為了更好的用戶體驗和業務效能,點擊率(CTR)預測一直是電子商務中最重要的任務之一。雖然已經提出了大量的CTR預測模型,但從多模態特征中學習項目的良好表示仍然較少研究,因為電子商務中的一個項目通常包含多個異質模態。以往的作品要么將多個模態特征串聯起來,相當于給每個模態一個固定的重要性權重;或者通過注意力機制等技術學習不同項目不同模式的動態權重。然而,一個問題是,通常存在跨多個模態的公共冗余信息。利用冗余信息計算不同模態的動態權值,可能不能正確反映不同模態的不同重要性。為了解決這個問題,我們通過考慮模態特性和模態不變特性來探索模態的互補性和冗余性。針對CTR預測任務,我們提出了一種新的多模態對抗表示網絡(MARN)。多模態注意網絡首先根據每個項目的模態特征計算其多模態的權重。然后,一個多模態對抗網絡學習模態不變表示,在此基礎上引入雙鑒別器策略。最后,我們將模態特定表示與模態不變表示相結合,實現了多模態項表示。我們在公共數據集和工業數據集上進行了大量的實驗,所提出的方法不斷地對最先進的方法進行顯著的改進。此外,該方法已應用于實際的電子商務系統,并在網上進行了A/B測試,進一步證明了該方法的有效性。
多模態表示學習旨在縮小不同模態之間的異質性差距,在利用普遍存在的多模態數據方面起著不可或缺的作用。基于深度學習的多模態表示學習由于具有強大的多層次抽象表示能力,近年來受到了廣泛的關注。在本文中,我們提供了一個全面的深度多模態表示學習的綜述論文。為了便于討論如何縮小異質性差距,根據不同模態集成的底層結構,我們將深度多模態表示學習方法分為三種框架:聯合表示、協調表示和編解碼。此外,我們回顧了該領域的一些典型模型,從傳統模型到新開發的技術。本文強調在新開發的技術的關鍵問題,如encoder-decoder模型,生成對抗的網絡,和注意力機制學習的角度來看,多通道表示,我們所知,從來沒有審核之前,即使他們已經成為當代研究的主要焦點。對于每個框架或模型,我們將討論其基本結構、學習目標、應用場景、關鍵問題、優缺點,以使新研究者和有經驗的研究者都能從中受益。最后,提出了今后工作的一些重要方向。
【導讀】作為CCF推薦的A類國際學術會議,International ACM SIGIR Conference on Research and Development in Information Retrieval(國際計算機學會信息檢索大會,簡稱 SIGIR)在信息檢索領域享有很高的學術聲譽,每年都會吸引全球眾多專業人士參與。今年的 SIGIR 2020計劃將于 2020年7月25日~30日在中國西安舉行。本次大會共有555篇長文投稿,僅有147篇長文被錄用,錄用率約26%。專知小編提前為大家整理了六篇SIGIR 2020 基于圖神經網絡的推薦(GNN+RS)相關論文,這六篇論文分別出自中科大何向南老師和和昆士蘭大學陰紅志老師團隊,供大家參考——捆綁推薦、Disentangled GCF、服裝推薦、多行為推薦、全局屬性GNN
CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN
1. Bundle Recommendation with Graph Convolutional Networks
作者:Jianxin Chang, Chen Gao, Xiangnan He, Yong Li, Depeng Jin
摘要:捆綁推薦(Bundle recommendation )旨在推薦一組商品供用戶整體消費。現有的解決方案通過共享模型參數或多任務學習的方式將用戶項目交互建模集成到捆綁推薦中,然而,這些方法不能顯式建模項目與捆綁包(bundles)之間的隸屬關系,不能探索用戶選擇捆綁包時的決策。在這項工作中,我們提出了一個用于捆綁推薦的圖神經網絡模型BGCN(Bundle Graph Convolutional Network)。BGCN將用戶-項目交互、用戶-捆綁包交互和捆綁包-項目從屬關系統一到一個異構圖中。以項目節點為橋梁,在用戶節點和捆綁包節點之間進行圖卷積傳播,使學習到的表示能夠捕捉到項目級的語義。通過基于hard-negative采樣器的訓練,可以進一步區分用戶對相似捆綁包的細粒度偏好。在兩個真實數據集上的實驗結果表明,BGCN的性能有很高的提升,其性能比最新的基線高出10.77%到23.18%。
網址: //arxiv.org/abs/2005.03475
2. Disentangled Graph Collaborative Filtering
作者:Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua
摘要:從交互數據中學習用戶和項目的信息表示對于協同過濾(CF)至關重要。當前的嵌入函數利用用戶-項目關系來豐富表示,從單個用戶-項目實例演變為整體交互圖。然而,這些方法在很大程度上以統一的方式對關系進行建模,而忽略了用戶采用這些項目的意圖的多樣性,這可能是為了打發時間,為了興趣,或者為其他人(如家庭)購物。這種統一的對用戶興趣建模的方法很容易導致次優表示,不能對不同的關系建模并在表示中分清用戶意圖。在這項工作中,我們特別關注用戶意圖細粒度上的用戶-項目關系。因此,我們設計了一種新的模型- Disentangled圖協同過濾(Disentangled Graph Collaborative Filtering ,DGCF),來理清這些因素并產生disentangled的表示。具體地說,通過在每個用戶-項目交互意圖上的分布建模,我們迭代地細化意圖感知的交互圖和表示。同時,我們鼓勵不同的意圖獨立。這將生成disentangled的表示,有效地提取與每個意圖相關的信息。我們在三個基準數據集上進行了廣泛的實驗,DGCF與NGCF、DisenGCN和MacridV AE這幾個最先進的模型相比取得了顯著的改進。進一步的分析揭示了DGCF在分解用戶意圖和表示的可解釋性方面的優勢。
網址:
代碼鏈接:
.
3. GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection
作者:Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, Lizhen Cui
摘要:近年來,推薦系統已經成為所有電子商務平臺中不可缺少的功能。推薦系統的審查評級數據通常來自開放平臺,這可能會吸引一群惡意用戶故意插入虛假反饋,試圖使推薦系統偏向于他們。此類攻擊的存在可能會違反高質量數據始終可用的建模假設,而這些數據確實會影響用戶的興趣和偏好。因此,構建一個即使在攻擊下也能產生穩定推薦的健壯推薦系統具有重要的現實意義。本文提出了一種基于GCN的用戶表示學習框架GraphRf,該框架能夠統一地進行穩健的推薦和欺詐者檢測。在其端到端學習過程中,用戶在欺詐者檢測模塊中被識別為欺詐者的概率自動確定該用戶的評級數據在推薦模塊中的貢獻;而在推薦模塊中輸出的預測誤差作為欺詐者檢測模塊中的重要特征。因此,這兩個組成部分可以相互促進。經過大量的實驗,實驗結果表明我們的GraphRf在魯棒評級預測和欺詐者檢測這兩個任務中具有優勢。此外,所提出的GraphRf被驗證為對現有推薦系統上的各種攻擊具有更強的魯棒性。
網址:
4. Hierarchical Fashion Graph Network for Personalized Outfit Recommendation
作者:Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, Tat-Seng Chua
摘要:服裝推薦越來越受到網購服務商和時尚界的關注。與向用戶推薦單個單品(例如,朋友或圖片)的其他場景(例如,社交網絡或內容共享)不同,服裝推薦預測用戶對一組匹配良好的時尚單品的偏好。因此,進行高質量的個性化服裝推薦應滿足兩個要求:1)時尚單品的良好兼容性;2)與用戶偏好的一致性。然而,目前的研究主要集中在其中一個需求上,只考慮了用戶-全套服裝(outfit)或全套服裝-項目的關系,從而容易導致次優表示,限制了性能。在這項工作中,我們統一了兩個任務,服裝兼容性建模和個性化服裝推薦。為此,我們開發了一個新的框架,層次時尚圖網絡(HFGN),用于同時建模用戶、商品和成套服裝之間的關系。特別地,我們構建了一個基于用戶-全套服裝交互和全套服裝-項目映射的層次結構。然后,我們從最近的圖神經網絡中得到啟發,在這種層次圖上使用嵌入傳播,從而將項目信息聚合到一個服裝表示中,然后通過他/她的歷史服裝來提煉用戶的表示。此外,我們還對這兩個任務進行了聯合訓練,以優化這些表示。為了證明HFGN的有效性,我們在一個基準數據集上進行了廣泛的實驗,HFGN在NGNN和FHN等最先進的兼容性匹配模型基礎上取得了顯著的改進。
網址:
代碼鏈接:
5. Multi-behavior Recommendation with Graph Convolutional Networks
作者:Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, Yong Li
摘要:傳統的推薦模型通常只使用一種類型的用戶-項目交互,面臨著嚴重的數據稀疏或冷啟動問題。利用多種類型的用戶-項目交互(例如:點擊和收藏)的多行為推薦可以作為一種有效的解決方案。早期的多行為推薦研究未能捕捉到行為對目標行為的不同程度的影響。它們也忽略了多行為數據中隱含的行為語義。這兩個限制都使得數據不能被充分利用來提高對目標行為的推薦性能。在這項工作中,我們創新性地構造了一個統一的圖來表示多行為數據,并提出了一種新的模型--多行為圖卷積網絡(Multi-Behavior Graph Convolutional Network,MBGCN)。MBGCN通過用戶-項目傳播層學習行為強度,通過項目-項目傳播層捕獲行為語義,較好地解決了現有工作的局限性。在兩個真實數據集上的實驗結果驗證了該模型在挖掘多行為數據方面的有效性。我們的模型在兩個數據集上的性能分別比最優基線高25.02%和6.51%。對冷啟動用戶的進一步研究證實了該模型的實用性。
網址:
6. GAG: Global Atributed Graph Neural Network for Streaming Session-based Recommendation
作者:Ruihong Qiu, Hongzhi Yin, Zi Huang, Tong Chen
摘要:基于流會話的推薦(Streaming session-based recommendation,SSR)是一項具有挑戰性的任務,它要求推薦器系統在流媒體場景(streaming scenario)中進行基于會話的推薦(SR)。在電子商務和社交媒體的現實應用中,在一定時間內產生的一系列用戶-項目交互被分組為一個會話,這些會話以流的形式連續到達。最近的SR研究大多集中在靜態集合上,即首先獲取訓練數據,然后使用該集合來訓練基于會話的推薦器模型。他們需要對整個數據集進行幾個epoch的訓練,這在流式設置下是不可行的。此外,由于對用戶信息的忽視或簡單使用,它們很難很好地捕捉到用戶的長期興趣。雖然最近已經提出了一些流推薦策略,但它們是針對個人交互流而不是會話流而設計的。本文提出了一種求解SSR問題的帶有Wasserstein 庫的全局屬性圖(GAG)神經網絡模型。一方面,當新的會話到達時,基于當前會話及其關聯用戶構造具有全局屬性的會話圖。因此,GAG可以同時考慮全局屬性和當前會話,以了解會話和用戶的更全面的表示,從而在推薦中產生更好的性能。另一方面,為了適應流會話場景,提出了Wasserstein庫來幫助保存歷史數據的代表性草圖。在兩個真實數據集上進行了擴展實驗,驗證了GAG模型與最新方法相比的優越性。
網址:
將圖表示學習與多視圖數據(邊信息)相結合進行推薦是行業發展的趨勢。現有的方法大多可以歸類為多視圖表示融合;他們首先構建一個圖,然后將多視圖數據集成到圖中每個節點的一個緊湊表示中。然而,這些方法在工程和算法方面都引起了關注:1)多視圖數據在工業中是豐富的,信息量大,可能超過單個向量的容量,2)由于多視圖數據往往來自不同的分布,可能會引入歸納偏差。在本文中,我們使用一種多視圖表示對齊方法來解決這個問題。特別地,我們提出了一個多任務多視圖圖表示學習框架(M2GRL)來學習網絡規模推薦系統的多視圖圖的節點表示。M2GRL為每個單視圖數據構造一個圖,從多個圖中學習多個單獨的表示,并對跨視圖關系進行對齊。M2GRL選擇多任務學習范式,共同學習視圖內表示和跨視圖關系。此外,M2GRL利用同方差不確定性自適應調整訓練任務的權重損失。我們在淘寶上部署了M2GRL,并在570億個例子上訓練它。根據離線指標和在線A/B測試,M2GRL的性能顯著優于其他最先進的算法。淘寶多樣性推薦的進一步探索表明了利用所產生的多種表示的有效性,我們認為這對于不同焦點的行業推薦任務是一個很有前景的方向。
自回歸文本生成模型通常側重于局部的流暢性,在長文本生成過程中可能導致語義不一致。此外,自動生成具有相似語義的單詞是具有挑戰性的,而且手工編寫的語言規則很難應用。我們考慮了一個文本規劃方案,并提出了一個基于模型的模仿學習方法來緩解上述問題。具體來說,我們提出了一種新的引導網絡來關注更長的生成過程,它可以幫助下一個單詞的預測,并為生成器的優化提供中間獎勵。大量的實驗表明,該方法具有較好的性能。
【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。由于疫情影響,會議在線上舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。上周專知小編整理了WWW 2020 推薦系統相關論文-part2,這期小編繼續為大家奉上WWW 2020六篇推薦系統相關論文-part3 供參考——上下文感知推薦、雙邊公平推薦、MetaSelector、視覺主題推薦、社交影響力。 WWW2020RS_Part2、WWW2020RS_Part1
1. Eficient Non-Sampling Factorization Machines for Optimal Context-Aware Recommendation
作者:Chong Chen, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma
摘要:為了提供更準確的推薦,在對用戶項目交互進行建模之外考慮上下文特征已成為一個熱門話題。具有負采樣的因子分解機(FM)是一種流行的上下文感知推薦解決方案。然而,由于采樣可能丟失重要信息,并且在實際應用中通常會導致非最優性能,因此該算法的魯棒性不強。最近的一些努力通過使用深度學習框架建模高階特征交互增強了FM的性能。而他們要么只關注評分預測任務,要么通常采用負采樣策略來優化排名效果。由于采樣的巨大的波動,我們有理由認為這些基于采樣的FM方法對于上下文感知推薦仍然不是最佳的。在本文中,我們提出在不進行采樣的情況下學習FM,以有助于上下文感知推薦??的排名任務。盡管這種方法效率很高,但這種非采樣策略對模型的學習效率提出了很大的挑戰。因此,我們進一步設計了一種新的理想框架--有效非采樣樣因子分解機(ENSFM)。ENSFM不僅無縫連接了FM和矩陣分解(MF)之間的關系,而且通過新穎的記憶策略解決了具有挑戰性的效率問題。通過在三個真實的公共數據集上的大量實驗表明:1)我們提出的ENSFM的性能一致且顯著優于現有的上下文感知Top-K推薦方法,2)ENSFM在訓練效率上具有顯著的優勢,使其更適用于實際的大系統。此外,實驗結果表明,對于Top-K推薦任務,合適的學習方法比先進的神經網絡結構更為重要。
網址:
//www.thuir.cn/group/~mzhang/publications/TheWebConf2020-Chenchong.pdf
代碼鏈接:
2. FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms
作者:Gourab K Patro, Arpita Biswas, Niloy Ganguly, Krishna P. Gummadi and Abhijnan Chakraborty
摘要:我們在雙邊在線平臺的背景下調查公平推薦(fair recommendation )問題,該平臺由一邊的客戶和另一邊的生產商組成。這些平臺推薦服務的傳統方法側重于根據個人客戶的個性化偏好定制結果,以實現客戶滿意度的最大化。然而,我們的調查顯示,這種以客戶為中心的設計可能會導致生產商之間曝光量的不公平分配,這可能會對他們的利益造成不利影響。另一方面,以生產商為中心的設計可能會對客戶不公平。因此,我們考慮了客戶和生產商之間的公平問題。我們的方法將公平推薦問題映射為一個公平分配不可分割商品問題的新穎映射。我們提出的FairRec算法可確保至少為大多數生產商提供Maximin Share(MMS)的曝光量,并為每個客戶提供多達Envy-Free(EF1)的公平性。對多個真實世界數據集的廣泛評估顯示,FairRec在確保雙面公平性的同時,在總體推薦質量方面造成了邊際損失的有效性。
網址:
3. MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection
作者:Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi Feng and Zhenguo Li
摘要:推薦系統通常面對包含高度個性化用戶歷史數據的異構數據集,在這些數據集中,沒有哪個模型可以為每個用戶提供最佳建議。我們在公共和私有數據集上都觀察到了這種普遍存在的現象,并解決了模型選擇問題,以追求對每個用戶的推薦質量的優化。我們提出了一個元學習框架來促進推薦系統中用戶級的自適應模型選擇。在此框架中,我們將使用來自所有用戶的數據來訓練推薦者集合,然后通過元學習對模型選擇器進行訓練,以使用用戶特定的歷史數據為每個用戶選擇最佳的單個模型。我們在兩個公共數據集和一個真實的生產數據集上進行了廣泛的實驗,證明了我們的框架在AUC和LogLoss方面比單一的模型基線和樣本級模型選擇器都有改進。特別是,當這些改進部署在在線推薦系統中時,可能會帶來巨大的利潤收益。
網址:
4. Recommending Themes for Ad Creative Design via Visual-Linguistic Representations
作者:Yichao Zhou, Shaunak Mishra, Manisha Verma, Narayan Bhamidipati and Wei Wang
摘要:在線廣告行業中經常需要更新廣告創意,即用于吸引在線用戶進入品牌的圖像和文字。進行此類更新,是為了減少在線用戶中廣告疲勞的可能性,并將其他成功的廣告加入到相關產品類別中。對于創意策略師來說,給定一個品牌,為一個新的廣告想出主題是一個費時費力的過程。創意策略師來通常從過去廣告活動中使用的圖像和文字以及有關品牌的知識中汲取靈感。為了在過去的廣告活動中通過此類多模態信息自動推斷廣告主題,我們為廣告創意策略師提出了主題(關鍵詞)推薦系統。主題推薦器基于視覺問答(VQA)任務的聚合結果,該任務提取以下內容:(i)廣告圖像,(ii)與廣告關聯的文字以及廣告中品牌的Wikipedia頁面,(iii)有關廣告的問題。我們利用基于transformer的跨模態編碼器來為VQA任務訓練視覺語言表示。我們沿著分類和排序的思路研究了VQA任務的兩個公式;通過在公共數據集上的實驗,表明跨模態表示顯著地提高了分類準確率和排序精準-召回指標。與單獨的圖像和文本表示相比,跨模式表示顯示出更好的性能。此外,與僅使用文本或視覺信息相比,多模態信息的使用表現出顯著提升。
網址:
5. The Structure of Social Influence in Recommender Networks
作者:Pantelis P. Analytis, Daniel Barkoczi, Philipp Lorenz-Spreen and Stefan M. Herzog
摘要:人們在品味(taste)上影響他人意見的能力各不相同-既包括離線與在線推薦系統。這些驚人差異背后的機制是什么?使用加權k最近鄰算法(k-nn)表示一系列社會學習策略,我們利用網絡科學的方法展示了k-nn算法如何在六個現實世界的品味領域中引發社會影響力網絡。我們給出了三個新的結果,分別適用于離線建議獲取和在線推薦器設置。首先,有影響力的個人具有主流品味,與其他人的品味相似性分散度很高。其次,個人或算法咨詢的人越少(即k越低),或者對其他更相似的人的意見給予的權重越大,具有實質性影響的人的群體就越小。第三,對部署k-nn算法后產生的影響網絡是分層組織的。我們的結果為通信和網絡科學中的經典實證發現提供了新的線索,有助于提高對線下和在線上的社會影響的理解。
網址:
6. Latent Linear Critiquing for Conversational Recommender Systems
作者:PKai Luo, Scott Sanner, Ga Wu, Hanze Li and Hojin Yang
摘要:批判(Critiquing)是一種用于會話推薦的方法,可根據用戶的偏好反饋迭代地調整建議。在該設置中,迭代地向用戶提供該項目的項目推薦和屬性描述;用戶可以接受該推薦,或者批判項目描述中的屬性以生成新的推薦。之前的批判方法主要基于顯式約束和基于實用程序的方法來修改推薦(評判的項目屬性)。在這篇文章中,我們回顧了基于潛在嵌入和主觀項目描述(即來自用戶評論的關鍵詞)的推薦方法時代的批判方法。主要兩個關鍵的研究問題:(1)如何將關鍵詞批判與用戶偏好嵌入一起嵌入以更新推薦,(2)如何調節多步驟批判性反饋的強度,其中批判性反饋不一定是獨立的,也不一定是同等重要的。為了解決(1),我們構建了一個現有的最先進的線性嵌入推薦算法,以使基于評論的關鍵詞屬性與用戶偏好嵌入保持一致。為了解決(2),我們利用嵌入和推薦預測的線性結構來建立一個基于線性規劃(LP)的優化問題,以確定納入批評反饋的最優權重。我們在兩個包含模擬用戶評論的推薦數據集上評估提出的框架。與對批判反饋進行平均的標準方法相比,實驗結果表明,我們的方法減少了找到滿意項目所需的交互次數,并提高了總體成功率。
網址:
主動學習是通過對最有代表性的樣本進行抽樣,設計標簽有效的算法。在本文中,我們提出了一種狀態重新標記對抗主動學習模型(SRAAL),該模型利用標注和標記/未標記的狀態信息來獲得信息量最大的未標記樣本。SRAAL由一個表示生成器和一個狀態鑒別器組成。該生成器利用補充標注信息與傳統重建信息生成樣本的統一表示,將語義嵌入到整個數據表示中。然后,我們在鑒別器中設計了一個在線不確定度指標,使未標記樣本具有不同的重要性。因此,我們可以根據鑒別器的預測狀態來選擇信息最豐富的樣本。我們還設計了一個算法來初始化標記池,這使得后續的采樣更加有效。在各種數據集上進行的實驗表明,我們的模型優于現有的主動學習方法,并且我們的初始采樣算法具有更好的性能。
知識圖譜補全(KGC)任務的目的是自動推斷知識圖譜(KG)中缺失的事實信息。在本文中,我們采用了一個新的視角,旨在利用豐富的用戶-項目交互數據(簡稱用戶交互數據)來改進KGC任務。我們的工作靈感來自于許多KG實體對應于應用程序系統中的在線項目的觀察。然而,這兩種數據源具有非常不同的內在特性,使用簡單的融合策略可能會影響原始的性能。
為了解決這一挑戰,我們提出了一種利用KGC任務的用戶交互數據的新穎的對抗性學習方法。我們的生成器是與用戶交互數據隔離的,用于提高鑒別器的性能。鑒別器將從用戶交互數據中學習到的有用信息作為輸入,逐步增強評價能力,以識別生成器生成的虛假樣本。為了發現用戶的隱式實體偏好,我們設計了一種基于圖神經網絡的協同學習算法,該算法將與鑒別器共同優化。這種方法可以有效地緩解KGC任務的數據異構性和語義復雜性問題。在三個真實數據集上的大量實驗證明了我們的方法在KGC任務上的有效性。
標題
對抗特征幻覺網絡的小樣本學習,Adversarial Feature Hallucination Networks for Few-Shot Learning
關鍵字
小樣本學習,神經網絡,生成對抗網絡,機器學習,人工智能
簡介
最近在各種任務中進行的深度學習蓬勃發展,在很大程度上已經獲得了豐富且可訪問的標記數據的認可。 盡管如此,對于許多實際應用而言,大量的監督仍然是奢侈的事情,這引起了人們對標簽稀缺技術的極大興趣,例如小樣本學習(FSL),旨在通過少量標簽樣本學習新類的概念。 FSL的自然方法是數據擴充,許多最近的工作通過提出各種數據綜合模型證明了其可行性。 但是,這些模型不能很好地確保合成數據的可分辨性和多樣性,因此經常會產生不良結果。 在本文中,我們提出了基于條件Wasserstein生成對抗網絡(cWGAN)的對抗特征幻覺網絡(AFHN),并幻化了以少量標記樣本為條件的各種和判別特征。 兩種新穎的正則化器,即分類正則器和反崩潰正則器,被合并到AFHN中以分別促進合成特征的可辨別性和多樣性。 消融研究驗證了所提出的基于cWGAN的特征幻覺框架和所提出的調節器的有效性。 在三個常見基準數據集上的比較結果證實了AFHN優于現有的基于數據增強的FSL方法和其他最新方法的優越性。
作者
Kai Li, Yulun Zhang, Kunpeng Li, Yun Fu,波士頓東北大學電氣與計算機工程系
1、 Adversarial Graph Embedding for Ensemble Clustering
作者:Zhiqiang Tao , Hongfu Liu , Jun Li , ZhaowenWang and Yun Fu;
摘要:Ensemble Clustering通常通過圖分區方法將基本分區集成到共識分區(consensus partition)中,但這種方法存在兩個局限性: 1) 它忽略了重用原始特征; 2)獲得具有可學習圖表示的共識分區(consensus partition)仍未得到充分研究。在本文中,我們提出了一種新穎的對抗圖自動編碼器(AGAE)模型,將集成聚類結合到深度圖嵌入過程中。具體地,采用圖卷積網絡作為概率編碼器,將特征內容信息與共識圖信息進行聯合集成,并使用簡單的內積層作為解碼器,利用編碼的潛變量(即嵌入表示)重建圖。此外,我們還開發了一個對抗正則化器來指導具有自適應分區依賴先驗的網絡訓練。通過對8個實際數據集的實驗,證明了AGAE在幾種先進的深度嵌入和集成聚類方法上的有效性。
網址://www.ijcai.org/proceedings/2019/0494.pdf
2、Attributed Graph Clustering via Adaptive Graph Convolution
作者:Xiaotong Zhang, Han Liu, Qimai Li and Xiao-Ming Wu;
摘要:Attributed Graph聚類是一項具有挑戰性的工作,它要求對圖結構和節點屬性進行聯合建模。圖卷積網絡的研究進展表明,圖卷積能夠有效地將結構信息和內容信息結合起來,近年來基于圖卷積的方法在一些實際屬性網絡上取得了良好的聚類性能。然而,對于圖卷積如何影響聚類性能以及如何正確地使用它來優化不同圖的性能,人們的了解有限。現有的方法本質上是利用固定低階的圖卷積,只考慮每個節點幾跳內的鄰居,沒有充分利用節點關系,忽略了圖的多樣性。本文提出了一種自適應圖卷積方法,利用高階圖卷積捕獲全局聚類結構,并自適應地為不同的圖選擇合適的順序。通過對基準數據集的理論分析和大量實驗,驗證了該方法的有效性。實驗結果表明,該方法與現有的方法相比具有較好的優越性。
網址:
3、Dynamic Hypergraph Neural Networks
作者:Jianwen Jiang , Yuxuan Wei , Yifan Feng , Jingxuan Cao and Yue Gao;
摘要:近年來,基于圖/超圖(graph/hypergraph)的深度學習方法引起了研究者的廣泛關注。這些深度學習方法以圖/超圖結構作為模型的先驗知識。然而,隱藏的重要關系并沒有直接表現在內在結構中。為了解決這個問題,我們提出了一個動態超圖神經網絡框架(DHGNN),它由兩個模塊的堆疊層組成:動態超圖構造(DHG)和超圖卷積(HGC)。考慮到最初構造的超圖可能不適合表示數據,DHG模塊在每一層上動態更新超圖結構。然后引入超圖卷積對超圖結構中的高階數據關系進行編碼。HGC模塊包括兩個階段:頂點卷積和超邊界卷積,它們分別用于聚合頂點和超邊界之間的特征。我們已經在標準數據集、Cora引文網絡和微博數據集上評估了我們的方法。我們的方法優于最先進的方法。通過更多的實驗驗證了該方法對不同數據分布的有效性和魯棒性。
網址:
4、Exploiting Interaction Links for Node Classification with Deep Graph Neural Networks
作者:Hogun Park and Jennifer Neville;
摘要:節點分類是關系機器學習中的一個重要問題。然而,在圖邊表示實體間交互的場景中(例如,隨著時間的推移),大多數當前方法要么將交互信息匯總為鏈接權重,要么聚合鏈接以生成靜態圖。在本文中,我們提出了一種神經網絡結構,它可以同時捕獲時間和靜態交互模式,我們稱之為Temporal-Static-Graph-Net(TSGNet)。我們的主要觀點是,利用靜態鄰居編碼器(可以學習聚合鄰居模式)和基于圖神經網絡的遞歸單元(可以捕獲復雜的交互模式),可以提高節點分類的性能。在我們對節點分類任務的實驗中,與最先進的方法相比,TSGNet取得了顯著的進步——與四個真實網絡和一個合成數據集中的最佳競爭模型相比,TSGNet的分類錯誤減少了24%,平均減少了10%。
網址:
5、Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks
作者:Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai and Philip S. Yu;
摘要:事件在現實世界中實時發生,可以是涉及多個人和物體的計劃和組織場合。社交媒體平臺發布了大量包含公共事件和綜合話題的文本消息。然而,由于文本中事件元素的異構性以及顯式和隱式的社交網絡結構,挖掘社會事件是一項具有挑戰性的工作。本文設計了一個事件元模式來表征社會事件的語義關聯,并構建了一個基于事件的異構信息網絡(HIN),該網絡融合了外部知識庫中的信息,提出了一種基于對偶流行度圖卷積網絡(PP-GCN)的細粒度社會事件分類模型。我們提出了一種基于事件間社會事件相似度(KIES)的知識元路徑實例,并建立了一個加權鄰域矩陣作為PP-GCN模型的輸入。通過對真實數據收集的綜合實驗,比較各種社會事件檢測和聚類任務。實驗結果表明,我們提出的框架優于其他可選的社會事件分類技術。
網址:
6、Graph Contextualized Self-Attention Network for Session-based Recommendation
作者:Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang and Xiaofang Zhou;
摘要:基于會話的推薦旨在預測用戶基于匿名會話的下一步行動,是許多在線服務(比如電子商務,媒體流)中的關鍵任務。近年來,在不使用遞歸網絡和卷積網絡的情況下,自注意力網絡(SAN)在各種序列建模任務中取得了顯著的成功。然而,SAN缺乏存在于相鄰商品上的本地依賴關系,并且限制了其學習序列中商品的上下文表示的能力。本文提出了一種利用圖神經網絡和自注意力機制的圖上下文自注意力模型(GC-SAN),用于基于會話的推薦。在GC-SAN中,我們動態地為會話序列構造一個圖結構,并通過圖神經網絡(GNN)捕獲豐富的局部依賴關系。然后,每個會話通過應用自注意力機制學習長期依賴關系。最后,每個會話都表示為全局首選項和當前會話興趣的線性組合。對兩個真實數據集的大量實驗表明,GC-SAN始終優于最先進的方法。
網址:
7、Graph Convolutional Network Hashing for Cross-Modal Retrieval
作者:Ruiqing Xu , Chao Li , Junchi Yan , Cheng Deng and Xianglong Liu;
摘要:基于深度網絡的跨模態檢索近年來取得了顯著的進展。然而,彌補模態差異,進一步提高檢索精度仍然是一個關鍵的瓶頸。本文提出了一種圖卷積哈希(GCH)方法,該方法通過關聯圖學習模態統一的二進制碼。一個端到端深度體系結構由三個主要組件構成:語義編碼模塊、兩個特征編碼網絡和一個圖卷積網絡(GCN)。我們設計了一個語義編碼器作為教師模塊來指導特征編碼過程,即學生模塊,用于語義信息的挖掘。此外,利用GCN研究數據點之間的內在相似性結構,有助于產生有區別的哈希碼。在三個基準數據集上的大量實驗表明,所提出的GCH方法優于最先進的方法。
網址: