亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

離線強化學習也稱為批量強化學習,是深度強化學習領域的一項重要研究內容。它利用行為策略生成靜態數據集,無需在線和環境交互,成功地將大規模數據轉換成強大的決策引擎。近年來,離線強化學習方法得到了廣泛關注和深入研究,并在實際應用中取得了矚目的成績。目前,該方法已經應用于推薦系統、導航駕駛、自然語言處理、機器人控制以及醫療與能源等應用領域,并被看作是現實世界應用強化學習最具潛力的技術途徑之一。該文首先介紹了離線強化學習的背景與理論基礎。隨后從決策思路出發,將離線強化學習方法分為無模型、基于模型和基于Transformer模型3大類,并對各類方法的研究現狀與發展趨勢進行分析。同時,對比了目前3個最流行的實驗環境D4RL、RL Unplugged和NeoRL,進而介紹了離線強化學習技術在現實世界諸多領域的應用。最后,對離線強化學習進行了總結與展望,以此推動更多領域的研究工作。 關鍵詞

人工智能;強化學習;深度強化學習;離線強化學習;批量強化學習

付費5元查看完整內容

相關內容

摘要——本綜述對機器學習中多模態對齊與融合的最新進展進行了全面回顧,尤其是在文本、圖像、音頻和視頻等數據類型日益多樣化的背景下。多模態集成通過利用不同模態之間的互補信息,提高了模型的準確性并擴展了其應用范圍,同時在數據稀缺的情況下也促進了知識遷移。我們系統地對現有的對齊與融合技術進行了分類和分析,并基于對200多篇相關論文的廣泛回顧,提取了有價值的見解。此外,本綜述還討論了多模態數據集成中的挑戰,包括對齊問題、噪聲魯棒性以及特征表示的差異,并著重于社交媒體分析、醫學影像和情感識別等領域的應用。文中提供的見解旨在指導未來的研究,優化多模態學習系統,以提高其在各類應用中的可擴展性、魯棒性和泛化能力。

關鍵詞——多模態對齊、 多模態融合、多模態性、機器學習、綜述

1 引言

技術的快速發展導致了多模態數據生成的指數增長,包括圖像、文本、音頻和視頻[1]。這種數據的豐富性為計算機視覺、自然語言處理(NLP)等多個領域的研究者和從業者帶來了機遇與挑戰。通過整合來自不同模態的信息,可以顯著提升機器學習模型的性能,增強其理解復雜現實場景的能力[2]。模態的結合通常有兩個主要目標:(i)不同的數據模態可以互補,從而提高模型在特定任務上的精度和效果[3],[4],[5];(ii)某些模態的數據可能較為稀缺或收集起來具有挑戰性,因此,基于大規模語言模型(LLM)的訓練可以通過知識遷移在數據稀缺的任務中實現滿意的性能[5],[6]。

例如,在社交媒體分析中,將文本內容與相關的圖像或視頻結合,可以更全面地理解用戶情感和行為[1],[7]。除了社交網絡,多模態方法在醫療圖像自動注釋、視頻摘要和情感識別等應用中也取得了有希望的成果[8],[9],[10],[11],[12]。盡管取得了這些進展,但在有效整合和利用多模態數據方面仍然存在兩個主要的技術挑戰:對齊和融合。對齊側重于建立不同模態之間的語義關系,確保每個模態的表示在一個共同的空間內對齊;而融合則是將多模態信息整合為統一的預測,利用每個模態的優勢來提升整體模型的性能。 第一個組件是多模態對齊,涉及建立不同模態之間的關系[1],[49],[50],[51]。例如,將視頻中的動作步驟與相應的文本描述進行對齊,由于輸入輸出分布的差異以及模態間可能存在的信息沖突,這一任務需要復雜的方法[52]。多模態對齊可大致分為顯式對齊和隱式對齊[1],[53]。顯式對齊通過相似度矩陣直接度量模態間的關系,而隱式對齊則在翻譯或預測等任務中作為一個中間步驟。

第二個組件是多模態融合,涉及將不同模態的信息結合起來,進行統一的預測,同時解決模態之間噪聲變異性和可靠性差異等挑戰[1],[54],[55]。傳統上,融合方法根據其在數據處理流程中的階段進行分類[53],[56]。例如,早期融合在特征提取階段將多個模態的數據整合在一起,盡早捕捉模態間的交互[56]。本綜述聚焦于當前融合技術的核心特征,以更有效地代表現代方法,并指導未來的發展。我們將融合方法分析為基于核、圖形、編碼-解碼器和注意力機制的融合框架。

圖1展示了三種典型的多模態模型結構。在(a)中,由于模態之間的交互不足,簡單的操作未能實現深入有效的融合。在(b)中,盡管設計了專門的融合網絡,但對齊問題仍然顯著。具體而言,由圖像和文本分別通過各自模態特定模型提取的特征可能在語義上沒有對齊,直接將這些特征傳遞給融合模塊可能無法產生最佳結果。在(c)中,模型使用共享編碼器或集成的編碼-解碼過程同時處理多模態輸入,這使得圖像和文本數據能夠轉化為共同的表示空間,從而更自然地結合。此類設計通常優先考慮模型的簡潔性和效率,特別是在模態間關系已被充分理解并有效建模的情況下。

本研究旨在通過對200多篇相關論文的回顧,提供現有方法、最新進展和潛在未來方向的全面概述,為該領域做出貢獻。本綜述幫助研究人員理解多模態對齊和融合的基本概念、關鍵方法及當前進展,重點討論視覺和語言模態,同時擴展到視頻和音頻等其他類型。

本綜述的組織結構如下:第二節介紹多模態學習的基礎概念,包括大規模語言模型(LLM)和視覺模型的最新進展,為對融合和對齊的討論奠定基礎;第三節探討為什么要進行對齊與融合的綜述研究;第四節審視對齊方法,重點討論顯式和隱式技術如何建立不同模態之間的關系;第五節探討融合策略,將其分為早期、晚期和混合融合,并介紹基于核、圖形和注意力機制的先進融合框架;第六節討論多模態融合和對齊中的關鍵挑戰,包括特征對齊、計算效率、數據質量和可擴展性;最后,第七節概述未來研究的潛在方向,并討論實踐意義,旨在指導該領域的進一步創新。

2 為什么需要對齊與融合

對齊與融合是多模態學習中的兩個基本概念,盡管它們各自獨立,但相互之間緊密相關,且常常相輔相成[1],[50]。對齊涉及確保不同模態的數據正確匹配和同步,從而使它們傳達的信息具有一致性,并適合進行融合。另一方面,融合是指將來自不同模態的信息結合起來,創建一個統一的表示,全面捕捉數據的本質[1],[54],[55]。此外,許多最新的方法發現,在沒有對齊過程的情況下進行融合是非常具有挑戰性的[49]。

2.1 提升全面性與魯棒性

對齊確保來自不同源的數據在時間、空間或上下文上同步,從而實現有意義的組合。如果沒有適當的對齊,融合過程可能導致誤解或關鍵信息的丟失[53]。 一旦對齊完成,融合利用對齊后的數據生成更為魯棒和全面的表示[49]。通過整合多個視角,融合能夠彌補單一模態的弱點,從而提高準確性和可靠性。 2.2 解決數據稀缺與不平衡問題

在許多現實應用中,某些模態的數據可能稀缺或難以獲取。對齊有助于即使在數據有限的情況下,也能同步可用的數據,確保其能夠有效利用[106],[107]。 隨后,融合使得模態之間能夠進行知識遷移,使模型能夠利用一種模態的優勢來彌補另一種模態的不足。這在某一模態擁有豐富數據而另一模態數據稀缺的場景中尤為有用。 2.3 改進模型的泛化能力和適應性

對齊確保了不同模態之間關系的準確理解與建模,這對于模型在不同上下文和應用中進行泛化至關重要[1],[53]。 融合通過創建一個統一的表示,能夠更有效地捕捉數據的細微差異,從而提高模型的適應性。這個統一的表示可以更容易地適應新的任務或環境,增強模型的整體靈活性[1],[53]。 2.4 支撐高級應用

對齊與融合共同推動了諸如跨模態檢索等高級應用的發展,在這些應用中,一種模態(例如,文本)中的信息被用于在另一種模態(例如,圖像)中搜索相關信息[108]。這些過程對于諸如情感識別等任務也至關重要,在這些任務中,將視覺和聽覺線索結合起來,能夠比單獨使用任何一種模態更準確地理解人類情感[109]。 3 多模態對齊

多模態對齊涉及建立兩種或更多不同模態之間的語義關系。它在多個領域得到了廣泛研究,包括網絡對齊[110]、圖像融合[50]和多模態學習中的特征對齊[111]。 為了將不同模態對齊到相同的語義表示中,需要衡量這些模態之間的相似性,同時考慮潛在的長程依賴關系和歧義。簡而言之,目標是構建一個映射,將一個模態的表示與另一個模態中共享相同語義的表示對齊。根據[1],對齊可以分為兩種類型:顯式對齊和隱式對齊。顯式對齊通常通過使用相似度矩陣直接度量相似性,而隱式對齊則通常是在翻譯或預測等任務中作為一個中間步驟進行處理。 3.1 顯式對齊

顯式對齊有著早期的基礎,通常依賴于諸如動態時間規整(DTW)[112],[113]和典型相關分析(CCA)[114]等統計方法。

DTW通過找到一個最優匹配來測量兩個序列之間的相似性,該過程涉及插入幀來對齊序列[112]。然而,原始的DTW公式需要預定義的相似性度量,因此它與典型相關分析(CCA)結合,后者由Harold Hotelling于1936年提出[114],通過線性變換將兩個不同的空間投影到一個共同的空間中。CCA的目標是通過優化投影來最大化兩個空間之間的相關性。CCA促進了對齊(通過DTW)和模態間映射的聯合學習,并且可以以無監督的方式進行,正如在視頻-文本和視頻-音頻對齊等多模態應用中所見。圖2展示了CCA方法的可視化。具體而言,CCA的目標函數可以表示為: max?ρ=corr(uTX,vTY)\max \rho = \text{corr}(u^T X, v^T Y)maxρ=corr(uTX,vTY) 其中: ? X 和 Y 是來自兩個不同空間的數據矩陣; ? u 和 v 是線性變換向量(或典型向量),它們將 X 和 Y 投影到共同空間中; ? ρ 是投影uTXu^T XuTX 和vTYv^T YvTY 之間的相關系數; ? 目標是找到 u 和 v,使得投影后的數據之間的相關性ρ最大化。 然而,CCA只能捕捉兩個模態之間的線性關系,限制了它在涉及非線性關系的復雜場景中的應用。為了解決這一限制,引入了核典型相關分析(KCCA),它通過核方法將原始數據映射到更高維的特征空間,從而處理非線性依賴[115],[116]。像多標簽KCCA和深度典型相關分析(DCCA)等擴展方法進一步改進了原始的CCA方法[115],[116],[117],[118],[119]。 此外,Verma和Jawahar展示了如何使用支持向量機(SVM)實現多模態檢索[120]。另外,像圖像對齊中基于特征模態的線性映射方法也被開發出來,旨在通過復雜的空間變換來處理多模態對齊問題[121]。 3.2 隱式對齊

隱式對齊是指在執行主要任務時作為中間步驟使用的方法,通常是以潛在方式進行。與直接對齊不同模態的數據不同,這些方法通過學習共享的潛在空間來改善主要任務的性能。隱式對齊技術可以大致分為兩類:基于圖模型的方法和基于神經網絡的方法。 3.2.1 基于圖模型的方法

圖結構的整合使得更復雜的模態間關系得以更好地建模,從而使多模態數據的處理更加準確和高效。這些方法常用于將圖像與文本或圖像與信號進行對齊。例如,某些模型通過對物體的圖表示進行對齊,實現了少樣本上下文模仿學習,從而使機器人在沒有事先訓練的情況下能夠執行新的任務[122]。基于顯式進化模型的GraphAlignment算法在識別同源頂點和解決副本問題方面表現出強大的性能,優于其他方法[123]。圖3展示了如何在對齊中使用圖結構。

這些任務中的一個主要挑戰是對齊不同模態之間的隱式信息,其中多模態信號并不總是直接對應。基于圖的模型通過將模態間的復雜關系表示為圖結構(圖中節點表示數據元素,如詞語、物體或幀,邊表示它們之間的關系,如語義、空間或時間關系)在解決這個問題上證明了其有效性。 近期的研究探索了使用圖結構進行多模態對齊的多個方面。例如,Tang等人[124]提出了一種基于圖的多模態順序嵌入方法,以提高手語翻譯。通過將多模態數據嵌入到統一的圖結構中,他們的模型更好地捕捉了復雜的關系。 另一個應用是在情感分析中,隱式多模態對齊起著至關重要的作用。Yang等人[125]提出了一種基于圖的多模態對齊模型(MGAM),該模型聯合建模了顯式方面(如物體、情感)和隱式多模態交互(如圖像-文本關系)。 在具身人工智能領域,Song等人[126]探討了如何構建基于場景的知識圖,以建模復雜多模態任務中的隱式關系。他們的工作將文本和視覺信息整合到一個知識圖中,并通過基于圖的推理進行多模態語義的對齊。對齊隱式線索(如場景中物體之間的空間和時間關系)對于提高具身人工智能系統中的決策和交互至關重要。 在命名實體識別(NER)任務中,Zhang等人[127]提出了一種基于圖的逐標記方法,該方法結合了與文本相關的圖像中的隱式視覺信息。該方法利用視覺域中的空間關系來改進命名實體的識別,這在使用孤立的文本數據時通常是模糊的。 在圖像描述生成和視覺問答(VQA)等任務中,場景圖也起著至關重要的作用。Xiong等人[128]提出了一種基于場景圖的模型,用于跨模態的語義對齊。通過將物體及其關系表示為圖中的節點和邊,該模型提高了視覺和文本模態的對齊效果。 總之,基于圖的方法為表示多樣化數據類型提供了強大的框架,并且在多模態對齊中具有巨大的潛力。然而,這種靈活性也帶來了重大的挑戰。 圖結構的稀疏性和動態性增加了優化的復雜性。與矩陣或向量不同,圖具有不規則的非結構化連接,導致計算復雜度高且內存開銷大,即使在先進的硬件平臺上也存在這些問題。此外,圖神經網絡(GNN)對超參數特別敏感。網絡架構、圖采樣和損失函數優化等選擇直接影響性能,這增加了GNN設計和實際部署的難度。 3.2.2 基于神經網絡的方法

近年來,基于神經網絡的方法已成為解決隱式對齊問題的主要方法,特別是在翻譯等任務中,將對齊作為潛在的中間步驟通常能獲得更好的結果。常見的神經網絡方法包括編碼器-解碼器模型和跨模態檢索。 當沒有隱式對齊時,翻譯過程會給編碼器帶來更大的負擔,需要它將整個圖像、句子或視頻總結為一個向量表示。 一個常見的解決方案是使用注意力機制,使解碼器能夠專注于源實例的特定子組件。這與傳統的編碼器-解碼器模型不同,后者將所有源子組件一起編碼。注意力模塊引導解碼器更多地關注被翻譯的源實例的特定子組件——例如圖像的區域、句子中的詞語、音頻的片段、視頻中的幀或指令的部分。例如,在圖像描述生成中,注意力機制允許解碼器(通常是遞歸神經網絡)在生成每個詞時專注于圖像的特定部分,而不是一次性編碼整個圖像[129]。 以前的工作通過設計特定模態的嵌入器和預測器,接口連接輸入和輸出的預訓練模型來實現這一目標。 生成對抗網絡(GAN)由于其能夠學習高維數據空間之間的復雜映射,因此已成功應用于多模態數據的合成[130],[131],[132],[133],[134]。例如,在MRI模態中,使用一個統一框架,其中單個生成器學習跨模態的映射,可以提高不同數據類型之間的對齊精度[130]。 另一種深度生成方法,C-Flow,利用標準化流進行多模態對齊,應用于3D點云重建等任務,從而對生成過程進行更細粒度的控制[135]。自編碼器及其變體,如變分自編碼器(VAE),也被用來學習潛在表示,捕捉跨模態的基礎語義結構。這種方法在組合表示學習中證明了其有效性,VAE幫助通過將圖像和文本模態映射到共享的潛在空間來對齊它們[136]。類似地,使用VAE的跨模態量化進行圖像-文本配對生成,展示了神經網絡如何通過學習量化的聯合表示對齊文本和視覺數據[137]。 此外,半監督流形對齊方法(如擴散傳輸對齊DTA)利用少量先驗知識對齊具有不同但相關結構的多模態數據域[138]。這種方法在僅能進行部分數據對齊的情況下尤為有效,因為它依賴于域之間的幾何相似性。 最近,Att-Sinkhorn方法結合了Sinkhorn度量和注意力機制,在通過解決不同模態的概率分布之間的最優傳輸問題來改進多模態特征對齊方面顯示了更高的準確性[139]。 總之,顯式和隱式對齊技術在多模態機器學習領域都至關重要。盡管顯式方法提供了一個明確的框架,用于度量相似性和建立對應關系,但隱式方法通常更靈活,并能適應更多的場景,特別是那些涉及復雜或模糊數據關系的任務。未來的研究可能會繼續探索結合兩種對齊策略優點的混合方法,以解決多模態數據中所面臨的各種挑戰[110],[111],[139]。

4 多模態融合

多模態數據涉及多種信息類型的整合,如圖像、文本和音頻,這些信息可以通過機器學習模型處理,從而提高多種任務的性能[1],[53],[140],[141],[142],[143]。通過結合不同類型的信息,多模態融合利用了每種模態的優勢,同時彌補了依賴單一數據類型時可能出現的弱點或空白[1],[53],[144]。例如,每種模態在最終預測中可能會有不同的貢獻,某些模態可能在某一時刻比其他模態更具信息量或噪聲更小。 融合方法在有效結合不同模態的信息時至關重要。早期的方法通常將圖像和文本分開處理,兩個數據類型之間僅有基本的整合。像 CLIP [13] 這樣的架構采用了雙編碼器框架,其中視覺和文本信息分別編碼,它們的交互通過簡單的操作來處理,通常涉及點積計算[145],[146]。因此,這兩種模態的融合在整體模型架構中所占的比重較小,主要由編碼器本身主導。盡管這種有限的集成策略在基于檢索的任務[147],[148]中有效,但對于更復雜的多模態挑戰(需要深度理解和模態之間的交互)則不夠充分[149],[150]。 如果通過獨立訓練每個模態的專門編碼器,然后進行表面化的集成就能實現強大的性能,那么深度多模態學習的需求就值得懷疑。然而,經驗數據表明,對于需要細致理解的任務,如視覺問答和視覺推理,必須對兩種模態進行更復雜、更深度的融合,才能充分捕捉視覺感知和語言處理之間的相互關系[152]。 傳統上,融合方法根據融合發生的數據處理管道階段進行分類。早期融合在特征級別進行數據整合,晚期融合則在決策級別進行整合,混合融合結合了兩者的特點[1],[53]。早期融合涉及在特征提取階段將來自不同模態的數據合并[56],從而讓模態之間的交互得以早期捕捉。如趙等人[93]所述,集成發生在特征級別。相比之下,晚期融合則在決策階段將各個模態模型的輸出結合起來,當預測時缺少一個或多個模態時,這種方法特別有優勢,正如 Morvant 等人[153]所展示的。混合融合則將早期融合和晚期融合的各個方面結合在一起,趙等人[93]研究了其在深度學習中的實現。 隨著技術和融合方法的演進,區分早期、晚期和混合融合變得越來越復雜。先進的方法通常超越了傳統的基于時序的分類,在特征級別和決策級別同時操作,這挑戰了僵化的分類。 為了解決這種復雜性,我們提出了一種基于當前融合技術核心特征的新分類框架,提供了對現代方法的更準確表征,并為未來的進展提供指導。特別是,盡管許多基于注意力的方法可以適配編碼器-解碼器或僅編碼器框架,但我們將它們單獨分類,因為它們在最近的顯著發展和獨特創新方面,傳統的分類方法無法充分捕捉。

4.1 編碼器-解碼器融合

編碼器-解碼器融合架構涉及一個編碼器,該編碼器從輸入數據中提取關鍵特征并將其壓縮成緊湊的形式,而解碼器則基于這種壓縮的表示重建輸出[26]。在該架構中,系統主要由兩個主要組件組成:編碼器和解碼器。編碼器通常作為一個高級特征提取器,將輸入數據轉換為一個潛在空間,其中包含重要特征[26],[37]。換句話說,編碼過程在減少冗余的同時保留了重要的語義信息。一旦編碼步驟完成,解碼器就會基于潛在表示生成相應的“重建”輸出[26],[31]。在像語義分割這樣的任務中,解碼器的輸出通常是一個語義標簽圖,它與輸入大小相匹配。 編碼器-解碼器融合通常有三種形式:(1)數據級融合,將來自不同模態的原始數據拼接在一起,并送入共享的編碼器;(2)特征級融合,分別從每個模態提取特征,可能包括中間層,然后將它們組合后再輸入到解碼器;(3)模型級融合,在處理后將各個模態特定模型的輸出進行拼接。圖4展示了這三種類型的編碼器-解碼器融合結構。特征級融合通常最為有效,因為它考慮了不同模態之間的關系,從而實現了更深層次的集成,而非表面上的組合。

4.1.1 數據級融合

在這種方法中,來自每個模態的數據或每個模態獨特預處理步驟后的處理數據在輸入級別進行合并[27]。在這種集成之后,來自所有模態的統一輸入將通過一個編碼器來提取更高層次的特征。換句話說,來自不同模態的數據在輸入階段被合并,并通過單一編碼器提取綜合特征。 最近的研究聚焦于數據級融合,以提高自動駕駛中物體檢測和感知的性能。一些研究探索了在神經網絡架構的早期階段融合相機和LiDAR數據,展示了在稀疏點云中,特別是對騎行者的三維物體檢測精度有所提升[35]。一個基于Yolo框架的聯合處理相機和LiDAR原始數據的系統比傳統的決策級融合提高了5%的車輛檢測精度[27]。此外,還開發了一個面向低級傳感器融合的開放硬件和軟件平臺,特別是利用原始雷達數據,推動了這一領域的研究[36]。這些研究突出了原始數據級融合在利用傳感器間協同作用并提高整體系統性能方面的潛力。

4.1.2 特征級融合

這種融合技術的核心思想是將來自多個抽象層次的數據進行組合,從而利用從深度網絡不同層次提取的特征,最終增強模型的性能。許多應用都實施了這一融合策略[32],[163]。 特征級融合已成為多種計算機視覺任務中的一種強大方法。它涉及在不同的抽象層次上融合特征以提升性能。例如,在性別分類中,融合局部補丁的兩層層次結構證明是有效的[163]。在顯著性物體檢測中,融合來自不同VGG層次的特征的網絡能夠保留語義信息和邊緣信息[30]。在多模態情感計算中,一種“分而治之,合而為一”的策略探索了局部和全局交互,達到了最先進的性能[32]。對于自適應視覺跟蹤,開發了一種層次模型融合框架,通過層次更新對象模型,引導參數空間的搜索并減少計算復雜性[33]。 這些方法展示了層次特征融合在多個領域中的多樣性,展現了它在捕捉細粒度和高級信息方面的能力,從而在復雜的視覺任務中實現更好的性能。

4.1.3 模型級融合

模型級融合是一種通過集成多個模型的輸出提高準確性的技術。例如,在使用地面穿透雷達(GPR)進行地雷檢測時,Missaoui等人[34]證明了通過多流連續隱馬爾可夫模型(HMM)融合邊緣直方圖描述符和Gabor小波的方式,優于單一特征和等權重組合。 在多模態物體檢測中,Guo和Zhang[28]應用了平均、加權、級聯和堆疊等融合方法,將圖像、語音和視頻的模型結果結合起來,從而提高了在復雜環境中的性能。對于面部動作單元(AU)檢測,Jaiswal等人[29]發現,使用人工神經網絡(ANN)的模型級融合比簡單的特征級方法更有效。此外,對于涉及多保真度計算機模型的物理系統,Allaire和Willcox[25]開發了一種融合方法,利用模型不適配信息和合成數據,得到了比單獨模型更好的估計結果。在質量控制和預測性維護中,一種新穎的模型級融合方法優于傳統方法,減少了預測方差30%,并提高了45%的準確性[38]。這些研究證明了模型級融合在多個領域中的有效性。 本節回顧了基于編碼器-解碼器架構的融合模型。編碼器-解碼器融合架構在多模態任務中被廣泛應用,展示了不同融合技術的多樣性,包括數據級融合、特征級融合和模型級融合。這些方法在提高多模態學習模型的準確性和魯棒性方面起到了重要作用,為未來的研究和應用提供了有益的參考。

4.2 基于注意力機制的融合

基于注意力機制的融合方法近年來得到了廣泛應用,特別是在多模態學習任務中。注意力機制的核心思想是根據輸入數據的重要性動態調整其對模型的影響,而不是對所有輸入特征進行等權處理[154]。這種方式通過引導模型關注最相關的模態和特征,從而提高了模型的表現和魯棒性。 在多模態學習中,基于注意力的融合可以通過多種方式實現。最常見的方法包括加權融合、交互式融合以及跨模態注意力機制的應用。通過引入自注意力機制(Self-Attention)和跨模態注意力機制,模型能夠自動學習不同模態之間的相互關系,并在處理復雜任務時做出適當的決策[155]。 例如,在視覺問答(VQA)任務中,通過引入跨模態注意力機制,模型可以根據問題的內容自動選擇與之相關的圖像區域,從而提高了任務的精確度和準確性[156]。類似的,在多模態情感分析中,基于注意力的機制能夠幫助模型理解不同模態(如語音、文本和面部表情)之間的相互作用,從而對情感狀態進行更為精準的預測[157]。 此外,近年來,許多研究還將多頭注意力(Multi-Head Attention)擴展到多模態融合中,允許模型并行處理多個模態的不同子空間,從而增強了多模態交互的表達能力[158]。這種方法尤其適用于需要多方面信息整合的復雜任務,如視頻內容分析和跨模態檢索等。 總之,基于注意力機制的融合方法通過動態調整不同模態的貢獻,能夠有效提升模型在多模態學習中的表現,特別是在處理多層次、多類型信息時,能夠顯著改善性能。

4.3 圖神經網絡(GNN)在多模態融合中的應用

圖神經網絡(GNN)在處理具有復雜關系和結構的數據時,表現出極大的潛力,因此被廣泛應用于多模態融合任務中。GNN通過圖的節點和邊之間的傳播機制,能夠捕捉到數據的結構信息,在圖像、文本和其他模態數據之間建立有效的聯系。 在多模態融合的背景下,GNN可以將不同模態的特征表示作為圖的節點,并通過圖卷積操作(Graph Convolution)來學習模態間的關系。例如,在圖像和文本融合的任務中,可以將圖像中的不同區域和文本中的不同詞匯視為圖的節點,節點之間通過邊連接,表示它們之間的關系。通過圖卷積操作,模型能夠學習到圖像和文本之間的深層次關聯,從而在視覺問答、圖像描述等任務中取得更好的效果[159]。 GNN還可以應用于多模態信息的關聯學習和跨模態信息檢索等任務中。在這些任務中,GNN能夠通過圖結構有效地捕捉模態間的復雜交互,幫助模型從不同模態中提取有用的信息并進行融合。這種方法尤其適合處理帶有結構關系的多模態數據,如社交媒體上的多模態情感分析和醫學圖像分析中的跨模態信息融合。 隨著圖神經網絡在多模態學習中的不斷發展,越來越多的研究表明,圖結構能夠為不同模態間的交互提供一種自然且高效的表示方式,為多模態融合方法提供了新的思路。

4.4 自監督學習與多模態融合

自監督學習是一種無監督學習方法,它通過自我生成標簽來訓練模型,尤其在沒有大量標注數據的情況下表現出了強大的潛力[160]。這種方法通過構造輔助任務,使模型學習數據的深層次結構,并為多模態融合提供了新的思路。

在多模態學習中,自監督學習能夠通過從單一模態的輸入中生成任務相關的信息,并促進模態間的對齊和互補。通過構建自監督任務(例如圖像-文本對比學習),模型可以在無監督的情況下學習到不同模態之間的語義一致性,進而提高多模態融合的效果[161]。

例如,在圖像-文本對比學習中,模型可以通過構造圖像與文本之間的相關性任務,來學習它們之間的聯合表示。這樣,盡管模型不需要大量標注數據,它仍然能夠學習到跨模態的有效表示,并在多模態任務中進行更準確的預測。這種自監督學習方法在減少對標注數據依賴的同時,能夠顯著提高模型的泛化能力和跨模態表現。

4.5 持續學習與多模態融合

持續學習(Continual Learning)是指模型在不斷接收新數據時,能夠保持已有知識的同時,學習新知識,而不會遭遇災難性遺忘[162]。在多模態學習中,持續學習能夠有效處理隨時間變化的多模態數據,特別是當模型需要根據實時輸入調整其學習策略時。

在多模態融合任務中,持續學習能夠使模型隨著新模態或新領域的到來,靈活地調整其參數和融合策略,從而適應新的數據分布[163]。例如,自動駕駛系統中的傳感器數據(如雷達、相機、激光雷達等)可能隨著環境變化而發生變化,持續學習可以幫助模型保持對不同傳感器數據的有效融合,同時應對新的駕駛環境。 持續學習還能夠促進多模態模型的可擴展性和自適應性,使其能夠在新的多模態數據出現時,進行快速有效的調整,避免災難性遺忘的問題。這為多模態學習提供了更為強大的能力,特別是在需要處理動態變化的復雜數據環境時。

付費5元查看完整內容

近年來, 深度強化學習(deep reinforcement learning, DRL)已經在諸多序貫決策任務中取得矚目成功, 但當前, 深度強化學習的成功很大程度依賴于海量的學習數據與計算資源, 低劣的樣本效率和策略通用性是制約其進一步發展的關鍵因素. 元強化學習(meta-reinforcement learning, Meta-RL)致力于以更小的樣本量適應更廣泛的任務, 其研究有望緩解上述限制從而推進強化學習領域發展. 以元強化學習工作的研究對象與適用場景為脈絡, 對元強化學習領域的研究進展進行了全面梳理: 首先, 對深度強化學習、元學習背景做基本介紹; 然后, 對元強化學習作形式化定義及常見的場景設置總結, 并從元強化學習研究成果的適用范圍角度展開介紹元強化學習的現有研究進展; 最后, 分析了元強化學習領域的研究挑戰與發展前景.

付費5元查看完整內容

近來,持續圖學習在非靜態環境下處理多樣的圖結構數據任務中被越來越多地采用。盡管其學習能力充滿希望,當前關于持續圖學習的研究主要集中在緩解災難性遺忘問題,而忽視了持續性能改進。為了彌補這一差距,本文旨在提供一個關于持續圖學習最近努力的全面綜述。具體而言,我們從克服災難性遺忘的角度引入了一個新的持續圖學習分類法。此外,我們系統地分析了在持續提高性能中應用這些持續圖學習方法的挑戰,然后討論可能的解決方案。最后,我們提出了與持續圖學習發展相關的開放問題和未來方向,并討論它們如何影響持續性能改進。隨著深度學習在生活各領域的成功應用,社區開始渴望更強大的通用人工智能。盡管具有前景的潛力,基于神經網絡的持續學習面臨著一個嚴重的遺忘問題:在新任務上的學習通常會導致舊任務上性能的急劇下降,這被稱為災難性遺忘(CF)[95]。持續學習(CL)[46, 122] 被認為是克服這一挑戰的有希望的方式。CL 被視為智能代理逐步獲取、更新、積累并利用知識以持續改善其在任務上性能的學習能力[46]。為了緩解災難性遺忘問題,已經提出了許多CL策略,包括重放方法、正則化方法和參數隔離方法[27]。這些策略在智能代理的可塑性和穩定性之間尋找平衡,并減輕了災難性遺忘的問題。然而,當前的CL僅考慮單個數據樣本,并忽略了它們之間普遍存在的聯系。此外,克服CF僅代表著實現持續性能改進(CPI)的一條必不可少的路徑,而不是CL的終點。圖,也稱為網絡,是一種描述和分析具有交互作用實體的通用數據表示。圖已被廣泛采用于模擬不同應用中不同類型的關系,從生物分子到社會網絡。一方面,許多數據自然以圖的形式存在,如引文網絡、社交網絡和交易網絡。另一方面,即使那些看似未連接的數據也可以人為地構建成圖,如文本中的依賴圖、圖像中的特征圖和代碼中的調用圖。最近,圖學習已成為AI和機器學習中一個有前景的領域,由于其在學習實體間錯綜復雜的關系及相應的網絡結構方面的優勢。

然而,圖學習也受到了災難性遺忘現象的困擾。將持續學習與圖學習整合顯然也是緩解災難性遺忘的流行解決方案。持續圖學習(CGL)的整合稱為持續圖學習。盡管CGL具有潛力,但由于歐幾里得數據與圖之間的結構差異,一般CL與CGL之間存在顯著或復雜的差異,包括模型、任務設置和方法。此外,CL和CGL主要關注克服災難性遺忘,而忽視了持續性能改進。盡管關于CGL的研究數量在增加,但關于CGL的綜述很少。為了彌補這一差距,本文旨在提供一個關于CGL研究努力的全面綜述,特別是討論CGL方法如何實現持續性能改進。本綜述與現有綜述的不同之處。由于CGL與持續學習和圖學習高度相關,兩個領域都有許多綜述。表1將相關綜述歸類為CL、圖學習和CGL。特別是,關于持續學習的綜述大多關注(i)特定領域,如自然語言處理(NLP)[11]、計算機視覺(CV)[97]、機器人學[71]和自主系統[109];(ii)特定任務,如分類[27, 88];以及(iii)模型,如神經網絡[8, 46, 93]。然而,它們都只從孤立的角度而非綜合角度考慮數據。此外,它們過分強調緩解災難性遺忘,而忽視了持續性能改進,這是持續學習的最終目標。關于圖學習的綜述主要關注特定技術,包括圖表示學習[12, 24, 43, 48, 49]、圖神經網絡[138, 170]和圖深度學習[9, 41, 164]。此外,這些研究大多數通常考慮樣本級別的連接數據,而忽略了特征級別和任務級別的連接。另外,它們只關注靜態圖而忽略了在動態圖上的持續學習。盡管有幾項綜述考慮了圖的動態性質,包括動態圖學習[171]、動態圖表示學習[10, 62, 145]和動態圖神經網絡[116],它們主要考慮模型是否適應新數據,而忽略了災難性遺忘問題,從而完全排除了CL。據我們所知,只有兩篇綜述全面整合了持續學習和圖學習。特別是,[35] 回顧了CGL的研究進展、潛在應用和挑戰,而 [154] 則分類了克服CGL中災難性遺忘的方法。盡管它們明確考慮了持續學習中數據之間的聯系并專注于CGL,但它們沒有構建一個全面的視角,并且未能徹底闡述CL和CGL之間的關系和差異。此外,它們主要關注緩解災難性遺忘,而忽略了持續性能改進。

貢獻。本綜述總結了CGL領域的最新研究,并討論了當前方法是否以及如何實現持續性能改進。具體來說,我們的主要貢獻如下所述:

  • 一個新的分類法:我們提供了一個新的分類法來總結克服CGL中災難性遺忘的方法。具體來說,從如何實現持續性能改進的角度引入了四個組別(見圖1)。
  • 一個全面的綜述:對于每一類方法,我們討論了克服災難性遺忘的動機和主要挑戰。此外,我們進一步討論了當前方法如何實現持續性能改進。據我們所知,這是第一次對持續性能改進進行探討。
  • 未來方向:專注于持續性能改進,我們進一步提出了一些與持續圖學習相關的開放問題,并討論了它們如何影響持續性能改進以及相應的未來方向。

圖1展示了本文的組織結構。第2節介紹了CL和圖學習的基礎知識。第3節提出了CGL的概述,包括形式化、動機以及克服災難性遺忘的CGL方法的新分類法。具體來說,它從特定維度比較了與CGL相關的領域。第4至第7節根據提出的分類法總結了CGL的最近進展。在每一個類別中,都調查了主要挑戰及其相應的解決方案。此外,還從知識增強和優化控制的角度討論了這些方法如何實現持續性能改進。第8節總結了現有CLG研究中使用的實際應用和數據集。此后,第9節討論了開放問題和未來方向。最后,第10節總結了本文。

持續圖學習分類法持續圖學習本質上是持續學習的一個子領域,因此,持續圖學習的目標與常規持續學習相同:通過增量學習實現模型的持續性能改進。然而,由于圖中節點之間的相互依賴性,持續圖學習在方法上比常規持續學習更為復雜和多樣化。因此,我們提出了當前持續圖學習方法的一個新分類法,該分類法分為四個類別:基于重放的方法、基于正則化的方法、基于架構的方法和基于表示的方法,如圖3所示。所提出的分類法主要關注那些明確聲稱能夠克服災難性遺忘的方法,因為當前的工作很少涉及持續性能改進。然而,我們從知識的角度討論了災難性遺忘的根本原因和持續性能改進的關鍵,并進一步討論這些方法是否以及如何實現持續性能改進。從知識的角度看,災難性遺忘的根本原因是新知識對現有知識的覆蓋。假設某一時期的知識是有限的,并且可以在持續學習的設置中學到,那么持續學習的目標就是學習所有知識并在特定任務上實現持續性能改進。基于這種考慮,持續性能改進等同于持續獲取新知識或對現有知識的補充。這通常可以通過兩種方式實現:知識增強和優化控制。知識增強指的是后續任務的知識可以增強先前任務的知識。例如,人們在低年級學習四則運算,并使用它們來解決現實世界中的問題。然而,他們不使用變量來代表數字,因此在理解對象之間的數量關系時容易犯錯。在他們高年級學習變量和方程式后,他們將使用變量方程來理解和建模對象之間的數量關系,這給他們犯錯的機會更少。在這個例子中,變量和方程是對基本四則運算的增強。知識增強可以通過學習正樣本或負樣本來實現。優化控制指的是控制學習過程。如果學習過程可以用完成度來量化,完全學習肯定優于不完全學習。類比地,那些在課堂上認真聽講并完成所有作業的學生通常會比那些在課堂上分心并留下空白作業的學生表現得更好。在本文中,我們遵循上述考慮來討論和分析當前持續圖學習方法是否以及如何實現持續性能改進。

基于重放的方法利用從先前任務中學到的知識,與當前數據一起進行聯合訓練,以避免在學習新任務時發生災難性遺忘。基于重放方法的關鍵是獲取從先前任務中學到的知識,這通常通過抽樣或生成模型來獲得。圖4總結了基于重放的方法。

基于正則化的方法通過顯式考慮拓撲結構并向損失函數添加相應的正則化項來平衡舊任務和新任務的學習,以此來規范梯度方向,從而限制對先前任務至關重要的參數的劇烈變化,以克服災難性遺忘。正則化項通常有兩種方式:約束和蒸餾。圖5總結了基于正則化的方法。

基于架構的方法通過特定架構為任務分配任務特定的參數或網絡(部分共享或不共享),以避免任務之間的干擾。這些架構可以是固定的或動態的,如圖6所示。

由于節點之間的相互依賴性以及任務間邊緣的存在,新的增量圖將會影響先前的圖,而且先前任務的知識也可以傳遞給后續任務。這種知識難以顯式地納入持續圖學習,但可以隱式地編碼在節點嵌入中,我們將此稱為基于表示的方法。其基本原理是,現有的節點嵌入已經包含了下游任務所需的所有必要信息,而通過這種方法獲得的嵌入等同于弱化的聯合訓練。一般來說,基于表示的方法可以總結為分離和傳輸,如圖7所示。

結論 由于圖在現實世界中的普遍存在和動態性質,由圖神經網絡(GNNs)代表的圖模型已在各個領域得到廣泛應用。持續圖學習是一種新興的學習范式,旨在持續學習設置中進行圖學習任務,并實現持續性能改進。在這篇綜述中,我們提供了對持續圖學習近期研究的全面回顧。我們提出了一種新的分類法,用于總結克服災難性遺忘的持續圖學習方法。此外,對于每個類別,我們簡要闡明了關鍵問題,詳細描述了當前研究中的相應實踐,并討論了實現持續性能改進的可能解決方案。進一步地,我們還提出了一些與持續性能改進相關的開放問題,并建議了相應的有前景的研究方向。我們希望這篇綜述能幫助讀者理解持續圖學習的最近進展,并對這個有前景的領域的未來發展提供一些啟示。

付費5元查看完整內容

摘要: 隨著人工智能的快速發展,從可行的算法中選擇滿足應用需求的算法已經成為各領域亟待解決的關鍵問題,即算法選擇問題。基于元學習的方法是解決算法選擇問題的重要途徑,被廣泛應用于算法選擇研究并取得了良好成果。方法通過構建問題特征到候選算法性能的映射模型來選擇合適的算法,主要包括提取元特征、計算候選算法性能、構建元數據集以及訓練元模型等步驟。首先,闡述基于元學習的算法選擇概念和框架,回顧簡述相關綜述工作;其次,從元特征、元算法和元模型性能指標三方面總結研究進展,對其中典型的方法進行介紹并比較不同類型方法的優缺點和適用范圍;然后,概述基于元學習的算法選擇在不同學習任務中的應用情況;繼而,使用140個分類數據集、9種候選分類算法和5種性能指標開展算法選擇實驗,對比不同算法選擇方法的性能;最后,分析目前存在的挑戰和問題,探討未來的發展方向。 //fcst.ceaj.org/CN/abstract/abstract3212.shtml

人工智能是數據處理與分析的重要技術,為人 們利用數據進行決策和研究提供了有力支撐。在人 工智能的不同領域中,研究人員提出了大量算法,然 而,不同算法在有限數量的問題上具備優越性能,不 存在一個適用于所有問題的可行算法,該現象被稱 為算法的性能互補性(performance complementarity) 現象[1] ,與“沒有免費午餐”(no free lunch)定理相印 證[2] 。算法的性能互補性現象普遍存在于不同領域, 如何為給定問題從大量可行算法中選擇滿足應用需 求的算法成為了各領域面臨的重要挑戰,即算法選 擇問題(algorithm selection problem)[3] 。算法選擇問 題通常采用人工選擇或自動選擇的方法解決。人工 選擇方法通過實驗試錯或依賴專家選擇合適的算 法,然而實驗試錯方法成本較高,專家選擇與專家的 經驗知識相關且靈活性較低[4] 。自動選擇方法通過 設計算法和模型,根據問題的特點自動選擇滿足應 用需求的算法,包括活躍測試(active test)方法、推薦 系統方法以及基于元學習(meta-learning)的方法[5-7] 。 其中基于元學習的方法研究基礎較為深厚,具備開 銷低和靈活度高等優點,成為了解決算法選擇問題 的主要方法[8-9] 。 本文對基于元學習的算法選擇進行綜述總結, 為研究人員了解相關領域的發展現狀提供參考。

付費5元查看完整內容

摘要

在大數據時代下,深度學習理論和技術取得的突破性進展,為人工智能提供了數據和算法層面的強有力 支撐,同時促進了深度學習的規模化和產業化發展.然而,盡管深度學習模型在現實應用中有著出色的表現,但 其本身仍然面臨著諸多的安全威脅.為了構建安全可靠的深度學習系統,消除深度學習模型在實際部署應用中的潛在安全風險,深度學習模型魯棒性分析問題吸引了學術界和工業界的廣泛關注,一大批學者分別從精確和 近似的角度對深度學習模型魯棒性問題進行了深入的研究,并且提出了一系列的模型魯棒性量化分析方法. 在本綜述中,我們回顧了深度學習模型魯棒性分析問題當前所面臨的挑戰,并對現有的研究工作進行了系統的總結和科學的歸納,同時明確了當前研究的優勢和不足,最后探討了深度學習模型魯棒性研究以及未來潛在的研究方向.

引言

受益于計算力和智能設備的飛速發展,全世界正在經歷第三次人工智能浪潮。人工智能以計算機 視覺、序列處理、智能決策等技術為核心在各個應 用領域展開,并延伸到人類生活的方方面面,包括 自適應控制[1]、模式識別[2]、游戲[3]以及自動駕駛[4] 等安全攸關型應用。例如,無人駕駛飛機防撞系統 (Aircraft Collision Avoidance System, ACAS)使用 深度神經網絡根據附近入侵者飛機的位置和速度 來預測最佳行動。然而,盡管深度神經網絡已經顯 示出解決復雜問題的有效性和強大能力,但它們僅 限于僅滿足最低安全完整性級別的系統,因此它們 在安全關鍵型環境中的采用仍受到限制,主要原因 在于在大多數情況下神經網絡模型被視為無法對 其預測行為進行合理解釋的黑匣子,并且在理論上難以證明其性質。

隨著深度學習的對抗攻擊領域日益廣泛,對抗 樣本的危險性日益凸顯[7,12,13],即通過向正常樣例中添加精細設計的、人類無法感知的擾動達到不干 擾人類認知卻能使機器學習模型做出錯誤判斷。以圖像分類任務為例,如圖 1 所示,原始樣本以 57.7% 的置信度被模型分類為“熊貓”,而添加對抗擾動之 后得到的樣本則以 99.3%的置信度被錯誤地分類為 “長臂猿”,然而對于人而言,對抗樣本依然會被 視為熊貓。由于這種細微的擾動通常是人眼難以分辨的,因而使得攻擊隱蔽性極強、危害性極大,給 ACAS 等安全攸關型應用中部署的深度學習模型帶 來了巨大的安全威脅。

為了防御對抗樣本攻擊,研究者進行了一系列的防御方法探索[5-11]。然而,即使是被廣泛認可并且迄今為止最成功的?∞防御[5],它的?0魯棒性比未防御的網絡還低,并且仍然極易受到?2的擾動影響[14]。這些結果表明,僅對對抗攻擊進行經驗性的防御無法保證模型的魯棒性得到實質性的提升,模型的魯棒性需要一個定量的、有理論保證的指標進行評估。因此,如果要將深度學習模型部署到諸如自 動駕駛汽車等安全攸關型應用中,我們需要為模型 的魯棒性提供理論上的安全保證,即計算模型的魯 棒性邊界。模型魯棒性邊界是針對某個具體樣本而 言的,是保證模型預測正確的條件下樣本的最大可 擾動范圍,即模型對這個樣本的分類決策不會在這 個邊界內變化。具體地,令輸入樣本??的維度為??, 輸出類別的個數為??,神經網絡模型為??: ??? → ???, 輸入樣本的類別為 ?? = ???????????? ???? ?? ,?? = 1,2, … ,??,在???空間假設下,模型對??提供?-魯棒性 保證表明模型對??的分類決策不會在這個樣本???空 間周圍?大小內變化。

在本文中,我們首先闡述了深度學習模型魯棒性分析現存的問題與挑戰,然后從精確與近似兩個角度對現有的魯棒性分析方法進行系統的總結和科學的歸納,并討論了相關研究的局限性。最后,我們討論了深度學習模型魯棒性分析問題未來的研究方向。

問題與挑戰

目前,深度神經網絡的魯棒性分析問題的挑戰主要集中在以下幾個方面:

(1)神經網絡的非線性特點。由于非線性激 活函數和復雜結構的存在,深度神經網絡具有非線 性、非凸性的特點,因此很難估計其輸出范圍,并 且驗證分段線性神經網絡的簡單特性也已被證明 是 NP 完全問題[15]。這一問題的難點在于深度神經 網絡中非線性激活函數的存在。具體地,深度神經 網絡的每一層由一組神經元構成,每個神經元的值 是通過計算來自上一層神經元的值的線性組合,然 后將激活函數應用于這一線性組合。由于這些激活 函數是非線性的,因此這一過程是非凸的。以應用 最為廣泛的激活函數 ReLU 為例,當 ReLU 函數應 用于具有正值的節點時,它將返回不變的值,但是 當該值為負時,ReLU 函數將返回 0。然而,使用 ReLU 驗證 DNN 屬性的方法不得不做出顯著簡化 的假設,例如僅考慮所有 ReLU 都固定為正值或 0 的區域[16]。直到最近,研究人員才能夠基于可滿足 性模理論等形式方法,對最簡單的 ReLU 分段線性 神經網絡進行了初步驗證[15,21]。由于可滿足性模理 論求解器難以處理非線性運算,因此基于可滿足性 模理論的方法通常只適用于激活函數為分段線性的神經網絡,無法擴展到具有其它類型激活函數的神經網絡。

(2)神經網絡的大規模特點。在實際應用中, 性能表現優秀的神經網絡通常具有大規模的特點。因此,盡管每個 ReLU 節點的線性區域可以劃分為 兩個線性約束并有效地進行驗證,但是由于線性片 段的總數與網絡中節點的數量成指數增長[17,18],對 整個網絡進行精確驗證是非常困難的。這是因為對 于任何大型網絡,其所有組合的詳盡枚舉極其昂 貴,很難準確估計輸出范圍。此外,基于可滿足性 模理論的方法嚴重受到求解器效率的限制,僅能處 理非常小的網絡(例如,只有 10 到 20 個隱藏節點 的單個隱藏層[20]),無法擴展到大多數現實世界中 的大型網絡,而基于采樣的推理技術(例如黑盒蒙 特卡洛采樣)也需要大量數據才能在決策邊界上生 成嚴格的準確邊界[19]。

總之,由于不同學者所處的研究領域不同,解 決問題的角度不同,所提出的魯棒性分析方法也各 有側重,因此亟需對現有的研究工作進行系統的整 理和科學的歸納、總結、分析。典型的模型魯棒性 分析方法總結如表 1 所示。目前的模型魯棒性分析 方法主要分為兩大類:(1)精確方法:可以證明精 確的魯棒性邊界,但計算復雜度高,在最壞情況下 計算復雜度相對于網絡規模是成指數增長的,因此 通常只適用于極小規模的神經網絡;(2)近似方法:效率高、能夠擴展到復雜神經網絡,但只能證明近似的魯棒性邊界。

精確方法

精確方法主要是基于離散優化 (DiscreteOptimization)理論來形式化驗證神經網 絡中某些屬性對于任何可能的輸入的可行性,即利 用可滿足性模理論(Satisfiability Modulo Theories, SMT)或混合整數線性規劃(Mixed Integer Linear Programming, MILP)來解決此類形式驗證問題。這 類方法通常是通過利用 ReLU 的分段線性特性并在 搜索可行解時嘗試逐漸滿足它們施加的約束來實 現的。圖 2 梳理了典型模型魯棒性精確分析方法的 相關研究工作。

近似方法

由于在??? ? ????????假設空間內,對于激活函數為 ReLU 的神經網絡,計算其精確的魯棒性邊界是一 個 NP 完備(NP-Complete,NPC)問題[15],因此大 多數研究者通常利用近似方法計算模型魯棒性邊 界的下界,下文提到模型魯棒性邊界時通常也指的 是這個下界。此外,對抗攻擊[12]可以得到模型魯棒 性邊界的上界[24]。因此,精確的模型魯棒性邊界可 以由上界和下界共同逼近。這類方法通常基于魯棒 優化思想,通過解決公式(1)的內層最大化問題 來估計模型魯棒性邊界:

其中,??代表正常樣本,?? 代表對抗樣本,???? (??)代 表對抗樣本可能存在的范圍,??代表樣本真實標簽, ????代表以θ為參數的模型,??代表損失函數。圖 3 梳 理了典型模型魯棒性近似分析方法的相關研究工 作。

未來研究方向

本文介紹了模型魯棒性分析問題的背景與挑戰,探討了相關定義,進而對目前主流的模型魯棒性方法與性能做了介紹。從目前已有的相關方法來 看,我們認為今后對模型魯棒性分析方法的研究, 將主要圍繞以下幾個方向展開:

(1)進一步拓展對抗擾動的類型。從攻擊者 添加擾動的類型來看,現存的大多數模型魯棒性方 法都是針對在像素點上添加擾動的對抗攻擊進行 的魯棒性分析,然而在實際中,對抗性圖像有可能 經過旋轉、縮放等幾何變換,而現存大多數方法無 法擴展到此類變換。雖然 Balunovic 等人提出的 DeepG[102]初步嘗試了將抽象解釋的思想用于分析 幾何變換對抗攻擊的模型魯棒性空間,但是這個方 向仍然值得更多深入研究,進一步提升精度和可擴展性。

(2)不同魯棒性類型之間的平衡。輸入樣本?? 的局部魯棒性(即神經網絡應為以??為中心的半徑 為?的球中的所有輸入產生相同的預測結果)依賴 于在輸入空間上定義的合適的距離度量標準,在實 際中,對于在非惡意環境中運行的神經網絡而言, 這可能是太過苛刻的要求。同時,由于僅針對特定 輸入定義了局部魯棒性,而對于未考慮的輸入不提 供保證,因此局部魯棒性也具有固有的限制性。全 局魯棒性則通過進一步要求輸入空間中的所有輸 入都滿足局部魯棒性來解決這個問題。除了在計算 上難以控制之外,全局魯棒性仍然太強而無法實際 使用。因此,在實際中如何更好地平衡局部魯棒性 與全局魯棒性,仍然是一個亟待解決的挑戰。

(3)進一步提升模型魯棒性驗證方法。從實 證結果來看,大多數基于經驗的防御方法非常容易 被更強的攻擊所攻破,而其他魯棒性分析方法在很 大程度上取決于神經網絡模型的體系結構,例如激 活函數的種類或殘差連接的存在。相比之下,隨機 平滑不對神經網絡的體系結構做任何假設,而僅依 靠在噪聲假設下傳統模型進行良好決策的能力,從 而將魯棒分類問題擴展為經典監督學習問題,可用 于社區檢測[103]等任務。因此,基于隨機平滑的魯 棒性分析方法可能是研究模型魯棒空間的最有前 途的方向之一。此外,由于基于概率的方法具有更 寬松的魯棒性定義,更有可能被實用的神經網絡所 滿足和驗證,因此在合適的擾動分布假設下也是較 有前景的方向之一。

(4)研究可證明魯棒模型訓練方法。此外, 如何訓練對對抗性擾動具有可證明魯棒的神經網 絡以及如何訓練更容易驗證魯棒性的神經網絡,也 是未來的研究方向之一。目前研究者在這個方向進 行的初步探索包括利用正則化技術將模型的形式 化魯棒邊界與模型的目標函數結合起來[104]、經驗 性對抗風險最小化(Empirical Adversarial Risk Minimization,EARM)[36,105]、隨機自集成[106]、剪 枝[82,107]以及改善神經網絡的稀疏性[108]。但是現存 技術主要集中于圖像領域,難以擴展到惡意軟件等 安全攸關型應用,并且仍然存在精度以及可擴展性 上的不足,需要進一步的深入研究。

付費5元查看完整內容

摘要: 編碼計算將編碼理論融于分布式計算中,利用靈活多樣的編碼方式降低數據洗牌造成的高通信負載,緩解掉隊節點導致的計算延遲,有效提升分布式計算系統的整體性能,并通過糾錯機制和數據掩藏等技術為分布式計算系統提供安全保障.鑒于其在通信、存儲和計算復雜度等方面的優勢,受到學術界的廣泛關注,成為分布式計算領域的熱門方向.對此,首先介紹編碼計算的研究背景,明確編碼計算的內涵與定義;隨后對現有編碼計算方案進行評述,從核心挑戰入手,分別對面向通信瓶頸,計算延遲和安全隱私的編碼計算方案展開介紹、總結和對比分析;最后指出未來可能的研究方向和技術挑戰,為相關領域的研究提供有價值的參考.

//crad.ict.ac.cn/CN/10.7544/issn1000-1239.2021.20210496

付費5元查看完整內容

摘要: 推薦系統致力于從海量數據中為用戶尋找并自動推薦有價值的信息和服務,可有效解決信息過載問題,成為大數據時代一種重要的信息技術。但推薦系統的數據稀疏性、冷啟動和可解釋性等問題,仍是制約推薦系統廣泛應用的關鍵技術難點。強化學習是一種交互學習技術,該方法通過與用戶交互并獲得反饋來實時捕捉其興趣漂移,從而動態地建模用戶偏好,可以較好地解決傳統推薦系統面臨的經典關鍵問題。強化學習已成為近年來推薦系統領域的研究熱點。文中從綜述的角度,首先在簡要回顧推薦系統和強化學習的基礎上,分析了強化學習對推薦系統的提升思路,對近年來基于強化學習的推薦研究進行了梳理與總結,并分別對傳統強化學習推薦和深度強化學習推薦的研究情況進行總結;在此基礎上,重點總結了近年來強化學習推薦研究的若干前沿,以及其應用研究情況。最后,對強化學習在推薦系統中應用的未來發展趨勢進行分析與展望。

//www.jsjkx.com/CN/10.11896/jsjkx.210200085

付費5元查看完整內容

摘 要:小目標檢測長期以來是計算機視覺中的一個難點和研究熱點。在深度學習的驅動下,小目標 檢測已取得了重大突破,并成功應用于國防安全、智能交通和工業自動化等領域。為了進一步促進小 目標檢測的發展,本文對小目標檢測算法進行了全面的總結,并對已有算法進行了歸類、分析和比較。首先,對小目標進行了定義,并概述小目標檢測所面臨的挑戰。然后,重點闡述從數據增強、多尺度學 習、上下文學習、生成對抗學習以及無錨機制等方面來提升小目標檢測性能的方法,并分析了這些方法 的優缺點和關聯性。之后,全面介紹小目標數據集,并在一些常用的公共數據集上對已有算法進行了 性能評估。最后本文對小目標檢測技術的未來發展方向進行了展望。

付費5元查看完整內容

摘要 深度學習研究發展至今已可以勝任各類識別、分類、生成任務,但是對于不同的任務,神經網絡的結構或參數不可能只是微小的變化,依然需要專家進行調整.在這樣的情況下,自動化地調整神經網絡的結構或參數成為研究熱點.其中,以達爾文自然進化論為靈感的神經進化成為主要優化方法.利用神經進化優化的深度學習模型以種群為基礎,通過突變、重組等操作進化,可實現自動地、逐步地構建神經網絡并最終選擇出性能最優的深度學習模型. 本文簡述了神經進化與進化計算;詳細概述了各類基于神經進化的深度學習模型;分析了各類模型的性能;總結了神經進化與深度學習融合的前景并探討下一步的研究方向.

//www.ejournal.org.cn/CN/abstract/abstract11887.shtml

付費5元查看完整內容

摘要:大數據是多源異構的。在信息技術飛速發展的今天,多模態數據已成為近來數據資源的主要形式。研究多模態學習方法,賦予計算機理解多源異構海量數據的能力具有重要價值。本文歸納了多模態的定義與多模態學習的基本任務,介紹了多模態學習的認知機理與發展過程。在此基礎上,重點綜述了多模態統計學習方法與深度學習方法。此外,本文系統歸納了近兩年較為新穎的基于對抗學習的跨模態匹配與生成技術。本文總結了多模態學習的主要形式,并對未來可能的研究方向進行思考與展望。

付費5元查看完整內容
北京阿比特科技有限公司