作者:CPT David Tillman
發展和管理戰術層面的信息需求是一個具有挑戰性的動態過程,它得到了稀缺原理,甚至偶爾是相互沖突的理論支持。本文將專門討論優先情報需求(PIRs)的發展,當它與友軍情報需求(FFIR)結合在一起時,就形成了總指揮的關鍵情報需求。
雖然PIRs通常由旅S-2管理,并將任務下達到旅級信息收集(IC)管理員,但它們最終由旅長批準和擁有。因此,PIR的開發是一個由指揮官驅動的過程,并且是長期存在的。它需要對過去和現在的理論有一個基本的了解,但更重要的是,它需要對指揮官如何在一個聯合競爭環境中對旅戰斗隊有一個整體的了解。
PIRs被定義為與敵人或作戰環境有關的信息要求,被認為對(1)達到指揮官的決策點(DP)或(2)實現一個特定預期效果至關重要。這個定義最終為PIR的開發方法提供了一個范圍。這個定義的第一部分是情報專業人員最頭疼的問題--將PIR與梯隊的決策點直接聯系起來。
然而,定義的第二部分往往被火力和目標群體以外的人所忽視。這就是指揮官的行動可視化發揮作用的地方,直接影響到他認為在該特定階段最有效的PIR類型。
為了在復雜的作戰環境中支持動態的指揮官,有效的PIR將提供三種共生功能:推動指揮官的DPs,通過啟用目標定位周期和應用經典博弈論來支持工作。
你會看到那些喜歡使用DP戰術的指揮官,在足球比賽中這相當于運行一個選項戰術。指揮官指示參謀部在行動的每個確定的DP上,制定一個由多個分支和續篇組成的單一強有力的規劃。其目的是為指揮官提供最大的行動靈活性,同時也最大限度地提高節奏。
例如,指揮官可能會指示旅級參謀部規劃一次進攻行動,預期的最終狀態是成功包圍第111旅戰術組(BTG)剩余的兩個機械化步兵營(MIBn)。作戰環境將影響這些進攻行動的發生時間和地點,但敵人也會影響。敵人的組成、能力、陣列和上級指揮部期望的最終狀態等因素都會對藍軍作戰方案的制定產生一些影響。
這第一個DP1也將作為作戰計劃中的第一個分支,它最終將為指揮官提供兩個可區分的選擇。兩個方案中的每一個都將包括三個戰術任務,每個任務都將由一個步兵營同時執行。
圖1. DP 1A
圖2. DP 1B
這兩個分支規劃的主要區別在于指定的路徑(AoA)。DP 1A包括一個步兵營在南部的AoA上固定敵人,同時投入一個步兵營進行滲透。另一個營作為主要力量,對北面的敵人進行包圍。方案1B包括一個步兵營在北面AoA上固定敵人,同時投入一個步兵營進行滲透,另一個營作為主要力量在南面AoA上進行包抄。
雖然這兩個方案都是可行的,但根據當時支持的PIR的回答方式,只有一個方案是最佳的。
兩個擬議的分支規劃都需要獨特的作戰條件,由PIR和FFIR來回答,必須滿足這些條件才能實現該DP。與敵人和地形具體相關的信息要求將最終成為旅級PIR。
由于天氣和地形是永恒的考慮因素,這個例子將用一個以敵人為重點的PIR來驅動DP1。要做到這一點,我們需要準確了解我們的BCT能夠施加給敵人的相對戰斗力--FFIR。同時,我們必須知道,根據力量和手段的相關性,實現每項戰術任務所需的最低兵力。
經典的力量相關性理論認為,處于蓄意防御中的敵人可以有效地防御多達三倍于其戰斗力的力量。根據一個標準的步兵營(IBCT)的任務組織,我們能夠投入一個步兵營來固定敵人,一個步兵營來穿透敵人的防御陣地,第三個步兵營來包圍敵人。
在考慮了前面所有的信息后,我們現在知道,敵人有可能用任何大于兩個機械化步兵連(MIC)的編隊在復雜的障礙帶支持下對滲透和包圍進行成功防御。支持這一DP有效PIR的一個例子是:第111BTG的殘余部隊是否會投入并保留少于或等于兩個MIC的兵力來保衛任何單一的路徑?
通過將這一最低兵力要求納入PIR的開發,我們可以更精確地定義實現該指揮官的DP所需的信息要求,這將使信息收集規劃和同步。由于每個梯隊的指揮官都對DP 1A和1B有共同的理解,旅長就能發出聲音(與前面的足球例子保持一致),然后他的下屬指揮官就能迅速執行,同時保持高的行動節奏。
使用軍事決策過程中產生的最重要的產品之一:決策支持矩陣(表1)最能說明這一概念。
表1. DPs 1A和1B的決策支持矩陣
指揮官們更喜歡更主動塑造工作,運用重心分析來系統地瓦解敵人的戰斗秩序。他們傾向于選擇由大量基于條件的觸發器和創新方式組成的規劃,旨在通過加快傳感器到射手的順序來扁平化殺傷鏈。
與其利用收集資產來確定敵人的組成和部署,他們更傾向于利用這些資產來通過敵人的關鍵弱點瞄準敵人的關鍵能力。這有效地使指揮官通過成功地減少敵人的相對戰斗力,人為地達到最低兵力要求。
在這種情況下,PIR的目的是直接促成目標定位過程,塑造戰斗空間,并為機動部隊迅速奪取相對優勢的位置創造條件。一個這樣的例子是,在前面的規劃中,用一個觸發器取代DP1,將主要精力投入到北部的行動區。這個基于條件的觸發器與DP1不同,因為它是一個預先確定的行動,與敵人的部隊陣列無關。通過深思熟慮的目標選擇過程,參謀部確定了滿足這一觸發條件所需的具體條件。
與其試圖通過瞄準敵人的機動編隊來直接削弱其總戰斗力,參謀部建議瞄準敵人的反機動資產(地雷層、挖溝資產等)。瞄準這些工兵部隊將通過使那些被認為對防御行動至關重要的資產失效來降低敵人的相對戰斗力--這就是預期效果。
這些預期效果是我們對PIR定義的后半部分。如果成功的話,實現這些預期效果將剝奪敵人建立有障礙物支持的蓄意防御的能力,并迫使敵人建立有最小障礙物的倉促防御。如果所有其他變量保持不變,從蓄意防守到倉促防守的轉變,會使最低兵力要求從3:1降至2:1。
一旦確定需要消滅這些關鍵保護資產,它們將在目標工作組中得到分析,被添加到高回報目標(HPTs)清單中,并由旅長在目標審批委員會上進行驗證。
為了使收集規劃有效地支持決定、探測、交付和評估目標的周期,HPT(很像DP)必須得到PIR的直接支持。支持這些HPT的PIR的一個例子是。敵人將在哪里使用其主要的反機動性資產?
在這個例子中,PIR中的反機動資產一詞將把收集工作特別集中在敵人的MDK-2M(挖溝車)和GMZ-2(布雷器)上。由于高度的特殊性,將PIR細化為基本信息要素(EEI)、指標和具體信息要求的IC矩陣將更加簡明。
圖3. 具體信息要求(SIR)與指標、EEI和PIR的關系。(改編自圖4-5,FM 3-98)
戰略推理的科學,通常被稱為經典博弈論,可以追溯到20世紀50年代,當時它首次被用來研究零和博弈中理性參與者的決策過程。從那時起,歷史為我們提供了多個軍事案例研究,在這些案例中,博弈論可以被回顧應用:中途島戰役、斯麥戰役和1914年俄羅斯與德國之間的坦能堡戰役,等等。
將博弈論,以其最初的零和形式,應用于PIR的發展,這一概念似乎很新穎,但事實遠非如此。與目前的學說不同,歷史上的學說將這種戰略推理的框架納入了PIR的發展。回顧一下1994年左右的《陸軍野戰手冊》(FM)34-2,收集管理和同步規劃,可以看到幾個輔助的例子,說明經典的博弈論可以用來發展PIR。
這種戰略推理框架在每個有效的PIR例子中都得到了很好的體現,而在以下摘自FM34-2附錄D的無效的PIR例子中卻依然沒有體現出這一點。
"敵人會進攻嗎?如果是的話,在哪里,什么時候,以什么兵力?"
這種PIR顯然不是參謀部作戰的結果。我們可以提出幾個具體的批評意見。這個PIR實際上包含四個明顯不同的問題。這四個問題中哪個是優先考慮的?除非得到更多的指導,否則收集資產必須自己決定針對PIR的哪一部分來收集。
它假定情報人員對敵人的情況完全一無所知。實際上,他們對局勢的了解可能多于 "敵人可能在某個時候、某個地方、以某種力量發動攻擊"。利用戰場的情報準備過程,他們可以提供比這更有針對性的PIR。
最后,在對潛在的友軍和敵軍CoA進行戰爭演練時,工作人員應該發現這個PIR的某些方面與友軍CoA無關。例如,你的防御可能完全有能力擊敗敵人,而不管他們何時真正發動攻擊。也許重點只需要放在他們將攻擊的地方,以支持對友軍預備隊的使用的決定。
正如沒有標準的情況模板或友好的CoA適用于所有情況一樣,也沒有一套標準的PIRs。然而,好的PIRs有一些共同點:
它們只問一個問題。
它們專注于一個特定的事實、事件或活動。
它們提供支持一個單一決定所需的情報。例如。"敵人是否會在我們的后備部隊離開Jean-Marie作戰區之前對其使用化學制劑?" "敵人是否會使用前坡防御來保衛Kevin目標?" "第43師是否會沿AoA 2發出主攻?"
正如你所看到的,所有好的PIR的例子都被設定為 "是 "或 "不是 "的問題,將信息要求簡化為一個獨立變量的積極或消極存在(類似于FM3-98圖4-5中定義的EEI)。最初,這種方法對于復雜的作戰環境來說似乎過于二元化,但進一步的分析表明,如果使用得當,它可以成為戰術層面上的一種有效方法。當指揮官無法獲得達成目標或實現預期效果所需的關鍵信息時,這一點尤其明顯。
在我們前面的設想中,這意味著該旅及時回答PIR的能力已經受到環境限制或資源限制的影響。換句話說,藍軍沒有能力確定敵人在北部和南部AoA沿線的構成(針對DP1),也沒有能力探測和瞄準行動區內所有剩余的反機動資產(基于條件的觸發)。為了將經典博弈論應用于這一情景,工作人員必須首先確定前面行動的四種可能結果。
為簡單起見,讓我們假設這兩個對立的編隊之間在梯隊上存在絕對的戰斗力均等(1:1)。在其最基本的形式中,每個指揮官基本上都有兩個選擇。對于藍軍指揮官來說,第一個選擇是將主要精力投入到北部的AoA,第二個選擇是將主要精力投入到南部的AoA。對于敵對勢力(OPFOR)的指揮官來說,選項1是將防御性的主要力量投入到北部的AoA,選項2是將防御性的主要力量投入到南部的AoA。
為了計算這個零和博弈中的概率和回報,我們還必須應用一個通用的積分系統。一個點將被授予以主要精力達到對立的最小兵力的指揮官,第二個點將被授予將主要精力投入到對該特定要素具有有利地形的交戰區的指揮官。該情景假設藍軍IBCT對兩個OPFOR MIBn進行進攻行動。南部的AoA嚴重受限的地形對于主要是騎馬的藍軍人員來說是理想的。相反,北部的兩個高速機動走廊對OPFOR的主要機械化編隊是有利的。
圖4和圖5是對四種潛在選擇的圖形描述,以及對指揮官在四種結果中的每一種所獲積分的回報矩陣。
圖4. 四個博弈理論CoA。
圖5. 博弈論方法的記分卡。
在這些例子中,雙方都有一個明確的主導戰略,在回報矩陣的左下角有一個明顯的納什均衡。藍軍指揮官的主導戰略是將主要精力投入到南部的行動區。使用這種策略,藍軍肯定會有有利的地形,可以進行下馬式編隊,并有50%的機會通過其主要努力達到最低兵力要求。
作戰部隊指揮官的主導戰略是將防御性的主要力量投入到北部走廊。通過這一戰略,作戰部隊將擁有有利的地形,并將通過其主要努力達到最低兵力要求。
考慮到這一點,參謀部能夠確定對每個指揮官最有利的選擇,以及藍軍如何能夠以其主導戰略增加實現最低兵力的概率。
我們最后的PIR將綜合所有前面的要素(DPs、目標定位和經典博弈論),以支持動態指揮官的作戰可視化:敵人是否會將兩個或更多的反機動資產投入到南部的行動區?
這個PIR是理想的,因為它在支持BCT塑造努力和指揮官的DPs的同時,也為藍軍提供了通過其主要努力實現最小兵力要求的最大可能性。如果能夠在南部區域消滅敵人的反機動資產,最低兵力要求將有效地從3:1減少到2:1,這將使圖5右下角的分數從 "1,1 "變為 "2,0",進一步改善藍軍指揮官已經占優勢的戰略。
在前面的例子中,我為指揮官和他們的參謀提供了一個框架,以產生在復雜作戰環境中有效的戰術級PIR。這個框架是基于過去和現在的理論,以及我在兩次作戰訓練中心輪換期間擔任IC經理時學到的經驗。
大規模的作戰行動需要指揮官和參謀人員采取動態、流動和綜合的作戰方式。在進行作戰可視化時,有活力的指揮官很可能會在行動的不同階段展示所有三種智力特征:
最初,博弈論者會在信息有限的時候尋求減少行動變量的數量。
接下來,條件設定者將旨在減少敵人產生戰斗力的能力,同時也保留自己的能力。
最后,DP戰術師將通過對被削弱的敵人和較少的作戰變量進行規劃,最大限度地提高作戰靈活性。
為了支持這種動態發展,參謀部必須確保在整個計劃過程中體現有效的PIR的所有三個共生功能。這樣一來,這種方法將產生最終能夠相互支持DP、目標定位周期和經典博弈論的概念應用的PIR。
圖6. DPs, targeting, game-theory nexus.
戴維-蒂爾曼(David Tillman)中士是美國肯塔基州坎貝爾堡101空降師(空中突擊)第1BCT "巴斯通 "的旅級IC經理。之前的任務包括:科羅拉多州卡森堡第4步兵師第3裝甲營(ABCT)的IC排長和旅級IC經理;以及卡森堡第4步兵師第3裝甲營第10騎兵團第4中隊的助理S-2和情報、監視、偵察經理。蒂爾曼中尉的軍事學校包括美國國防情報局(DIA)收集管理員基礎課程;信號情報/電子戰官員課程;DIA主要、備用、應急和緊急基本課程;DIA聯合中級目標課程;情報、監視、偵察經理課程;以及軍事情報基本官員領導課程。他擁有南伊利諾伊大學的刑事司法學士學位,目前他是東北大學專業研究學院的研究生,攻讀戰略情報和分析專業的碩士學位。提爾曼中尉已經完成了在國家訓練中心的輪換,在聯合戰備訓練中心的輪換和支持斯巴達盾牌行動的部署。
報告探討了美國空軍在戰役層實施聯合全域指揮控制(JADC2)面臨的挑戰,分析了未來多域作戰中運用人工智能的機會,梳理了建設JADC2人工智能生態系統的最佳商業實踐。報告最后指出,指揮控制構造、指揮控制所需的數據和數據基礎設施以及利用數據來指揮控制所有領域部隊需要的工具、應用程序和算法必須調整以支持未來的多域作戰。JADC2應該以一種內聚、漸進、交互式的方式發展,美國空軍作戰集成中心應確保JADC2的指揮控制結構、數據管理以及工具、應用程序和算法開發的發展遵循統一的戰略。
作者研究并推薦了將人工智能(AI)以及更廣泛的自動化應用于美國空軍全域聯合指揮與控制(JADC2)。作者發現,為了支持未來的多域作戰,必須對三個主要的使能類別進行調整:(1)指揮和控制(C2)結構或部隊如何組織,當局在哪里,以及他們如何訓練和配備人員,(2)利用數據進行C2所需的數據和數據基礎設施,以及(3)利用數據進行C2全域部隊的工具、應用程序和算法,包括人工智能算法。轉向現代化的JADC2需要各利益相關者合作制定政策、指導、戰術、技術、程序、訓練和演習、基礎設施和工具,很可能利用人工智能,以實現概念。
美國空軍空中作戰中心(AOC)制定的72小時空中任務周期,已經無法滿足當前數字世界的要求。在未來有計劃規劃與動態規劃之間的平衡點會發生變化,動態規劃的比重會加大。全域聯合指揮控制工具和流程要具備為這種變化提供支持的能力。
將空軍作戰中心結構體系遷移到現代數字環境中面臨許多挑戰,包括對以人為中心的主題專家會議和委員會的依賴,“空氣隔離”系統中的數據分為多個保密級別;對商業服務產品的嚴重依賴等。
其他限制多域作戰速度和范圍的因素包括:權力和指揮關系,跨域同步戰斗節奏,各域使用的程序不同,不同戰區和地區使用不同的指揮控制結構,靈活健全的通信系統和程序。
要支持多域行動應協調一下三個范疇的內容:全域聯合指揮控制的指揮控制結構的確定,可用于多域作戰的數據源和計算基礎結構,以及實現多域決策者“在圈中”且支持機器對機器過程的算法開發。
目前有多個未來多域作戰概念,需求也因戰役而異。未來的指揮控制結構應具有靈活性,能夠適應各種變化。
美國空軍綜合作戰中心(AFWIC)應與美國空軍太平洋司令部、歐洲司令部、非洲司令部合作,通過兵棋推演和桌面演練進行假設并繼續研究多域作戰概念,為國防戰略提供支持。同時他們應該將最終確定的多域作戰概念告知空軍以外部門,以便與其他軍種和美國國防部進行合作。
美國空軍首席數據官應制定適用于整個作戰中心的數據管理政策,確保數據得到保存和適當標記方便之后使用,同時要保證有足夠的數據儲存能力。
美國空軍綜合作戰中心應該與美國空軍作戰司令部(ACC)合作,評估各種能夠實現多域作戰的指揮控制結構。同時還要另外開展兵棋推演以及研討會來對比和比較各種替代方案。美國空軍作戰司令部后續應該進行的工作,還包括制定開發、組織、培訓和裝備方案。
全域聯合指揮控制流程應該體現凝聚、漸進和交互原則。指揮結構、數據管理以及工具,應用程序和算法的開發都應根據總體戰略進行。
美國空軍綜合作戰中心應確保戰略的實施,并向空軍參謀長報告相關情況。
未來同等力量競爭者之間的軍事行動將以多域作戰(MDO)方法為特征,其特點是空中、海上、陸地、網絡空間和太空的綜合和并行使用。在整個軍事行動范圍內,從低節奏的維和任務和安全部隊援助到高強度、高節奏的作戰行動,軍方將利用所有的作戰領域,特別是太空領域。隨著作戰速度和節奏的加快,太空領域對于現代軍事活動變得至關重要,并使得指揮控制 (C2) 和戰術層面的決策時間周期縮短。
此外,鑒于民間社會行動者對公共領域開源信息的訪問加速和擴大,目前的軍事活動受到了更嚴格的審查。這樣做的一個后果是更加需要更快速更準確的情報來為軍事行動中的決策提供信息。不斷擴大來源和信息已成為決策的方式和手段,空間在軍事規劃和行動的演變中占據中心地位,而這一演變涉及到軍事人員要經常執行的一系列任務。
太空領域是當今確保持續的跨境情報和態勢感知并促進重要通信的唯一途徑。這一現實需要更加關注空間資產的安全性和未來空間應用的能力規劃。就目前而言,太空領域仍然沒有得到足夠的全球戰略關注。然而,軍方對太空的利用不僅會在未來幾年保留在國防組織和軍事能力規劃者的議程上,而且會變得越來越重要。
可以說,早在二戰期間,當德國向英國發射帶有彈道軌道的 V2 火箭時,就在戰爭中見證了太空的使用。在更近的時代,空間領域發揮關鍵作用的第一次軍事行動發生在1991年的第一次海灣戰爭期間。如果沒有使用由衛星支持的全球定位系統,為武器提供精確的導航和目標,并對沖突地區進行天基觀測以了解情況,美國及其聯盟伙伴可能不會在沙漠風暴行動中取得同樣的結果。
自第一次海灣戰爭結束以來,西方軍隊逐漸擴大其在太空領域的使用和嘗試,以此作為引入作戰優勢的一種方式。然而,這種對太空領域日益增長的依賴也為軍事行動創造并擴大了新類型的弱點,而對手越來越有能力利用這些弱點。在這種新出現的背景下,軍隊開始重新關注他們對空間的使用,以規劃和發展與新威脅和戰略弱點相關的空間能力,這一點至關重要。
這是一個需要應對的挑戰,因為很少有人會懷疑大國競爭又回到了全球舞臺上。隨著全球動態的變化,美國一直在重新平衡其全球態勢,將重心轉向亞洲。美國對中東的能源依賴度下降,也引發了關于其長期區域作用的討論。對歐洲來說,未來來自其東部和南部邊界的任何動蕩和不穩定都可能導致難民和流離失所者帶來前所未有的挑戰。在管理這種風險的安全影響方面,歐洲軍隊很可能面臨一個新的現實,即不能把對美國空間資產的依賴或可用性視為理所當然。
太空戰保障(SOA)
與此同時,歐洲自身對戰略自主和主權的決心可能會增強,并延伸到其未來的太空戰略。地緣政治因素和較低的進入壁壘可能會繼續引入新的參與者,追求空間的戰略和戰術使用,開發作戰衛星和地面基礎設施。雖然太空不能分為民用和軍用太空,但“軍事太空”領域將以美國、俄羅斯和中國的傳統大國為特色,但也會看到歐盟(EU)、印度、阿聯酋等其他國家加入。
隨著太空參與者數量的增加,使用和依賴太空進行軍事行動的風險正在迅速增加。空間擁堵是太空中的一個嚴重威脅,尤其是在低地球軌道(LEO)——在地球上空跨越 400-1500 公里的高度——衛星有被摧毀的風險。 LEO 不僅面臨軍事用戶飽和,而且越來越多的商業運營商生產和發射大量小型衛星,以服務于快速發展的商業航天工業。
日益增長的空間擁堵風險是真實存在的——自從2009年2月銥-33與Kosmos 2251的碰撞被廣泛研究以來,在2021年3月,云海1-02與1996年9月發射的俄羅斯天頂2號火箭的碎片的碰撞,加強了衛星作戰的風險。這些最近的碰撞很可能是意外,但最近觀察到衛星對其他衛星的近距離機動,這種近距離接觸可能是攻擊性意圖的結果,旨在使衛星不可靠、不值得信賴甚至完全無法使用。
通過光通信、密碼學、跳頻或精確無線電傳輸來保護數據和信息流將需要作為一個至關重要的能力設計參數。
最近觀察到的近距離接觸和行動似乎沒有造成任何明顯的損害,但這些事件已引發太空軍事行動者重新考慮他們的姿態并考慮加強對其資產的保護機制——包括可能通過武器化。 2019 年 12 月,北約明確承認太空是軍事作戰領域。眾所周知,反衛星(ASAT)武器已被廣泛試驗,并可能更容易被開發,作為將威懾和拒絕的邏輯引入空間領域的一種方式,以對付可能尋求利用傳統空間系統漏洞的對手。
這種軌跡會產生重大影響,因為這種發展會在最低水平上產生意想不到的后果和次要影響,僅僅是通過空間碎片散布到大片空間的風險。太空中的對手還將尋求瞄準衛星與支持地面基礎設施或指揮中心之間的關鍵通信中繼。技術欠發達的對手可以攻擊或破壞支持太空作戰的地面基礎設施,例如通過簡單地拒絕物理訪問、切斷電源線甚至物理攻擊和破壞。
太空中不斷擴大的威脅范圍并非包羅萬象——目前,這些威脅主要與 LEO 中的太空資產有關。在這里,軍事規劃人員可以提供一系列針對 LEO 環境的防御性反應——例如,強化支持和啟用地面基礎設施、地對空(反之亦然)通信渠道以及天基資產本身。此外,軍事規劃人員將需要創造新的方法和手段來提高太空態勢感知、太空交通管理、太空機動性、響應能力和有效載荷適應性,以及至關重要的國際合作和成就,以建立基于規則的太空秩序。
對手瞄準支持軍事作戰的太空能力的最簡單方法是專注于地面支持和使能基礎設施。幸運的是,這些太空能力要素是最容易防御的,必要時可以維修或更換。雖然這在減少軍事太空作戰的弱點方面可能最初看起來不太復雜且成本較低,但重要的是不要讓未來太空力量和能力規劃的這一要素脫離戰略設計和規劃過程。
GEO, MEO和LEO衛星
太空中不斷擴大的威脅范圍并非包羅萬象——目前,這些威脅主要與 LEO 中的太空資產有關。
隨著信息空間遇到太空,引入了雙重漏洞,特別是對于軍事通信。地面和天基資產之間的指揮與控制 (C2) 和信息通道對欺騙、干擾、阻塞和其他形式的干預高度敏感。通過光通信、密碼學、跳頻或精確無線電傳輸來保護數據和信息流將需要作為重要的能力設計參數。
衛星本身也越來越有可能成為攻擊性機動和作戰的對象,從而使其變得不那么有用甚至無用。太空中的軍事行動者必須開始考慮并解決如何保護天基資產免受物理攻擊、暴露于高能輻射、電磁篡改和一系列來自地球的新威脅。需要開發和實施用于檢測篡改和增強防御和適當對策的特殊防護層、傳感器。
SSA為空間領域提供了精確的實時圖像,并使洞察意外或不尋常的事件成為可能。有了SSA,衛星運營商可以更好地監測和控制其資產接近潛在威脅和碰撞風險,特別是適用于低軌道空間碎片導航。必要的傳感器配置和數據處理技術將能夠對可能的衛星安全入侵提供早期預警。在新出現的情況下,由于準確的歸因成為可能,進攻性演習和行動的可否認性將不再是問題,從邏輯上講,可以實施更有力的威懾模式。
通過更準確地了解空間和鄰近度計算,可以更及時地確定要考慮和采取的適當行動,并有效地開發空間交通管理系統。改進的 SSA 將導致減少衛星安全風險,反過來這將減少規避機動的傾向,同時提供更安全的方式來實現和保持太空中的安全導航和機動性。通過啟用空間交通管理,將增強天基系統的安全性,延長衛星壽命,并支持更好地規劃更換、升級和新插入。
改進的SSA將導致減少衛星的安全泡,因為它是構成的,反過來,這將減少規避機動的傾向,同時提供更安全的方式來實現和保持空間的安全導航和流動性。通過實現空間交通管理,天基系統的安全性將得到加強,延長衛星的壽命,并支持更好地規劃替換、升級。
增強衛星的機動性是增強其防護能力和生存能力的一項勢在必行的防御措施。機動性的好處同樣適用于地面單元,機動性加強了保護,但需要解決一系列更復雜的挑戰,如燃料、駐扎時間和戰術、技術和程序(TTP)。
如果由于對手的進攻行動或自然環境甚至意外而丟失??衛星,關鍵是要在盡可能短的時間內用同類或改進的系統取代任何失去的能力。事實上,衛星的未來在于微型或納米衛星,與傳統空間系統相比,這些衛星的建造和發射成本更低。當出現對新功能和要求的需求時,新的空間技術將創造新的方式來以更具響應性的方式提供這些功能。設計、制造、測試、程序和發射方面的響應能力需要成為空間能力規劃的關鍵標準,并且需要與工業和知識合作伙伴密切和持續的合作來支持。
在新衛星和空間系統的設計中,可能需要擴展新應用的開發,以便更快、更經濟地建造和發射衛星。通過開發計劃實施新的和不斷發展的需求是不合理的,軍隊必須更好地推動這些需求走向未來的迭代。對空間開發計劃的不斷變化和修改會增加巨大的成本和時間延遲。相反,重點必須放在使衛星更加模塊化或適應性更強,以便可以在不增加成本或復雜性的情況下修改其功能。如果將高度模塊化和適應性構建到當前正在開發的這一代衛星中,它們的可用性和壽命將大大提高。
地緣政治因素和較低的進入壁壘可能會繼續引入新的參與者,追求空間的戰略和戰術使用,運營衛星和開發基于地面的使能基礎設施。
對于較小規模的軍隊,特別是在共同安全保護下合作的軍隊,通過職責和能力分工來分擔負擔具有戰略意義。資產和能力的集中和共享使用將是發展太空能力的一個關鍵特征,這將依賴于國際合作的成果。在缺乏行為規則的情況下,有關空間利用的國際合作還需要解決目前存在于空間中的任何行為者的廣泛自由。到目前為止,擁有先進太空能力的國家數量有限,似乎一直不愿在彼此之間建立更具體的框架和制定長期規則,以避免妨礙未來的戰略可能性。然而,隨著低地球軌道越來越擁擠,太空中新的軍事行動者的出現以及它作為一個有爭議的作戰領域的演變,在沒有最低限度的規則和可接受的風險的情況下,不應再進入和利用太空。
日益擴大的威脅范圍——本質上越來越多地跨域——以及鑒于產生或可用的數據大量增加而需要加速軍事決策,這加劇了作戰人員未來面臨的挑戰。混合戰爭和軍事競爭將需要能夠為軍事規劃者和作戰人員提供預警、卓越的態勢感知和迅速決策的系統。在保證完整性的情況下快速訪問信息對于戰略成功至關重要。在所有這些戰略要務中,太空領域將發揮至關重要的作用。
進入太空領域本身就有足夠的挑戰,但在太空軍事用途的背景下,必須考慮更多。盡管如此,對太空領域的依賴和使用是不可避免的,其能力規劃必須考慮,以提供產生新的戰略和作戰優勢的技術解決方案,并通過推進國際合作來不引人注目地使用太空。不過,最終,軍方不應忘記如何就失去關鍵太空基礎設施的使用權進行談判。在人們認為進入太空是理所當然的時代,地圖和指南針閱讀、野外定向、導航和無通信操作等軍事藝術可能需要保留更長時間。
荷蘭皇家空軍中校(退休)帕特里克·博爾德(Patrick Bolder)專門研究規劃、政策和戰略思維。他曾被借調到海牙戰略研究中心 (HCSS),在那里他從事武裝部隊和國防部委托的項目。他在無人系統、人工智能和太空領域的軍事方面發表了多篇著作。他在無人和空間系統的軍事應用方面具備深厚的知識能力。
第四次工業革命 (4IR) 擴展了信息革命(第三次工業革命),網絡、物理和生物系統之間的集成程度越來越高。預計 4IR 將影響所有行業,包括戰爭性質(Schwab,2016 年)。構成 4IR 一部分的關鍵概念包括(但不限于):
? 數據科學和大數據分析,通常由人工智能和機器學習驅動和/或自動化;
? 云計算,提供可遠程訪問的計算資源;
? 物聯網 (IoT),其中超連接設備可以充當傳感器和執行器,以產生大量信息和網絡物理互連;
? 增強現實,在眼鏡、地圖或圖像上疊加信息;
? 網絡安全,由于將不安全的“非傳統”設備連接到網絡而引入的安全風險。
一些 4IR 概念已以某種形式出現在軍事環境中,例如類似于平視顯示器的增強現實,而物聯網概念將網絡中心戰(或如 Wassel(2018 年)稱之為“數據戰”)演變為所謂的“戰場物聯網”(IoBT)或“軍事物聯網”(IoMT)(Castiglione、Choo、Nappi 和 Ricciardi,2017 年)。軍隊中的物聯網實施有可能在一系列領域支持多域作戰 (MDO) 的指揮和控制 (C2)(Seffers,2017 年)。因此,未來的 MDO 可以被認為包括一個超互聯的戰場,這會導致信息戰 (IW) 的攻擊面增加(Cenciotti,2017;van Niekerk、Pretorius、Ramluckan 和 Patrick,2018)。本文將在 MDO 和 IoBT 的背景下考慮 IW。
軍事行動的傳統“物理”領域包括陸地、海洋、空中和太空;然而,越來越需要在電磁頻譜 (EMS)、網絡和更廣泛的信息環境中占據主導地位(Ween、Dortmans、Thakur 和 Rowe,2019 年)。 MDO 方法被描述為“聯合作戰概念,它將承載所有動能和非動能火力”,以前所未有的方式在整個戰場上提供優勢(South,2019 年)。
圖 1 顯示了多個作戰域:四個“物理”域顯示在圖的中心;這些域通常是移動的,并通過各種頻率的廣播媒體(EMS)進行通信。網絡空間成為其延伸,提供數據和信息傳輸機制,例如網絡協議。雖然當代信息領域被認為與網絡空間幾乎相同,但信息環境更廣泛,還包括印刷信息和認知信息。這些都可支持人類決策,包括作戰人員和指揮官的戰略和戰術決策過程(例如指揮和控制),但可更廣泛地擴展到社會、經濟和政治領域。
圖1:作戰域
早期形式的信息戰包括可以影響和保護物理、虛擬和認知領域的信息作戰(Brazzoli,2007;Waltz,1998)。信息戰的這些“支柱”包括電子戰 (EW)、網絡戰、心理戰 (PSYOP)、情報網絡中心戰或信息基礎設施戰,以及指揮和控制戰 (C2W) (Brazzoli, 2007)。
信息戰的六大支柱
圖2:信息戰的“支柱”
“信息戰”一詞的現代化使用更傾向于認知方面,例如虛假信息和影響力活動,通常由社交媒體和即時消息驅動(Stengel,2019)。新出現的討論集中在所謂的網絡電磁活動 (CEMA) 中電子戰和網絡的“融合”(英國國防部,2018 年;美國陸軍部,2014 年)。然而,考慮到在烏克蘭協作信息和物理作戰的明顯成功,盡管沒有提供“決定性”的勝利,但可以認為信息戰“支柱”產生了更大融合(Valeriano、Jensen 和 Maness,2008 年;van Niekerk,2015 年)。
進攻性信息戰通常具有“5Ds”之一:否認、降級、破壞、欺騙或破壞(Sterling,2019),作為戰略或戰術目標;然而,其他人也提出了目標,例如:
? 破壞、否認、破壞、操縱和竊取(Hutchinson 和 Warren,2001 年);
? 貶低、否認、腐敗和剝削(Borden,1999;Kopp,2000);
? 中斷、修改、制造和攔截(Pfleeger 和 Pfleeger,2003 年)。
最終,人類決策的目標是戰術、作戰和戰略層面;然而,通過網絡空間和信息環境引發的沖突越來越多地針對社會、政治和經濟決策以及軍事行動或作戰人員。隨著國家和非國家行為體(特別是通過在線新聞網站和社交媒體)日益關注虛假信息和影響活動,信息戰在更高戰略層面的目標已被重新表述為 4Ds:駁回、扭曲、分散注意力和沮喪(White,2016)。這種類型的行動以民眾或政治家的“意志”為目標,并與特定戰場空間中更注重行動的信息戰要素相結合,旨在減少或消除民眾或政治對沖突或其軍事目標的支持。
Castiglione、Choo、Nappi 和 Ricciardi (2017: 16) 表明,戰場上已經看到“越來越多的無處不在的傳感和計算設備,被軍事人員佩戴并嵌入軍事設備中”。據報道,北約正在調查物聯網在態勢感知、監視、后勤、醫療應用、基地作戰和能源管理等領域對軍方的潛在好處(Seffers,2017 年;Stone,2018 年;Wassel,2018 年)。IoBT/IoMT還具有:通過聯合作戰支持MDO中的C2;戰術級態勢感知;目標識別;車輛和士兵狀態監測;戰地醫療甚至環境監測(Seffers, 2017)的巨大潛力。
Ren 和 Hou (2018) 提出了一個三層的“戰斗云霧”架構。 “戰斗資源”層包括傳統四個物理域中的平臺和傳感器等軍事裝備。 Cenciotti (2017) 以 F-35 飛機為例,該飛機配備傳感器來收集有關其環境和潛在威脅的信息;它還具有內部傳感器來監控其性能,因此既可以被視為互聯網上的“事物”,也可以被視為一組傳感器。 Valeriano、Jensen 和 Maness (2008) 認為 F-35 相當于一臺計算機服務器。這表明現代軍事系統日益復雜,對數字信息的依賴以及可以生成的大數據量(與“大數據”相關的概念有關)。
Ren和Hou(2018)架構的第二層包括一個“霧層”,用于本地化分布式計算和存儲。第三層則包括云計算,具有更大的存儲空間并由多個“霧網絡”鏈接組成。霧網絡可以被認為是服務于 C2 的戰術和行動,而云網絡服務于 C2 的行動和戰略。鑒于 MDO 的范圍,明智的做法是擴展“戰斗云霧”架構的傳感器,將 EM 域中的傳感器作為戰斗資源集的一部分。
對于那些需要根據提供給他們的分析數據做出指揮決策的人來說,算法被“欺騙”的可能性尤其令人擔憂:關于戰場空間的信息是否可信?在戰術層面上,軍艦上的飛行員或控制站可以信任所顯示的信息嗎?任何猶豫或不正確的決定最終都是信息戰的目標。
還需要在整個戰斗云架構的網絡域中提供監控,以幫助網絡安全。“連接”的軍事單位和設備受到網絡事件影響:據報道,2009 年惡意軟件影響了軍艦和軍用機場(Page,2009;Willsher,2009),移動惡意軟件被用于跟蹤炮兵部隊(Volz,2016 年),現在人們越來越擔心對衛星和天基系統的網絡和電磁威脅(Garner,2020 年;Rajagopalan,2019 年)。受損的物聯網設備已被用于發起分布式拒絕服務 (DDoS) 網絡攻擊,這是當時發生的最大的網絡攻擊之一(Fruhlinger,2018 年)。
此類事件以及與信息系統和安全相關的更廣泛關注點,表明了高度互連系統的固有風險。 Van Niekerk、Pretorius、Ramluckan 和 Patrick(2018 年)說明了如何在信息戰中通過易受攻擊的物聯網攻擊設施和人類。許多此類理論攻擊可應用于軍事場景,例如:
? 破壞數據和系統軟件的 Wiper 惡意軟件或勒索軟件可能對飛機或水下潛艇造成災難性影響;
? 將 PSYOP 信息注入飛行員的平視顯示器會通過暗示飛機系統受到損害,并對時間關鍵的決策產生不利影響而分散飛行員的注意力和使飛行員感到沮喪。
? 網絡攻擊隨機操縱傳感器陣列(例如聲納陣列或防空雷達)以提供虛假目標并隱藏實際目標,從而扭曲戰場視野;
? 在軍事人員的手機上使用惡意軟件和社交媒體來確定部署,從而生成與行動相關的情報。
表 1 說明了與云霧 IoBT 架構相關可能的“通用”信息戰威脅。
表 1:IoBT的信息戰威脅
一般來說,由于電磁信號數量的增加和傳輸的數據量的增加,IoBT 可能會導致電磁頻譜和網絡擁塞。這反過來可能會增加對電磁和 DDoS 攻擊的敏感性,因為每個信號都可能彼此呈現為“噪音”,而干擾會增加這種“噪音”水平,從而降低或破壞通信鏈路的有效性。以類似的方式,數據量越接近網絡的“閾值”,就越容易被惡意流量淹沒。
霧網絡可以被認為是服務于 C2 的戰術和作戰層面,而云網絡服務于 C2 的作戰和戰略層面。鑒于 MDO 的范圍,明智的做法是擴展“戰斗云霧”架構的傳感器,將電磁域中的傳感器作為戰斗資源集的一部分。
IoBT 可能會在戰術層面促進網絡、電子戰和心理戰的“融合”; van Niekerk、Pretorius、Ramluckan 和 Patrick (2018) 在一般背景下討論了這種融合。上面提到了網絡被用來向目標飛行員注入 PSYOP 消息的可能性;類似地,電子戰可用于“壓制”無線電通信,將 PSYOP 消息傳輸給人員。這種融合可以被認為是信息戰的分層模型:電子戰針對網絡的物理層,網絡針對更高層和協議,網絡組件的有效載荷選擇是分發PSYOP消息。
要考慮的另一個方面是為數據分析和軍事設備的作戰而實施的算法。由于現代設備產生的數據量很大,人類不可能對所有數據進行分析,因此需要一定程度的自動化,通常通過人工智能 (AI) 實現。但是,有一些實例表明修改后的輸入導致 AI 提供了不正確的分類(Field,2017;Lemos,2021)。通常在不考慮安全性的情況下實施新技術,人工智能也不例外。在學術領域,研究對人工智能系統攻擊的研究數量急劇增加,包括導致錯誤輸出的對抗性攻擊,以及破壞訓練數據以產生有缺陷模型的數據中毒(也稱為模型中毒) (康斯坦丁,2021 年;萊莫斯,2021 年)。對于那些需要根據提供給他們的分析數據做出指揮決策的人來說,算法被“欺騙”的可能性尤其令人擔憂:關于戰場空間的信息是否可信?在戰術層面上,軍艦上的飛行員或控制站可以信任所顯示的信息嗎?任何猶豫或不正確的決定最終都是信息戰的目標。
多域作戰涵蓋所有物理環境,也可以擴展到電磁域和網絡域。戰場物聯網提供了一種機制,通過嵌入式傳感器實現多域作戰,提供作戰環境的通用圖像。然而,物聯網總體上被認為容易受到攻擊,超連接的戰場可能會增加物理、電磁、網絡和認知領域的信息戰攻擊面。攻擊可能針對物理基礎設施、信號、網絡協議、算法、數據和人類心理。
Brett van Niekerk 博士是夸祖魯-納塔爾大學的高級講師,并擔任國際信息處理聯合會和平與戰爭中 ICT 工作組的主席,以及國際期刊網絡戰和恐怖主義的聯合主編。他在學術界和工業界擁有多年的信息安全和網絡安全經驗,并為 ISO/IEC 信息安全標準和國際工作組做出了貢獻。他以他的名義發表了 70 多篇出版物和演講。 2012 年,他獲得博士學位,專注于信息運營和關鍵基礎設施保護。
2019年冠狀病毒(COVID-19)大流行以多種方式影響了加拿大武裝部隊(CAF)及其成員。由于CAF為其成員管理自己的醫療保健系統,它必須考慮COVID-19不僅對其勞動力的運作效率,而且對其醫療保健業務的影響。此外,鑒于CAF繼續在國內和國際行動中進行部署,它必須保持對該大流行病狀況的本地和全球意識。加拿大國防研究與發展中心(DRDC)的業務研究和分析中心(CORA)以嵌入整個CAF的科學家小組的形式運作,隨著大流行病的發展,這些科學家中的許多人在小組之間進行合作,并在彼此的分析基礎上為個別指揮官最終向CAF和其外科主任提供更廣泛的建議。在許多方面,這代表了DRDC CORA在第二次世界大戰中的回歸。本文強調了這些貢獻的廣度,并確定了成功的關鍵推動因素。在這樣做的過程中,它涵蓋了DRDC CORA的分布式模式如何有利于快速形成非正式和正式的團隊,為CAF提供及時和有影響力的建議,以及如何利用公共和內部信息來源,使指揮官能夠對行動風險做出明智的決定。
#引言 雖然科學應用于軍事行動的確切起源難以確定,但在加拿大,軍事作戰研究(OR)作為一門正式的學科,始于二戰期間的全球威脅。與其他國家一樣,加拿大的研究人員被征召參加戰爭,少數人被派往英國部隊,在那里,支持軍事的作戰研究最近已經扎根。不久之后,加拿大高級軍事領導人認識到這些科學家為英國武裝部隊提供的價值,并在三個傳統的環境服務部門(陸軍、海軍和空軍)中分別建立了自己的OR單位。這些單位在戰爭結束后被解散,但僅僅在短短幾年內,OR就在加拿大國防部重新建立起來。從那時起,這種能力已經通過多種形式發展起來,其中大部分科學家現在形成了作戰研究和分析中心(CORA),是加拿大國防研究和發展部(DRDC)的一部分。
嚴重急性呼吸系統綜合癥冠狀病毒2(SARS-CoV-2)的出現,即引起2019年冠狀病毒病(COVID-19)的病毒,導致了一場大流行,至今仍影響著日常生活的許多方面。因此,它代表了最新的全球威脅,手術室的資源已經被動員起來應對。本文討論了促進CORA反COVID-19努力的因素,并簡要描述了因此而完成的工作。目的是對這項工作的廣度提供一個概述,如果需要更多的信息,請讀者參考其發表的記錄。
本文件的其余部分結構如下。第2節提供了CORA目前結構的總體概述,以及一些相關的組織理念,這些理念有助于在大流行病期間實現成功的分析反應。第3節描述了這些因素如何對CORA有利,而第4節介紹了CORA科學家在支持加拿大大流行病相關工作中的一些主要成就。第5節描述了從我們的COVID-19反應中所獲得的經驗教訓。最后,第6節提出了結論意見。
同步使用針對所有社會職能中的特定漏洞而定制的多種權力工具,以實現協同效應。混合作戰入侵者將尋求利用目標國家的弱點。每一個混合戰爭入侵者可能有獨特的能力,可用于打擊目標國家。戰爭的“奇襲”原則可能是混合攻擊成功的最大因素。
幾十年來,政治科學家和國家層面的軍方政策制定者一直在戰略層面使用博弈論,但對其在作戰層面的使用幾乎沒有評論。傳統上,三個主要挑戰阻礙了規劃人員和分析人員在作戰層面使用博弈論,即復雜的作戰環境、參與者的動態交互以及大多數陸軍參謀人員不具備使用復雜數學技能。
這本專著表明,這些挑戰是可以克服的,博弈論可以在規劃過程中提供新穎的見解。美陸軍參謀部規劃人員可以在作戰層面有效地使用基本博弈論和簡單的數學來了解作戰環境、了解行動者及其動機,并在軍事決策過程中比較行動方案。本專著展示了如何避免高級博弈論用于解決理論問題的繁瑣數學程序,而是專注于使用基本博弈論在規劃過程中提供價值。它通過回顧博弈論在戰略層面的應用、教授基本博弈論和涵蓋一些基本博弈概念來展示博弈論的實用性。然后,它考察了一場歷史性的行動,以展示博弈論的使用將如何達到另一個推薦行動方案和結果,也許會改變歷史進程。最后,它通過將博弈論應用于軍事決策過程、任務分析和行動制定過程的兩個步驟的練習,提供了使用博弈論的指南。
幾十年來,戰略規劃者和政策制定者在戰略層面有效地應用了博弈論,但軍事從業者往往不在作戰層面使用它。當約翰·馮·諾依曼和奧斯卡·摩根斯坦在 1940 年代初在蘭德公司工作期間發展博弈論時,他們尋求一種數學方法來為沖突領域,特別是經濟沖突提供解決方案。他們于 1944 年發表了開創性的著作《博弈論與經濟行為》
博弈論允許通過將場景建模為簡化的博弈來分析決策。博弈論試圖定義參與者、策略——或可供他們選擇的選項——以及博弈結果的預期回報。它試圖澄清由于參與者的選擇而導致的不確定性。它的主要用途是它認識到結果是通過多個參與者的互動共同決定的,而不僅僅是一個人自己決定的結果,它允許分析對手可能會做什么。由于這些原因,政策制定者和戰略家使用博弈論來理解戰略問題,例如核對手、貿易慣例、內戰解決和裁軍以及缺乏國際合作,從而制定政策建議以幫助解決這些問題
作戰層面的規劃者是否可以有效地應用博弈論仍然是一個懸而未決的問題。在作戰層面使用博弈論的批評者強調了動態交互的復雜性。他們指出,培訓軍官了解博弈論的基本概念并將操作層面問題的復雜性提煉成基本博弈需要大量時間。
本專著認為博弈論提供了一個有價值的框架,最適用于在軍事決策過程的任務分析和行動發展步驟過程中理解環境中的參與者。博弈論旨在提供對情況的理解。這需要了解參與者及其潛在計劃或戰略動機。博弈論提供了一種理性的方法來研究行動者如何制定他們的策略和他們的動機基礎。由此,指揮官和參謀人員可以獲得理解,然后疊加其他因素,包括行動方案和潛在結果。它提供了一種合理而直接的方法來簡化復雜的問題。因此,博弈論為作戰規劃者提供了另一種工具,可用于了解作戰環境。
本專著重點介紹博弈論在戰略層面的歷史應用、當前的規劃過程學說和相關框架,以回答作戰規劃者能否在作戰層面有效地使用博弈論。這本專著主要通過囚徒困境分析博弈論在戰略層面的應用,將其應用于冷戰、國際貿易和價格戰期間的降價。 1777 年的新澤西戰役為應用博弈論和理解喬治華盛頓將軍和查爾斯康沃利斯將軍之間的競爭環境提供了一個歷史例子。最后,它演示了如何以及在何處將博弈論工具實施到美國陸軍當前使用的規劃過程中。所使用的博弈論是一種基本的應用方法,而不是過于復雜和無用的高級學術博弈論。簡單的博弈可以使復雜的操作情況變得清晰。該研究回顧了陸軍規劃學說,以專注于了解作戰環境和問題。任務分析旨在了解環境中的參與者以及他們之間沖突的根源。這 3 項研究的重點是深入了解對抗性和中立的參與者、激勵措施、潛在的行動方案和回報。該專著追溯了博弈論的戰略應用和作戰應用之間的差異,以了解哪些要素是一致的,同時說明了差異。最后,它將討論如何克服實施中的潛在挑戰。
規劃人員可以在軍事決策過程中使用博弈論工具,特別是在任務分析期間,以不同的視角理解作戰環境和行動發展過程,以檢查未發現的假設。博弈論工具不是替代軍事決策過程中現有的步驟和工具,而是對其進行補充。戰地手冊 6-0 解釋說,指揮官和參謀人員使用任務分析來更好地了解作戰環境和部隊面臨的問題。接下來,規劃人員使用任務分析來制定假設以填補知識空白。最后,考慮到博弈論理解競爭的本質,任務分析也有助于理解友軍和敵軍如何互動。行動方案制定過程提供了一種客觀的方式來看待多個潛在計劃。在上面的歷史例子中,華盛頓將軍和康沃利斯將軍需要了解他們的潛在行動以及他們認為 30 名敵方指揮官可能會做什么。在某種程度上,歷史例子中的將軍們可以在他們的行動發展過程中使用博弈論來檢查他們的假設。開發從敘述性或定性評估開始,然后轉向帶有每個計劃的加權分數的可量化評估。博弈論允許另一種觀點來評估潛在的計劃。以下思想實驗提供了一個示例,說明工作人員如何在任務規劃期間使用一些博弈論工具。
演習如下:美國討論在一個靠近對手的友好國家增加軍事存在,這旨在阻止對手入侵友好國家。軍團工作人員了解國家決策者關于在一個地區增加軍事存在的辯論。此外,他們知道如果國家領導層追求升級,軍團是升級的一個因素。工作人員致力于了解作戰環境并了解國家層面的優先事項和激勵措施,以便他們可以就選項提出更高的建議并為預期的行動方案做好準備。其次,他們努力了解敵人的動機和行動計劃。敵人還面臨著增加其在該地區的軍事存在或維持現狀的前景。兩國都擁有核武器,都不想進行全面戰爭。最后,兩個大國都可以遷移的地區的人口不希望被外國勢力占領。國家決策者面臨的戰略決策具有操作層面的影響。
如上所述,任務分析提供了對情況和問題的理解。在任務分析過程中,工作人員開始對行動者的動機和動機有所了解。戰場情報準備是任務分析的關鍵步驟。參謀人員對友軍和敵軍如何在環境中相互作用做出假設。由此,工作人員開發了每個參與者在即將到來的操作中可以使用的潛在選項。此外,情報準備步驟確定了指揮官和參謀人員的知識差距。這些差距導致了獲取信息的情報需求的發展。正如文獻回顧中所述,人們根據他們擁有的信息做出決策,并預測競爭對手的行為。這些步驟不會取代或否定軍事決策過程的任何步驟,它們只是關于如何以及在何處實施博弈論工具的建議。
鑒于這種情況,參謀人員開始制定敵人的行動方案。當應用于博弈矩陣時,這些行動方案成為敵人的策略。敵人可以用他們的一個師或軍將該地區軍事化,也可以選擇不軍事化。是否軍事化的選擇為敵人創造了兩種不同的戰略。第二步著眼于每個策略的結果。如果雙方都軍事化,那么他們將面臨戰爭。如果雙方都沒有軍事化,那么他們就維持現狀。如果一個國家軍事化而另一個國家不軍事化,那么軍事化的國家就會在沒有爭議的環境中這樣做。表11顯示了這種情況的結果。
表11:定性結果
第三步要求參謀人員查看敵人的動機,然后對他們的選擇進行定性分析。敵人想在美國不決定將該地區軍事化的情況下將該地區軍事化。這為他們創造了一個無可爭議的環境。其次,他們既不看重自己也不看重美國將該地區軍事化,這是現狀。第三個可取的結果是美國軍事化,而敵人沒有,這意味著美國擁有無可爭議的軍事化。最后,如果美國也進行軍事化,敵人不想升級為戰爭,也不想將該地區軍事化。工作人員現在可以根據偏好對敵人的行動路線進行排序。作戰和情報人員可以利用收集資產并制定收集計劃,以確定有關敵人計劃的任何指標,例如在該地區集結部隊。信息收集計劃有助于回答信息需求并協助進行有效規劃。
工作人員現在進入行動開發過程。生成選項步驟概述了指揮官和參謀人員可用的選項。工作人員制定了可以切實擊敗敵人行動方案的選項,然后確定它們的優先級。工作人員還產生了兩個廣泛的選項。他們可以軍事化,也可以不軍事化。由于每個參與者的策略,工作人員現在可以對他們的行動方案進行排序。指揮官和參謀更愿意維持現狀。如果美國采取行動將該地區軍事化,它可能會擾亂地方、國家政府和民眾。因此,美國對該地區的軍事化和一個不軍事化的敵人是次要的選擇。這種選擇意味著美國擁有無可爭議的軍事化,但正如所述,當地政府感到不安。第三,排名是美國不軍事化,但敵人軍事化,給了他們無可爭議的優勢。最后,美國不希望發生戰爭,如果美國和敵人都進行軍事化,就會發生戰爭。
接下來,工作人員將博弈發展為矩陣或戰略形式。首先,他們進行定性分析,說明每次交戰的可能結果,見表 12。然后參謀人員從每個指揮官的角度對結果進行排序,以生成定量分析和回報,如表 13 所示。該表顯示了回報敵方第一,美國第二。使用倒序排列,最低數字的收益表示排后的選項,數字越大,表示首選的選項。每個戰斗人員都是近鄰,因此參謀人員認為交戰將有利于主動一方。
表12 :定性分析
表13:定量結果
這兩種的價值在于員工進行分析以掌握對潛在未來結果的理解。它提供了一個簡潔的可交付產品,參謀計劃人員可以在一張紙上將其交給指揮官或參謀長,以供將來參考或思考,因為指揮官和參謀人員開始在軍事決策過程的未來步驟中權衡選項。這種分析為員工提供了一個思考他們正在做什么以及他們的計劃可能產生什么結果。這是舍恩所說的實踐中反思的一個例子。正如他所說,它允許人們在執行任務時思考他們正在做什么,然后塑造他們所做的事情。
下一步要求參謀人員將可用選項縮小到只有指揮官可用的可信選項。參謀部尋找指揮官永遠不會使用任何主導策略。敵方指揮官沒有任何主導策略,并且兩種策略都可供他使用。但美國永遠不會在博弈中選擇軍事化,因為無論敵人選擇什么,不軍事化都會主導博弈。表 14 以粗體突出顯示哪個選項在美國占主導地位。例如,如果敵人決定軍事化,如果它決定軍事化,美國將獲得 1 的回報,否則將獲得 2 的回報。因此,在這種情況下,美國會選擇不進行軍事化。同樣,如果敵人不軍事化,那么如果它軍事化,美國將獲得三倍的回報,如果它不軍事化,美國將獲得四倍的回報,美國將再次選擇不進行軍事化。因此,工作人員將其排除在外。
表14:以粗體突出顯示的美國的收益
既然參謀人員了解美國沒有軍事化的動機,它就可以看看敵人可能會采取什么行動作為回應。敵人知道美國不想軍事化,并尋求使其結果最大化。因此,敵人選擇軍事化,因為這比不軍事化帶來更好的回報。這達到了納什均衡,即敵人軍事化并獲得四分之二的回報,而美國不軍事化并獲得三分之二的回報。表 15 顯示了圈出的所得納什均衡。
表15:軍事化為主
但現實生活中的情況并不總是一致的。一方通常首先采取行動,迫使另一方做出決定。在上述情況下,美國正在努力應對將該地區軍事化的決定。然后他們的決定迫使敵人做出決定。下一步著眼于在順序移動游戲中情況如何展開,以及納什均衡在決策分析中是否發生變化。順序博弈見表 16。該表首先顯示了敵人的收益,其次是美國的收益。
表16:順序多次博弈
參與者對每個結果的選擇和回報保持不變。唯一的區別是美國先行動,敵人必須做出反應。工作人員必須使用子博弈分析來分析這個博弈及其結果。敵人有第二步,因此分析從他們的預期步驟開始。這兩個參與者都知道,如果美國選擇軍事化,敵人將選擇不軍事化,因為兩個人的回報比一個人要好。如果美國選擇不軍事化,敵人會想要軍事化,因為四比三好。鑒于美國的選擇,上面的表 16 通過圈出每個敵人的首選選擇來表明這種行為。既然美國知道敵人會根據美國的選擇做出哪些選擇,他們就會在兩者之間做出選擇。美國選擇軍事化,知道敵人不會軍事化,從而為美國帶來三倍的回報。美國軍事化總比不軍事化并獲得兩個回報要好,因為知道敵人會選擇軍事化。因此,納什均衡變成了美國軍事化和敵人不軍事化,敵方兩分,美國三分,見表 17。
表17:納什均衡
序列博弈導致的納什均衡與同步博弈不同,為什么?每場比賽都會導致一方軍事化,而另一方不軍事化。在同步博弈中,敵人通過軍事化獲得了最有利的回報,美國知道這一點,因此選擇不軍事化。然而,在順序博弈中,美國先決勝負。如果他們不軍事化,他們將獲得最高的回報,而敵人也選擇不軍事化。兩國都不會軍事化,因為如果美國不軍事化,敵人就有動機進行軍事化。美國意識到這一點,因此認為他們的下一個最佳選擇是軍事化,因為它知道敵人不會軍事化,因為這會迫使兩個參與者之間發生戰爭。這個游戲提供了一個先發優勢的例子。如果敵人先選擇,他們也會有軍事化的動機
序列多次博弈反映了更現實的情況。但是運行這兩種類型的博弈為工作人員了解動機和潛在行動提供了分析價值。工作人員可以看到排序操作如何改變結果。如上所述,使用這種方法的價值在于分析。工作人員可以按照矩陣形式對每個結果進行簡要說明。然后他們可以看到他們的選擇之一不是一個可行的選擇。然后,他們查看了定量評估并確定可以使用平衡結果。所進行的定性分析重申了 Thomas Schelling 的觀點,即博弈論的數學并不總能解決沖突,不應過度依賴數學。而是對問題的思考增加了價值。
博弈論提供了一種分析工具來看待競爭情況。它使分析師能夠了解潛在的行動計劃、激勵措施以及回報或結果。此外,它可以突出信息差距和需要進一步理解的領域。在 20 世紀中葉,戰略層面的規劃者用它來更好地了解美國和蘇聯之間在使用核武器和原子戰方面的競爭。國防部以外的分析師使用它來了解競爭公司之間的貿易爭端和降價。
在作戰層面,博弈論允許對潛在計劃、激勵和結果進行相同類型的分析和理解。這本專著審視了博弈論的歷史并探索了基本的博弈論,確立了博弈論在分析沖突情況方面的有用性。文獻回顧揭示了博弈論的優勢和劣勢,這為如何最好地利用它以最大限度地發揮其潛力提供了信息。檢查諸如核局勢和國際貿易等戰略層面的決策為以前的努力如何有效地應用博弈論提供了背景。博弈論在特倫頓和普林斯頓的美國獨立戰爭中的應用與指揮官們所追求的不同,展示了使用博弈論如何提供獨特的見解,這對于像康沃利斯這樣經驗豐富的將軍來說并不明顯。最后,該專著展示了軍團級別的參謀人員如何使用博弈論來理解戰略級別的決策如何影響作戰級別的行動,比較了同步博弈和序列博弈的實用性。最后一部分提供了一個基本框架,工作人員可以通過將博弈論應用于任務分析和行動開發過程來解決操作問題。
博弈論的使用不僅限于軍事決策過程。博弈論非常適合國防部和美國陸軍目前使用的現有規劃流程。規劃人員可以在聯合作戰設計過程和陸軍設計方法中使用博弈論工具。具體來說,在聯合設計期間,博弈論工具最適合理解戰略指導和理解作戰環境。在軍隊設計期間,它最適合構建作戰環境和理解問題。博弈論是參謀人員或計劃團隊的工具包中的另一個有用工具。當通過軍事決策過程或設計過程應用時,博弈論分析與其他工具很好地結合在一起,可以更好地了解作戰環境。