206/tutorials/sdm2021/

付費5元查看完整內容

強化學習(RL)使智能體能夠通過動態環境中的交互學習最佳決策。深度學習和強化學習的最新進展使得智能體在各個領域都取得了前所未有的成功,并在許多任務中取得了超人的表現。RL和深度學習影響了當今學術界和工業的幾乎所有領域,將它們應用于信息檢索(IR)的興趣越來越大。像谷歌和阿里巴巴這樣的公司已經開始使用基于強化學習的搜索和推薦引擎來個性化他們的服務,并在他們的生態系統中增強用戶體驗。

目前學習RL的在線資源要么專注于理論,犧牲了實踐,要么局限于實踐,缺乏足夠的直覺和理論背景。這個全天的教程是為信息檢索研究人員和實踐者精心定制的,以獲得最流行的RL方法的理論知識和實踐經驗,使用PyTorch和Python Jupyter 筆記本谷歌Colab。我們的目的是讓參加者具備RL的應用知識,幫助他們更好地了解有關RL的最新IR出版物,并使他們能夠使用RL解決自己的IR問題。

我們的教程不需要任何關于該主題的知識,并從基本概念和算法開始,如馬爾科夫決策過程,探索與利用,Q-學習,決策梯度和Actor-Critic算法。我們特別關注強化學習和深度學習的結合,使用深度Q-Network (DQN)等算法。最后,我們描述了如何利用這些技術來解決代表性的IR問題,如“學習排序”,并討論了最近的發展以及對未來研究的展望。

目錄內容: RL Basics and Tabular Q-Learning Deep Q-Network (DQN) 1/2 (presentation) Deep Q-Network (DQN) 2/2 (hands-on) IR Applications using DQN Policy Gradient (REINFORCE) IR Applications using REINFORCE Actor Critic Outlook

付費5元查看完整內容

現代推薦系統(RS)使用各種機器學習(ML)模型為用戶提供個性化推薦。盡管ML模型在推薦方面取得了巨大的成功,但對于競爭對手來說,它們往往不夠強大,后者可能會采取措施將推薦轉化為惡意結果。在2000年至2015年期間,人工設計的假檔案(又稱先令攻擊)的注入是研究的重點,過去幾年的特點是對抗機器學習(AML)技術的崛起,即基于機器學習的方法來攻擊和防御RS。

在本教程中,我們將概述RS中的AML應用,特別是,我們將介紹RS中的AML使用的雙重分類:一種基于對抗性攻擊和防御研究的分類,針對模型參數、內容數據或用戶元素交互; 二是利用生成對抗網絡(GAN)提出新的推薦模型。

//www.ecir2021.eu/tutorials/

目錄內容:

引言 對抗機器學習 生成式對抗網絡 對抗學習推薦系統

付費5元查看完整內容

2021年第14屆國際網絡搜索與數據挖掘會議WSDM將在2021年3月8日到12日于線上舉行。今年此次會議共收到了603份有效投稿,最終錄取篇數為112篇,錄取率為18.6%。在WSDM上,有關于《偏見感知推薦系統的進展》教程值得關注!

排名和推薦系統在當今的網絡平臺上扮演著關鍵角色,肯定會影響到大量用戶的信息搜索行為。然而,這些系統是根據經常傳遞不平衡和不平等的數據進行訓練的,這些模式可能在系統提供給最終用戶的結果中被捕捉和強調,從而產生偏見,提供不公平的結果。鑒于偏見信息尋求成為一個威脅,

(1) 研究跨學科概念和問題空間,

(2) 制定和設計一個bias-aware算法管道,和

(3)和減輕落地的偏見的影響,同時保留底層系統的有效性,正在迅速成為熱門的研究熱點。

本教程是圍繞這個主題組織的,向WSDM社區介紹了在評估和緩解推薦系統中的數據和算法偏差方面的最新進展。我們將首先介紹概念基礎,通過調研當前的技術狀態和描述真實世界的例子,從幾個角度(例如,倫理和系統的目標)偏見如何影響推薦算法。

本教程將繼續系統地介紹算法解決方案,以便在推薦設計過程中發現、評估和減少偏見。然后,一個實用的部分將向與會者提供處理前、處理中和處理后消除偏見算法的具體實現,利用開源工具和公共數據集。在本部分中,教程參與者將參與偏倚對策的設計,并闡明對利益相關者的影響。最后,我們將分析這個充滿活力和迅速發展的研究領域中出現的開放問題和未來的方向,從而結束本教程。

//biasinrecsys.github.io/wsdm2021/

付費5元查看完整內容

第14屆推薦系統頂級會議ACM RecSys在9月22日到26日在線舉行。來自意大利Polytechnic University of Turin做了關于對抗推薦系統的教程《Adversarial Learning for Recommendation: Applications for Security and Generative Tasks – Concept to Code》,186頁ppt,干貨內容,值得關注。

//recsys.acm.org/recsys20/tutorials/#content-tab-1-3-tab

對抗式機器學習(AML)是從識別計算機視覺任務中的漏洞(如圖像分類)開始,研究現代機器學習(ML)推薦系統中的安全問題的研究領域。

在本教程中,我們將全面概述AML技術在雙重分類中的應用:(i)用于攻擊/防御目的的AML,以及(ii)用于構建基于GAN的推薦模型的AML。此外,我們將把RS中的AML表示與兩個實際操作會話(分別針對前面的分類)集成在一起,以顯示AML應用程序的有效性,并在許多推薦任務中推進新的想法和進展。

本教程分為四個部分。首先,我們總結了目前最先進的推薦模型,包括深度學習模型,并定義了AML的基本原理。在此基礎上,我們提出了針對RSs的攻擊/防御策略的對抗性推薦框架和基于GAN實踐環節。最后,我們總結了這兩種應用的開放挑戰和可能的未來工作。

付費5元查看完整內容

在當今的信息和計算社會中,復雜系統常常被建模為與異質結構關系、非結構化屬性/內容、時間上下文或它們的組合相關聯的多模態網絡。多模態網絡中豐富的信息要求在進行特征工程時既要有一個領域的理解,又要有一個大的探索性搜索空間,以建立針對不同目的的定制化智能解決方案。因此,在多模態網絡中,通過表示學習自動發現特征已成為許多應用的必要。在本教程中,我們系統地回顧了多模態網絡表示學習的領域,包括一系列最近的方法和應用。這些方法將分別從無監督、半監督和監督學習的角度進行分類和介紹,并分別給出相應的實際應用。最后,我們總結了本教程并進行了公開討論。本教程的作者是這一領域活躍且富有成效的研究人員。

//chuxuzhang.github.io/KDD20_Tutorial.html

  • Part 1: Introduction and Overview 導論與概述 (Nitesh Chawla) (1:00-1:10pm) [slide] [video]
  • Part 2: Supervised Methods and Applications 監督方法與應用 2-1: User and behavior modeling (Meng Jiang) (1:10-1- :50pm) [slide] [video] 2-2: Cybersecurity and health intelligence (Yanfang Ye) (1:50-2:20pm) [slide] [video] 2-3: Relation learning (Chuxu Zhang) (2:20-2:35pm) [slide] [video] Coffee Break (2:35-3:00pm)
  • Part 3: Semi-supervised Methods and Applications 半監督方法與應用 3-1: Attributed network embedding (Xiangliang Zhang) (3:00-3:25pm) [slide] [video] 3-2: Graph alignment (Xiangliang Zhang) (3:25-3:40pm) [slide] [video]
  • Part 4: Unsupervised Methods and Applications 無監督方法與應用 4-1: Heterogeneous graph representation learning (Chuxu Zhang) (3:40-4:00pm) [slide] [video] 4-2: Graph neural network for dynamic graph and unsupervised anomaly detection (Meng Jiang) (4:00-4:20pm) [slide] [video] Part 5: Conclusions (Chuxu Zhang) (4:20-5:00pm) [slide] [video] 結論
付費5元查看完整內容

論文題目: Adversarial Attacks and Defenses in Images, Graphs and Text: A Review

簡介: 深度神經網絡(DNN)在不同領域的大量機器學習任務中取得了前所未有的成功。然而,對抗性例子的存在引起了人們對將深度學習應用于對安全性有嚴苛要求的應用程序的關注。因此,人們對研究不同數據類型(如圖像數據、圖數據和文本數據)上的DNN模型的攻擊和防御機制越來越感興趣。近期,來自密歇根州立大學的老師和同學們,對網絡攻擊的主要威脅及其成功應對措施進行系統全面的綜述。特別的,他們在這篇綜述中,針對性的回顧了三種流行數據類型(即、圖像數據、圖數據和文本數據)。

付費5元查看完整內容
北京阿比特科技有限公司