亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

人工智能在軍事應用中的融入改變了當代戰爭,提供了無與倫比的效率、準確性和獨立能力。然而,隨著人工智能系統的進步,自主武器相互協作和通信的可能性帶來了大量的戰略、倫理和安全問題。本文試圖通過分析機器學習和自主系統的最新進展,研究實現人工智能通信的技術基礎。本文將研究連接性如何影響戰場動態、決策過程,以及可能提高作戰效率或導致意外后果的潛在突發行為。

在戰爭越來越多地被技術進步所定義的時代,一個引人入勝的問題是,人工智能戰爭武器是否會開始相互通信,以及這種潛在的聯系將如何重塑戰場的動態。人工智能系統之間的相互聯系不僅代表著軍事能力的飛躍,也代表著沖突的根本性變化,對戰略、倫理和全球安全產生深遠影響。問題的核心是自主軍事系統正在發揮的作用,它將徹底改變現代戰爭。人工智能驅動的技術,包括無人機(UAV)、無人地面機器人(UGV)和海上無人機,在偵察、作戰和戰略行動中展現出無與倫比的能力。這些系統越先進,就越能協同工作:共享信息、協調行動,并可能做出獨立決策,這就對未來戰爭提出了一些非常關鍵的問題。

人工智能武器相互通信的前景帶來了突發行為的可能性--單個人工智能單元的互動可能產生復雜的、有時甚至是不可預測的模式。這種行為表明,作戰效率能夠使高度適應性和協調行動超越人類控制系統。然而,為這些充滿希望的概念提供動力的連接本身也帶來了巨大的挑戰。人工智能交互的不可預測性意味著無法預測人工智能在戰場上的交互后果:沖突升級、意外交戰或失去人類監督。

本文將探討這些緊迫問題,并將進一步論述與人工智能武器的相互關聯性相關的技術、戰略和倫理層面的問題。本文將介紹人工智能系統中的通信如何改變戰場態勢,提高軍事對抗的速度、準確性和自主性。本文還將討論與這種發展相關的風險,從可預測性和控制問題到人工智能驅動的完全失控的沖突,進一步擴展到與將生死攸關的決定權交給機器相關的倫理困境。如果人工智能在目前的狀態下繼續改進,問題就變成了:人工智能武器是否會互相交談?人工智能武器會互相交談嗎?這會對戰場動態產生什么影響?這不是技術上的猜測,其答案將決定人類在全球安全方面是否會有一個不同的未來。

自主軍事系統目前的作用

自持軍事技術的采用從根本上改變了當代戰爭,為偵察和作戰任務引入了新的能力。人工智能驅動的無人機和傳感器配備了最新的成像技術和人工智能算法,可以快速分析大量信息,以驚人的精度定位和跟蹤威脅,并不間斷地對廣大地區進行實時監視(Kallenborn,2024 年)。這些自主系統可以在各種環境下執行任務,從城市地區到偏遠的敵對地點,為軍事部隊提供全面的態勢感知。

在偵察方面,無人機和地面機器人可用于從敵對或難以接近的環境中收集重要信息。無人機可在不同高度飛行,并配備激光雷達、紅外攝像機和雷達等先進傳感器。這些傳感器使其能夠探測和分析各種環境和態勢因素,如敵軍動向、地形變化和潛在威脅。無人地面車輛(UGV),如 Lyut 坦克,通常專為崎嶇地形而設計,可攜帶類似的傳感器有效載荷,并在人類士兵難以穿越的危險環境中航行(Malyasov,2024 年)。這些自主系統可以在敵方地點執行偵察任務、探測地形條件并跟蹤移動,而不會讓士兵面臨風險(Scharre,2014 年)。這在派遣人類偵察隊過于危險的沖突地區非常有用。這些自動駕駛車輛收集的數據通常使用機器學習方法進行分析,以發現有助于產生有用見解的趨勢。這些方法提高了所收集數據的準確性,加快了決策速度,有助于對動態戰場局勢做出快速、明智的反應。

在戰斗中,部署自主武器系統標志著軍事戰術的重大變革。這些系統由無人機、自主地面機器人和海上無人機組成,可以高精度、高效率地執行作戰行動(Scharre,2014)。自主武器旨在執行復雜的機動任務,與其他單位合作,并在較少人員參與的情況下完成任務。例如,配備先進瞄準系統的無人機可對目標實施精確打擊,將附帶損害降至最低,提高任務成功率(Ackerman & Stavridi, 2024)。無人機群是最新的部署方法之一,在無人機群中,多架無人機以一體化的方式執行特定任務,實現單機無法達到的效果。

這些無人機群能夠摧毀敵人的防御工事,在廣闊的地域執行偵察行動,甚至搜救任務。群組中的每架無人機都能與其他無人機通信,從而在一秒鐘內共享數據并適應各種情況。這就提高了任務的整體成功率(Scharre,2014 年)。此外,當應用于作戰時,自主系統可大大提高部隊的倍增能力和作戰靈活性。例如,自主地面機器人可以執行拆彈任務,提供后勤支持,甚至與敵軍交戰(《突破防線》)。

通過承擔戰場上一些最危險的任務,這些機器人降低了人類士兵的風險。在海軍行動中,海上無人機被部署執行監視、水雷探測和反潛戰等任務(Burt,2024 年)。這些無人機可以獨立行動,也可以與有人駕駛的船只聯合行動,以擴大海軍部隊的覆蓋范圍和能力(Burt,2024 年)。

自主系統不僅能提高軍隊的攻擊和防御能力,還能對新威脅做出更快、更適應性更強的反應,如利用人工智能漏洞的復雜網絡戰戰術或旨在破壞通信和導航系統的電子戰,從而帶來巨大的戰術優勢。在一系列領域(海、陸、空)部署數以百計的自主部隊,可以形成錯綜復雜的動態戰場環境,很少有對手能與之匹敵。自主系統之間的這種相互聯系和協調,有助于以更加整體、更具彈性的方式開展軍事行動。

隨著人工智能和自主系統的不斷發展,更有必要解決它們帶來的倫理和安全挑戰。必須確保這些系統始終符合規定的法律和道德行為規范,以免落入壞人之手或造成意想不到的后果。因此,防范網絡威脅和確保自主系統的可靠性對于保持其在軍事應用中的整體效率和可靠性將變得非常重要。隨著此類技術越來越多地應用于全球軍事力量,自主系統的作用將繼續成為未來戰爭的決定性因素,這就要求制定有關負責任地使用和部署自主系統的詳細政策和戰略(Sophos,n.d.)。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

物聯網的迅猛發展有可能對人類的多個領域產生影響,作戰領域就是其中之一。本文強調了物聯網在現代戰場場景中的應用前景,分析了物聯網在增強態勢感知、提供信息優勢和通過綜合分析補充決策支持系統方面的作用。在肯定技術優勢的同時,本文還探討了物聯網在軍事應用中的安全和倫理問題。

物聯網向戰場物聯網過渡

長期以來,國防領域一直是眾多新興技術的源泉。獲得戰場優勢一直是探索和嘗試激進想法的驅動因素。第一次海灣戰爭后,時任美國海軍作戰司令的威廉-歐文斯上將在美國國家安全研究所發表的一篇研究文章中提出了 “系統簇”這一概念,從而使這種想法開始成形。他闡述了數據和網絡改變作戰的方式。這一觀點轉化為 “網絡中心戰”概念,它是三個領域的融合,即物理領域(進行演習并從傳感器獲取數據)、信息領域(傳輸和存檔數據)和認知領域(處理和分析數據)。在這一概念提出二十多年后的今天,世界各地的軍事領導人和國防專家都對這一概念的實施持樂觀態度,這主要是由于物聯網技術的成熟。烏克蘭地面部隊廣泛使用標槍反坦克導彈和 “彈簧刀 ”隱形導彈來挑戰強大的俄羅斯裝甲部隊,這就是物聯網技術在戰區成功應用的例證。

物聯網技術不應被視為 “另一種獨特的利基技術”,相反,它涵蓋了許多此類技術。因此,將物聯網技術理解為一種理念更為恰當和合理。它是多種智能化、網絡化和動態構建的設備和技術融合的結果,可以在物理和虛擬空間產生效果。IoBT 的目標是管理復雜、智能的系統之系統,普遍安裝智能傳感器和執行器,以自適應學習過程為動力,實現軍隊的戰略和戰術目標。IoBT 網格通過各種有線或無線傳感器節點實現功能,所有這些節點都是網狀的。由地面預警和無人機傳感器、自主武器、智能士兵和最先進的指揮所組成的網絡可協調行動。它可以發揮收集情報和實施動能打擊的雙重作用。它可以將士兵從執行環節中剝離出來,讓他們處于最高級別的監督地位,從而使武器能夠高度自主地分配和攻擊目標。它還能加快行動節奏,消除戰爭迷霧。

圖 1:國防戰術邊緣物聯網的目標場景

戰場物聯網應用案例

物聯網在軍事領域的應用潛力巨大,其在戰術戰斗領域的應用似乎更勝一籌,有望帶來豐厚的紅利。在以網絡為中心的作戰場景中,物聯網可無縫、有效地整合戰場指揮官所掌握的所有可用資源,幫助其做出明智決策。下面簡要介紹一些可能的應用領域。

  • C4ISR。部署在各種平臺上的物聯網傳感器集成網絡可在有爭議和脅迫的環境中提供更好的態勢感知。地面和空中傳感器、監視衛星以及實地士兵的組合必然會收集到各種數據。這些信息可在一個平臺上進行過濾、處理、核對、確證和保存,該平臺可調節指揮鏈上下的關鍵數據傳輸,從而實現更好的戰場協調、指揮和控制。

  • 武器控制系統。目前正在探索利用傳感器網絡、機器學習和先進的人工智能分析技術實現自主武器系統和火力控制的可能性。這種傳感器射手網格可以提供精確的目標火力投送,并對攻擊做出完全自動化的實時響應。

  • 作戰物流。利用智能傳感器、RFID 標簽和 M2M 通信,可以輕松實現有效的車隊管理和高效的貨物跟蹤。邊緣物聯網設備可增強對軍械、關鍵物資、口糧和服裝的實時跟蹤和供應。在監控消費模式的同時,還可以根據固有的優先級和必要性來推動物資供應模式的實施,從而大大提高行動效率。

  • 人員管理。可穿戴物聯網傳感器可嵌入戰斗人員的個人裝備,如小武器、頭盔、服裝、背包等,實現無處不在的身體活動跟蹤和作戰數據收集。利用情境感知數據實時推斷和跟蹤士兵在行動中的健康參數和心理狀態,可提供重要的洞察力,有助于采取預防性措施以保護部隊。

  • 訓練。物聯網還可用于加強訓練和戰爭游戲體驗。IoBT 概念可融入軍事訓練,為未來行動提供更加真實、適應性更強和更有效的準備。可穿戴傳感器可用于跟蹤正在接受訓練的士兵的生理和認知狀態,從而提供量身定制的反饋和個人優化。

  • 管理。管理戰區的電力需求仍然是一個被低估的領域,但隨著戰場上電子設備的引入越來越多,電力和能源管理將給未來行動的規劃和執行帶來嚴峻挑戰。采用預測算法和實時物聯網數據可以大大節省軍方的能源消耗,并有助于了解使用模式。

  • 智能監控。先進的視聽和地震傳感器以及視覺人工智能和模式識別技術可促進智能監視和監測網的建立,該網不僅可覆蓋地面,還可覆蓋海洋環境。物聯網解決方案使感知和預測生態條件成為可能,從而隨時掌握大范圍內的海上作業情況。

  • 協作與人群感應。戰術資源的流動性和機動性給現代戰場帶來了一系列獨特的通信挑戰。協作傳感是指在移動設備之間傳播傳感器數據的過程,通常使用可靠的短程通信。物聯網節點可利用閑置傳感器來滿足自身的傳感需求。通過將傳感器與任務分配相匹配,可為任何臨時 ISR 任務提供便利。因此,作戰指揮官可支配的可用傳感和通信資源可得到最佳利用。

付費5元查看完整內容

人工智能(AI)技術,尤其是機器學習技術,正在通過增強人類決策能力迅速改變戰術行動。本文探討了人工智能驅動的人類自主組隊(HAT)這一變革方法,重點關注它如何增強人類在復雜環境中的決策能力。雖然信任和可解釋性仍是重大挑戰,但我們的探討重點是人工智能驅動的 HAT 在改變戰術行動方面的潛力。通過改善態勢感知和支持更明智的決策,人工智能驅動的 HAT 可以提高此類行動的有效性和安全性。為此,本文了提出了一個綜合框架,該框架涉及人工智能驅動的 HAT 的關鍵組成部分,包括信任和透明度、人類與人工智能之間的最佳功能分配、態勢感知和道德考量。所提出的框架可作為該領域未來研究與開發的基礎。通過識別和討論該框架中的關鍵研究挑戰和知識差距,我們的工作旨在指導人工智能驅動的 HAT 的發展,以優化戰術行動。我們強調開發可擴展且符合道德規范的人工智能驅動的 HAT 系統的重要性,該系統可確保無縫的人機協作、優先考慮道德因素、通過可解釋的人工智能(XAI)技術提高模型的透明度,并有效管理人類操作員的認知負荷。

人工智能和自主技術的融合給包括國防和戰術行動在內的各行各業帶來了革命性的變化。HAT 的興起可歸因于幾個因素,包括自主技術和人工智能的快速進步、任務和環境的日益復雜、能力更強的自主系統的發展,以及數據和計算能力的不斷提高。隨著這些技術變得越來越復雜和強大,人們越來越認識到,將人類的認知能力與自主系統的計算能力和效率相結合,可以實現潛在的合作。現代 HAT 系統的興起也是由于需要應對快速發展和動態環境的復雜性和挑戰。隨著任務變得越來越復雜、對時間越來越敏感、數據越來越密集,人類與智能體之間的協作對于有效駕馭和應對這些挑戰變得至關重要。

HAT 是一個新興領域,探索人類與自主系統之間的協作伙伴關系,以執行任務或實現共同目標。這涉及一種協作安排,其中至少有一名人類工作者與一個或多個智能體協作。這種協作方式有可能徹底改變各行各業完成任務的方式,并為人類與智能自主系統攜手解決復雜問題和實現共同目標的未來鋪平道路。HAT 系統旨在允許人類將任務委托給智能自主體,同時保持對整體任務的控制。這里所說的智能體是指在決策、適應和通信方面具有不同程度自治能力的計算機實體。這一定義得到了先前研究成果的支持。在 HAT 中,人類的認知能力與自主系統的計算能力和效率相結合,可以提高性能、決策和系統的整體能力。

在此,將定義和澄清一些關鍵概念,這些概念對于理解本研究的范圍和背景至關重要。這些概念包括人工智能、自主、自主系統和戰術自主。通過提供明確的定義并區分這些術語,我們希望讀者能夠達成共識。

自主性。HAT背景下的自主性是指智能自主系統或智能體在團隊環境中獨立運行和決策的能力,具有不同程度的自我管理能力。這涉及到自主系統在學習、適應和推理基礎上更高程度的決策能力。它是系統的一種屬性,而非技術本身。自主實體可以感知、推理、規劃和行動,以實現特定的目標或目的,而無需人類的不斷干預。值得注意的是,自主的程度可能各不相同,有的系統可以完全自主地做出所有決定,有的系統則是半自主的,在某些情況下需要人的干預。在戰術自主方面,HAT 涉及將自主能力整合到戰術行動中。這種整合可包括各種應用,如利用自主系統收集情報、執行監視和其他關鍵活動。自主性使系統能夠在復雜和不確定的環境中運行,從經驗中學習,并在任何情況下都無需明確的人工干預即可做出決策。然而,必須將其與傳統自動化區分開來,傳統自動化通常遵循預先編程的規則、決策樹或基于邏輯的算法來執行任務或做出決策。傳統自動化的適應性和靈活性有限,無法在沒有明確編程的情況下處理動態或不可預見的情況。本文討論了人工智能驅動的自主性如何通過強調學習、適應和決策能力來區別于傳統自動化。這些能力最終會提高戰術行動中人類-自動駕駛團隊合作的整體有效性和敏捷性。

自主系統。自主系統可以在沒有人類持續控制的情況下執行任務或操作。它們利用人工智能算法和傳感器感知和導航環境,實現高度自主。

戰術自主。在本研究中,戰術自主是指自主系統在動態和復雜的作戰環境中做出實時決策和采取行動的能力。這涉及人類與自主系統之間的無縫協調和互動,使它們能夠作為一個優勢互補的統一團隊發揮作用。HAT 的重點是通過人類操作員與智能自主系統之間的無縫協調與協作,實現共同的任務目標。本文介紹了一種人工智能驅動的 HAT,它將人工智能集成到 HAT 框架中。這種方法結合了人類專業技能和人工智能能力的優勢,從而提高了決策、態勢感知和作戰效率。戰術自主性將人類的認知能力(如適應能力、直覺和創造力)與自主系統的計算能力、精確性和動態執行能力相結合,有可能給包括國防、應急響應、執法和危險環境在內的各個領域帶來革命性的變化。必須區分戰術自主和戰略自主,以明確人工智能驅動的人類-自主團隊如何在軍事和作戰環境中促進這兩個層次的自主。戰略自主是指一個國家或組織就廣泛的安全目標做出自主選擇的能力,而戰術自主與戰略自主相反,側重于單個單位或團隊在特定任務中的獨立行動。戰略自主涉及更高層次的決策和規劃,要考慮長期目標、總體任務目標和更廣泛的態勢感知。它涉及指導整體任務或戰役的協調、資源分配和戰略決策過程。

戰術行動。戰術行動涉及在特定區域或環境中的協調活動,通常是在軍事、執法或戰略背景下,重點是通過快速決策、適應動態形勢以及在局部區域和時間范圍內應用軍事技能和資源來實現短期目標。

近年來,人工智能、機器學習(ML)、機器人和傳感器技術的進步為實現戰術自主的潛力鋪平了道路。這些技術進步使自主系統能夠執行復雜任務,實時處理大量數據,做出明智決策,并與人類團隊成員無縫協作。這為增強人類能力、優化資源配置和提高整體作戰效率提供了新的可能性。然而,有效的戰術自主需要全面了解人類與自主系統之間的動態關系。包括信任、溝通、共享態勢感知和決策在內的人為因素在確保 HAT 取得成功方面發揮著至關重要的作用。必須認真應對各種挑戰,如建立適當的信任度、解決潛在的認知偏差、管理工作量分配和保持有效的溝通渠道,以確保無縫協作,最大限度地發揮戰術自主的潛在優勢。戰術自主的 HAT 是一種使用人類和自主系統來操作和控制武器及其他軍事系統的協作方法。在 HAT 中,人類操作員和自主系統共同努力實現共同目標。人類操作員負責總體任務并做出高層決策。自主系統負責執行指定任務。

正如第四節詳細解釋的那樣,人類操作員根據自己的經驗和對任務目標的理解,貢獻戰略洞察力、背景和高層決策能力。交互和通信代表著界面和通信渠道,各組成部分可通過這些渠道交換信息、開展協作并做出共同決策。在共享決策過程的背景下,人類操作員和自主系統參與協作決策過程,共享見解、數據和建議,以制定有效的戰略。自主系統負責實時數據處理、分析和特定任務的執行,為人類操作員提供及時、相關的信息支持。隨后,一旦做出決策,自主系統就會根據共同決策過程的指令執行具體任務,包括偵察、導航或數據收集。

本文全面探討了 HAT 的歷史發展和現狀,并深入探討了利用人工智能實現戰術自主的機遇、挑戰和潛在的未來方向。它強調了人工智能對戰術自主性的變革性影響,并提出了改進決策、態勢感知和資源優化的機遇。通過認識和應對與采用人工智能相關的挑戰,并規劃未來的研究方向,可以為人類與自主系統無縫協作的未來鋪平道路,最終實現戰術環境中更安全、更高效、更成功的任務。

圖1:HAT的應用。

付費5元查看完整內容

在當代威脅環境中,威脅可能在意想不到的時間從意想不到的角度出現。準確辨別戰術意圖的能力對于有效決策至關重要。傳統的威脅識別策略可能不再適用。本文將探討如何利用算法識別威脅的戰術意圖。為此,在模擬實驗中比較了人類和算法在識別敵對智能體戰術意圖方面的功效。在實驗中,70 名人類參與者和一個算法在一個海軍指揮和控制場景中扮演數據分析師的角色。在該場景中,敵方智能體控制一艘艦艇將攔截多艘友軍艦艇中的一艘。數據分析師的任務是及時識別敵方智能體可能攻擊的目標。我們對識別的正確性和及時性進行了研究。人類參與者的識別準確率為 77%,平均反應時間為 7 秒。算法的準確率達到了 87%,同時受限于人類的反應時間。當人類參與者識別正確時,算法有 89% 的時間表示同意。相反,當人的反應不正確時,算法有 91% 的時間不同意,這表明決策支持系統有機會在這種情況下影響人的決策。這項研究有助于加深我們對復雜作戰環境中的態勢感知和決策支持的理解。

付費5元查看完整內容

本文在空戰和遠程戰爭的概念范圍中研究了當代使用武裝無人機的發展。盡管人們對無人機戰爭的新穎性或其政治、法律和倫理基礎給予了極大關注,但本文將無人機的使用置于 20 世紀空中和遠程戰略目的的思考脈絡之中。通過這一過程,細致入微地闡述了武裝無人機如何延續和改變空戰和遠程戰爭的實踐,并將無人機的使用置于更廣泛的歷史和當代戰爭實踐之中。

本文分析了遠程戰爭概念發展過程中的三個重要時刻,這些時刻促成了當代無人機應用的概念架構,即戰略轟炸理論的發展、冷戰期間的核戰爭規劃以及越南戰爭中的空戰實踐。隨后,將美國武裝無人機的使用置于 2007 年至 2011 年在阿富汗、伊拉克和更廣泛的反恐戰爭中采用的反叛亂戰略之中。在整個研究過程中,對武裝無人機和遠程戰爭的研究做出了三個主要貢獻。首先,認為武裝無人機的遠程性是通過一系列戰術、戰略和政治決策與實踐積極產生的。借鑒風險轉移、替代戰爭和代理戰爭的概念,認為武裝無人機是通過操縱和構建遙遠性來參與戰爭的。其次,認為武裝無人機是戰爭概念的爭論和邊緣化的長期遺產的一部分,這些爭論決定了武裝無人機在當代戰爭中的應用。最后,認為必須從武裝無人機對當代戰爭的戰略貢獻的角度對其進行評估,從而拒絕將無人機戰爭特殊化,將其視為一種根本不同的戰爭實踐。

付費5元查看完整內容

網絡安全的發展促使自主威脅狩獵成為人工智能驅動的威脅情報領域的一個關鍵范例。本綜述將介紹自主威脅狩獵的復雜情況,探討其在強化網絡防御機制方面的意義和關鍵作用。本文深入探討了人工智能(AI)與傳統威脅情報方法的結合,勾勒出自主方法在打擊當代網絡威脅中的必要性和演變。通過對人工智能驅動的基礎威脅情報的全面探討,本文強調了人工智能和機器學習對傳統威脅情報實踐的變革性影響。報告闡明了支撐自主威脅狩獵的概念框架,重點介紹了其組成部分,以及人工智能算法在威脅狩獵流程中的無縫集成。此外,報告還仔細研究了在自主威脅狩獵中部署的最先進的人工智能技術,包括機器學習模型(監督、無監督和強化學習)、自然語言處理(NLP)、情感分析和深度學習架構。對人工智能驅動模型的可擴展性、可解釋性和道德考量等挑戰的精辟討論豐富了討論內容。此外,通過富有啟發性的案例研究和評估,本文展示了真實世界的實施情況,強調了采用人工智能驅動威脅情報的組織的成功案例和經驗教訓。最后,本綜述整合了主要觀點,強調了自主威脅狩獵對未來網絡安全的重大影響。它強調了在利用人工智能驅動方法的潛力來加強網絡防御以應對不斷變化的威脅方面,持續研究和合作努力的重要性。

自主威脅狩獵的背景和動機

隨著針對系統和網絡的復雜威脅的激增,網絡安全領域發生了重大變化。傳統的網絡安全措施往往難以跟上快速發展的威脅形勢,這促使自主威脅狩獵作為一種主動防御機制應運而生。這種方法涉及利用人工智能(AI)和機器學習(ML)算法來實時自主檢測、分析和緩解潛在威脅。

網絡威脅的復雜性和頻率不斷升級,要求網絡安全防御機制采取更加積極主動的姿態[1, 2, 497]。事實證明,人工威脅檢測方法是不夠的,會導致在識別和應對新出現的威脅方面出現延誤。對快速識別和緩解威脅的需求凸顯了自主威脅狩獵在強化網絡防御中的重要性[3, 4, 498]。此外,網絡威脅的動態性質要求持續監控和分析,這是一項超越人類能力的任務[5, 6]。自主威脅狩獵系統擅長處理海量數據、識別模式、分辨可能預示潛在威脅的異常情況,從而提高整體威脅情報能力[7, 499]。促使采用自主威脅搜索的另一個關鍵因素是,必須最大限度地縮短網絡事件的響應時間[8,9]。迅速識別和遏制威脅對于防止大范圍破壞和最大限度減少網絡攻擊對組織的影響至關重要 [10,11,500]。配備先進算法的自主系統可大大縮短響應時間,從而限制網絡事件的潛在影響[12, 13, 501]。此外,網絡威脅的不斷演變要求網絡安全態勢從被動反應轉變為主動出擊[14, 15, 502]。傳統的安全方法主要側重于應對已知威脅,使系統容易受到新出現的風險的影響。自主威脅狩獵系統會主動尋找潛在威脅,使組織能夠領先對手并預測其戰術[16, 503]。自主威脅狩獵與持續監控和評估的概念相一致,這是現代網絡安全框架的基本原則[17, 504]。通過采用人工智能驅動的系統,企業可以對其安全態勢進行持續、全面的評估,從而及時發現并緩解漏洞和潛在威脅[18, 505]。

總之,網絡威脅的復雜性和復雜性不斷升級,加上傳統網絡安全方法的局限性,突顯了自主威脅狩獵的迫切需要。利用人工智能和 ML 技術,這些系統可以提供主動、實時的威脅檢測,從而加強網絡安全防御,使組織能夠在不斷變化的網絡威脅環境中保持領先。

威脅情報的演變和人工智能的作用

威脅情報多年來發生了重大演變,從人工數據分析過渡到利用先進技術,特別是人工智能(AI)。威脅情報的演變表明,網絡安全正從被動應對向主動出擊轉變[19, 506]。最初,威脅情報在很大程度上依賴于人工分析師篩選數據,但數據的指數級增長使得這種方法既不充分又耗時[20, 21, 507]。隨著人工智能的出現,這一格局發生了顯著轉變。圖 1.0 顯示了威脅智能生命周期。

人工智能能夠以無與倫比的速度處理海量數據,因此在威脅情報領域發揮著舉足輕重的作用。機器學習算法可以識別人類分析師可能無法發現的數據模式和異常情況 [22, 23, 508]。這有助于及早發現和緩解潛在威脅,從而以積極主動的姿態應對網絡攻擊。此外,人工智能驅動的威脅情報系統會不斷學習和適應,隨著時間的推移提高其功效[24, 25, 509]。人工智能在威脅情報方面的一大優勢是能夠自動執行各種任務,從而解放人類分析師,讓他們專注于更復雜和更具戰略性的活動[26, 27, 510]。人工智能驅動的工具可以更高效地執行數據收集、分析和關聯等重復性任務,從而使分析人員能夠專注于決策和制定更好的安全策略[28, 29, 511]。人工智能與人類分析師之間的這種合作努力最大限度地提高了威脅情報行動的效率。此外,人工智能通過提供預測能力來增強威脅情報。通過歷史數據分析,人工智能模型可以預測潛在威脅和漏洞,使企業能夠主動加強防御[30, 31,32, 512]。這種主動方法有助于在風險升級為重大安全漏洞之前先發制人地降低風險。然而,人工智能與威脅情報的整合也帶來了挑戰,例如針對人工智能模型的潛在惡意攻擊[33, 34, 513]。 敵人可以操縱人工智能算法,導致錯誤識別或逃避檢測。因此,確保威脅情報中人工智能系統的安全性和穩健性仍是一個持續關注的問題[35, 36, 37, 514]。

總之,威脅情報的發展在很大程度上受到了人工智能技術整合的影響。人工智能驅動的能力可實現主動威脅檢測、任務自動化和預測分析,從而大大提高網絡安全措施的有效性。然而,確保人工智能系統抵御潛在的惡意攻擊仍然是利用人工智能進行威脅情報分析的關鍵重點。

研究問題的陳述和自主方法的必要性

網絡安全形勢日益復雜多變,威脅的復雜程度和規模也在不斷發展。傳統的威脅情報方法往往難以跟上這些快速發展的步伐,從而導致一個關鍵的研究問題:無法快速有效地實時檢測、分析和緩解新出現的威脅。這一持續存在的挑戰導致了對自主威脅狩獵方法的需求。人類操作系統在處理不同來源產生的大量數據以及辨別潛在威脅的細微模式方面能力有限。此外,網絡威脅的時間敏感性要求采取積極主動的自動應對措施。自主威脅狩獵旨在利用人工智能驅動系統的能力來彌補這一差距。這些系統可以自主收集、處理和分析大量數據,從而能夠識別微妙的入侵跡象和以前未曾見過的攻擊載體。自適應、可擴展和快速的威脅檢測與緩解機制的必要性與日俱增,這凸顯了開發自主方法的緊迫性。因此,研究問題圍繞著傳統方法在應對現代網絡威脅的速度和復雜性方面效率低下的問題展開,強調迫切需要由人工智能賦能的自主方法來強化網絡安全措施。

綜述論文的目標和研究貢獻

本綜述論文的主要目標有三個方面: 首先,全面闡釋威脅情報不斷演變的格局,突出人工智能在塑造其發展軌跡方面發揮的關鍵作用。本文旨在概述威脅情報方法論的歷史進程,闡明人工智能和機器學習如何徹底改變傳統范式。其次,本文旨在勾勒自主威脅狩獵的概念框架,提供一個明確的定義,并闡明其關鍵組成部分。本文努力深入探討人工智能算法在威脅狩獵流程中的整合,詳細介紹了復雜的框架及其運行動態。最后,這篇綜述論文致力于強調與自主威脅狩獵相關的最先進的人工智能技術,對機器學習模型、自然語言處理、情感分析和深度學習架構進行了深入分析。本文旨在深入探討這些技術在強化網絡安全方面的實際應用。本文的研究貢獻在于綜合了現有知識,對人工智能驅動的威脅情報進行了全面而有條理的概述。通過將基礎理論與當代進展相結合,本文希望提供對自主威脅狩獵的整體理解。此外,本文還努力發現挑戰,介紹現實世界中的案例研究,提出評估指標,并預測未來趨勢,從而為網絡安全領域的進一步研究和實際應用奠定堅實的基礎。

研究論文結構

本綜述論文的結構旨在全面深入探討人工智能驅動的自主威脅狩獵這一變革性領域。本文分為幾個不同的部分,通過自主威脅檢測和緩解的視角,系統地探討網絡安全領域不斷發展的情況。

1.引言:本文從導言開始,概述了自主威脅狩獵演變背后的基本動機。它追溯了威脅情報方法的發展軌跡,并強調了人工智能在革新這些實踐中的關鍵作用。此外,它還提出了研究問題,強調了自主方法的必要性,設定了目標,并概述了本綜述論文的貢獻。

2.人工智能驅動的威脅情報的基礎:本節通過闡明傳統的威脅情報方法、介紹網絡安全中的人工智能和機器學習,以及闡述人工智能在重塑傳統威脅情報實踐中的變革性作用,提供一個基礎性的理解。

3.自主威脅狩獵:概念框架: 接下來的部分將深入探討自主威脅狩獵的概念。它定義了自主威脅狩獵的范圍,剖析了自主威脅狩獵系統的基本組成部分,闡述了人工智能算法在威脅狩獵流程中的整合,并詳細介紹了該框架/流程。

4.自主威脅狩獵中的最新人工智能技術:本部分將仔細研究自主威脅狩獵中使用的前沿人工智能技術,包括機器學習模型、自然語言處理(NLP)、情感分析和深度學習架構,并闡述其在威脅檢測和情報提取中的應用。

5.自主威脅狩獵的挑戰:針對自主威脅狩獵的多面性,本節闡明了包括可擴展性、可解釋性、倫理考慮和人工智能算法潛在偏差在內的挑戰。

6.案例研究與應用:本節重點介紹現實世界中的實施情況、成功案例和經驗教訓,通過對組織機構的案例研究,說明人工智能驅動的威脅情報的實際應用和功效。

7.評估指標和性能基準:本節以評估有效性為重點,對人工智能驅動的系統與傳統方法之間的指標進行了劃分和比較分析。

8.未來方向與新興趨勢:這一部分探討了在自主威脅狩獵方面即將取得的進展,重點介紹了新興技術,并確定了潛在挑戰,為未來的研究途徑奠定了基礎。

9.結論:本文最后總結了關鍵見解、自主威脅狩獵對網絡安全的影響,并倡導進一步的研究和實施。

付費5元查看完整內容

本文探討了無處不在的人工智能對戰斗本質的改變。將目光從人工智能取代專家轉向人機互補的方法。利用歷史和現代實例,展示了由人工智能操作員和人工智能/機器學習代理操作員組成的團隊如何有效管理自主武器系統。方法基于互補原則,為管理致命自主系統提供了一種靈活、動態的方法。最后,提出了實現機器加速戰斗綜合愿景的途徑,即由人工智能操作員操作戰場人工智能,觀察戰場內的行為模式,以評估致命自主系統的性能。與任何純粹的自主人工智能系統相比,這種方法能開發出更符合道德規范、以機器速度運行并能應對更廣泛動態戰場條件的作戰系統。

2022 年 11 月,ChatGPT 的發布標志著人工智能(AI)發展史上的一個關鍵時刻。幾十年來,人工智能一直是人們熱衷研究的課題,但對于普通人來說,它仍然是一個抽象的概念,更多的是科幻小說或技術演示,比如 IBM 的沃森贏得了《危險邊緣》(Jeopardy)。然而,有了 ChatGPT,人工智能走出了實驗室,人們可以用與朋友和同事交流的方式與人工智能對話。ChatGPT 將公眾對人工智能的看法從未來的可能性轉變為實實在在的現實。與此同時,在距離開發 ChatGPT 的辦公室千里之外,烏克蘭正在將人工智能融入戰場。面對俄羅斯大規模的射頻干擾,烏克蘭部署了人工智能增強型無人機,能夠在敵對條件下,在無人監督的情況下有效運行。人工智能的這一應用并不是要進行對話或模擬類似人類的互動,而是要在傳統系統失靈的情況下,增強對大型對手的作戰能力。ChatGPT 的認知能力與烏克蘭無人機對人工智能的功利性應用之間的對比,說明了人工智能在不同領域的多樣性和變革性。

這兩項人工智能應用促使美國國防部(Department of Defense,DoD)關于戰場人工智能的戰略思想發生了潛在轉變。最初的人工智能條令強調,對人工智能系統 "適當程度的人為判斷 "至關重要,"要有明確的程序來激活和關閉系統功能,并對系統狀態提供透明的反饋"[5]。對 "自主和半自主武器系統的人機界面"[5] 的要求意味著一定程度的人類直接互動,通常稱為 "人在回路中"(HITL)或 "人在回路中"(HOTL)。這種人類直接參與人工智能或監控錯誤的方式,證明了對關鍵流程自動化的謹慎態度。

之所以會出現這種轉變,是因為人們認識到,人工智能及其不可避免的技術普及,將不僅僅是補充,而是從根本上改變戰場上的行動和情報搜集,就像它已經開始改變社會上幾乎所有其他地方一樣。這種演變并非首次發生。就在上一代,互聯網的出現和智能手機的普及徹底改變了通信和信息獲取方式,以至于國防部別無選擇,只能適應。與這些創新一樣,人工智能也正走在一個類似的基本層面上。現在的挑戰不在于試圖支配人工智能的整合,而在于適應其不可避免的普遍性,在擔心數據偏差、計算 "幻覺 "的情況下確保軍事系統的可靠性和有效性,同時確保致命性自主武器系統的行為符合國際人道主義法(IHL)。本文件旨在探討這些挑戰,并提出緩解這些挑戰的途徑,同時認識到人工智能增強戰爭的進程不僅不可避免,而且已經開始。

討論

2022 年,人工智能達到了一個拐點。隨著電子戰的加劇,烏克蘭沖突迫使自主無人機快速發展。與此同時,像 ChatGPT 這樣的強大語言模型的發布吸引了全球觀眾,盡管它們的局限性也變得顯而易見。這些系統容易出現事實錯誤和赤裸裸的捏造,凸顯了將模式識別誤認為真正理解的風險。在人工智能顛覆整個行業的同時,我們也認識到,人工智能的流暢性往往掩蓋了根本無法分辨真假的缺陷。

人工智能在軍事上的應用提出了獨特而棘手的倫理問題。根據特定數據訓練的人工智能系統是實現其設計目的的強大工具。它們擅長模式識別和快速執行所學任務。但人工智能系統適應新情況的能力,尤其是在人命關天的情況下,仍然不太清楚。

雖然人工智能在數據處理和分析方面的能力毋庸置疑,但它在道德框架內指導行為的能力卻不那么確定。圖 1 展示了戰場自主人工智能的典型組織結構。作戰人員(橙色圓圈)直接操作一套武器系統(藍色圓圈),每套系統都通過一個人工智能模型進行調解,該模型經過訓練,可控制特定武器與敵人交戰。然而,如果敵人已經找到了欺騙人工智能模型的方法,作戰人員往往無法改變模型的行為。相反,作戰人員必須依靠其他可能風險更大的手段與敵人交戰。在戰爭中強調簡化、精簡的人工智能模型會帶來一種危險的脆性。當人工智能模型被愚弄時,它可能會使作戰人員面臨更大的風險,同時將關鍵優勢拱手讓給敵人。

在本文中,我們提出了 3.8 節中介紹的人工智能操作員或 "馬夫 "的角色。這種角色延伸了加里-卡斯帕羅夫(Garry Kasparov)在 "高級國際象棋 "中提出的 "半人馬"(centaur)概念,即人類與多個國際象棋程序合作,將人類的戰略洞察力與機器的計算能力相融合,以達到超高水平的競爭[21, 13]。這些相互促進或互補的領域已被證明優于任何一個單獨的組成部分[23]。互補的概念是將多個元素結合在一起,產生一個比任何一個部分都更有效的整體,這與更常見的替代做法有著本質區別,替代做法是單獨使用能力最強的部分--人類、自動化或人工智能。替代系統的實際結果是,它們的強大取決于最薄弱的部分。由作戰人員、戰場人工智能、遠程人類操作員及其本地人工智能代理組成的網絡可確保人類和人工智能的優勢得到最大程度的發揮(圖 2)。半人馬概念在軍事戰略中的演變說明,未來人類與人工智能的合作不僅有益,而且對于在高度動態和競爭激烈的環境中取得優勢至關重要。

要想讓人工智能系統在軍事環境中可靠運行,人類操作員必須了解人工智能的決策過程。這就意味著要對具有不同技能和背景的操作員進行培訓。就像棋手調整策略一樣,操作員應能根據需要切換人工智能模型。不能指望單一的人工智能模型在每一種戰場場景中都能完美發揮作用。情況是不可預測的;在一種情況下最好的模型在另一種情況下可能會失效。操作員必須了解每種人工智能模型的優缺點,以確保使用最有效的工具來完成手頭的任務。這種適應性是人工智能成功融入軍事行動的關鍵。

在軍事行動中,采用這種靈活的方法將人類與人工智能配對,可創建出比人工智能單獨運作的系統更靈活、適應性更強的系統。這種人類與人工智能的共生關系可以破壞對手的 "觀察、定位、決策、行動"(OODA)循環[18],有效地 "反客為主"。人工智能在人類直覺和經驗的充實下,引入了不可預測性和復雜性,純人工智能對手可能難以理解或實時處理這些不可預測性和復雜性。這可能會使天平向有利于人類-人工智能團隊的方向發生決定性的傾斜,使他們在關鍵時刻超越和思考純人工智能系統,從而獲得戰術優勢。

人類可以利用自己的創造力和創新力提出人工智能無法提出的新想法和解決方案。例如,將人類對已知危險和風險的了解融入自主系統,可以讓操作員確定并預測基于人工智能的控制器在遇到真實世界的風險因素時的行為[6]。我們還能理解人工智能忽略的細微差別和情境,這對決策至關重要。最后,人類在群體中表現最佳,每個人都能帶來不同的視角和技能,從而提供深度理解,而目前的人工智能似乎可以模仿,但卻無法復制。

付費5元查看完整內容

目前,美國政府內部并不存在同步收集情報和調查的能力,而從整體上減輕無人駕駛航空器系統帶來的新威脅需要這種能力。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。本論文試圖找出最佳方法,匯集各個機構的力量,將情報和調查能力統一到應對無人機系統威脅的巨型行動中。為了解決這個問題,我們選擇了工作組、特遣部隊和單一機構指定作為可能的選擇,特別是考慮到它們的歷史先例和成功的可能性。每種方案都根據其接受兩個決定性特征的能力進行了比較:協作和承諾。分析結果表明,工作隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統殺傷鏈中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。本論文概述的結論和相應建議提供了明確的方向和合理的實施計劃。

目前,美國政府內部并不存在同步收集情報和調查的能力,而這種能力是全面緩解無人駕駛航空器系統帶來的新威脅所必需的。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。這其中有一些是現行法律限制所規定的,但也有一股潛在的自私自利的政治潮流在其中彌漫。

本論文試圖找出最佳方法,將各個機構的優勢集合起來,將情報和調查能力統一到一個巨無霸級別的響應中,以應對無人機系統的威脅。本研究揭示的三個主要問題包括:當前技術的局限性、法律障礙,以及對無人機系統 "殺傷鏈 "中一個方面的短視。工作組、特別工作組和單一機構指定是根據其歷史先例和成功可能性而特別選擇的方案。每種方案都根據其是否具備兩個決定性特征進行了比較:協作和承諾。

首先對工作組進行了審查,并最終將其排除在外。雖然工作組具有較高的協作水平,但在無人機系統威脅環境下,有效的承諾水平要求極低。此外,工作組在聯邦、州和地方政府中已經非常普遍,這使它們看起來更像是現狀而非創新選擇。

特遣部隊是第二個被審查的對象,不容忽視。與工作組不同,特遣部隊具有高度的協作性和承諾性。特遣部隊模式在整合情報和調查行動以應對恐怖主義、有組織犯罪和毒品等其他重大威脅方面也有成功的歷史。

最后分析的方案是指定單一機構。就承諾而言,這一選擇的評分極高,因為它要對其行動的成敗負全部責任。遺憾的是,單一機構指定在協作方面的排名相應很低。

分析結果表明,特遣部隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統 "殺傷鏈 "中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。

本論文中概述的建議提供了實施的方向和合理計劃。該計劃首先由國家行政工作組制定政策,并在州一級進行復制,以確保連續性。在考慮了行政和政策要求后,將建立一個與行政部門平等合作的國家行動工作組,通過制定包含任務導向目標和可實現的里程碑的戰略來履行這些政策義務。這也將在州一級得到體現。

付費5元查看完整內容

本文總結了關于自主軍事系統的測試、評估、驗證和確認(TEV&V)的挑戰和建議的部分文獻。本文獻綜述僅用于提供信息,并不提出任何建議。

對文獻的綜合分析確定了以下幾類TEV&V挑戰:

1.自主系統的復雜性產生的問題。

2.當前采購系統的結構所帶來的挑戰。

3.缺少測試的方法、工具和基礎設施。

4.新的安全和保障問題。

5.在政策、標準和衡量標準方面缺乏共識。

6.圍繞如何將人類融入這些系統的操作和測試的問題。

關于如何測試自主軍事系統的建議可以分為五大類:

1.使用某些程序來編寫需求,或設計和開發系統。

2.進行有針對性的投資,以開發方法或工具,改善我們的測試基礎設施,或提高我們勞動力的人工智能技能組合。

3.使用特定的擬議測試框架。

4.采用新的方法來實現系統安全或網絡安全。

5.采用具體的建議政策、標準或衡量標準。

在過去的十年中,計算和機器學習的進步導致了工業、民用和學術應用中人工智能(AI)能力的激增(例如,Gil & Selman,2019;Narla, Kuprel, Sarin, Novoa, & Ko, 2018;Silver等人,2016;Templeton,2019)。由人工智能促成的系統往往在某種意義上表現得很自主:它們可能會接管傳統上由人類做出的決定,或者在較少的監督下執行任務。然而,與武裝沖突期間的錯誤決定相比,一個真空機器人、一個高頻股票交易系統,甚至一輛自主汽車做出錯誤的選擇是可以通過糾正措施相對恢復的。軍事系統將面臨與民用系統相同的大部分挑戰,但更多地是在結構化程度較低的環境中運作,所需的反應時間較短,而且是在對手積極尋求利用錯誤的情況下。人工智能和自主軍事系統將需要強有力的測試,以保證不理想的結果,如自相殘殺、附帶損害和糟糕的任務表現是不太可能的,并且在可接受的風險參數范圍內。

為了自信地投入使用自主軍事系統(AMS),必須相信它們會對設計時可預見的問題和它們必須適應的不可預見的情況做出適當的決定。簡而言之,這些系統必須是熟練的、靈活的和值得信賴的。 當AMS要在狹義的情況下運行時(例如,要求一個 "智能"地雷在一天中的特定時間內施加特定的壓力時爆炸),要保證系統的行為符合要求就容易多了。它能遇到的相關不同情況的數量和它的行為反應(即其決策的狀態空間)都是有限的。擴大這個狀態空間會使保證更加困難。例如,一個自主的基地防御系統旨在根據目前的ROE用適當的武力來應對任何可能的威脅,預計會遇到更多的情況,包括設計的和不可預見的。要在這種情況下適當地運作,需要更多的靈活性,這反過來又要求系統更加熟練,允許它運作的人類更加信任。這些需求的相互作用是這些系統的許多T&E困難的一個核心驅動因素。

人工智能技術為美國防部(DoD)內的采購項目的測試和評估過程帶來了一系列的挑戰。首先,這些系統純粹的技術復雜性和新穎性可能難以駕馭。此外,美國防部的采購流程是在假設的基礎上進行優化的,而自主權可能不再成立(Tate & Sparrow, 2018)。例如,將承包商、開發和操作測試分開,假設我們有離散的、相對線性的開發階段,導致系統的 "生產代表 "版本。對于AMS來說,這可能不是真的,特別是如果它們在整個生命周期中繼續學習。此外,在我們擁有一個系統之前就寫需求,是假設我們事先了解它將如何被使用。因為AMS的熟練度、靈活性和可信度會隨著時間的推移而發展,并會影響人類如何使用或與系統互動,所以與標準系統相比,作戰概念(CONOPS)和戰術、技術和程序(TTPs)將需要與系統共同開發,其程度更高(Haugh, Sparrow, & Tate, 2018; Hill & Thompson, 2016; Porter, McAnally, Bieber, & Wojton, 2020; Zacharias, 2019b)。

然而,即使美國防部的采購流程被更新,美國防部員工用于測試和評估(T&E)的具體方法、工具和基礎設施將無法保證系統的性能達到預期。開發和設計工作包含了測試,通過內部儀器建立可測試性;提高軟件的透明度、可追溯性或可解釋性;對培訓和其他數據進行良好的管理和驗證,可以改善開發過程,同時也為測試和評估鋪平道路,但它們沒有被普遍采用。此外,能夠幫助項目克服所有這些挑戰的政策和標準要么缺乏,要么不存在。

什么是自主性?

自主性的定義繁雜眾多,有些定義對美國防部來說不如其他定義有用。許多定義包含了獨立、不受外部控制或監督、或與其他實體分離的概念(例如,牛津英語詞典,2020年)。然而,假設任何參與者將在沒有控制或監督的情況下運作,甚至是人類作戰人員,這與美國防部的政策和指揮與控制(C2)的思想相悖。不希望自主系統擁有選擇行動路線的完全自由,而是在其分配的任務中擁有一些受約束的自由。

與作戰人員一樣,可能希望與自主系統有一個C2或智能體關系。希望:1. 明確具體任務和/或整體任務的目標或目的,可能還有這些目標的更大原因,如指揮官的意圖(即做什么和為什么)。2.明確與任務相關的約束,如交戰規則(ROE,即不能做什么)。3. 不指定使用的方法或對每一種情況給出明確的應急措施,如對對手的反應做出反應(即如何完成任務)。

一個系統是否被授權為一項任務做出這些 "如何 "的決定,是本文將區分自主系統和非自主系統的方法。

在 "是什么"、"不是什么 "和 "為什么 "的限制下,為 "如何 "做出有用的、理想的選擇,假定了某種程度的智能。因為這些是機器,這就意味著存在某種程度的人工智能。需要人工智能來實現對非瑣碎任務的有用的自主性,這可能解釋了為什么人工智能和自主性經常被混為一談。在本文件中,我們將自主性稱為系統在其操作環境中的行為,而人工智能則是與該環境進行有意義的互動的 "內在 "促成因素。

付費5元查看完整內容

近年來,"原型戰爭 "的概念已被西方軍隊采用,以加速實驗性開發、獲取和部署戰爭中的新興技術。本文以科技研究和國際關系學的交叉研究為基礎,調查了支撐當代戰爭邏輯的更廣泛的話語和物質基礎結構,并對科學、技術和戰爭之間的關系特別感興趣,指出原型戰爭是如何捕捉到一種新的戰爭制度的出現的,本文稱之為戰爭的實驗方式。雖然戰爭一直是由實驗活動定義的,但在目前的背景下,特別是實驗如何跨越越來越廣泛的軍事實踐,在高度推測的實驗理解的基礎上運作,將失敗作為一種生產力量。文章追溯了西方軍事話語和實踐中的原型戰爭概念,并放大了原型戰爭是如何將實驗直接帶入戰場的,文章最后概述了原型戰爭是如何將軍事干預重新配置并正常化為實驗。

付費5元查看完整內容

人工智能(AI)系統很可能會改變軍事行動。本文探討了人工智能系統如何影響準備和進行軍事行動的主要工具,并受其影響。因此,本文在戰略、理論、計劃、交戰規則和命令的背景下分析和討論了人工智能,以確定機會、挑戰和開放性問題的位置,并提出總體意見。本文采取了一個廣泛的分析角度,能夠根據新的政策和技術發展以及對政治、軍事、法律和道德觀點的考慮,對這一問題進行總體審查。因此,本文提供了一些見解和途徑,以推動對人工智能在軍事行動中的適當整合、管理和使用的進一步思考、研究和決策。

付費5元查看完整內容
北京阿比特科技有限公司