亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

決策算法在許多不同的應用中被使用。傳統的設計決策算法的方法采用原則和簡化的建模,在此基礎上,人們可以通過易于處理的優化來確定決策。最近,深度學習方法正在變得越來越流行,這種方法使用從數據調整的高度參數架構,而不依賴于數學模型。基于模型的優化和以數據為中心的深度學習通常被認為是不同的學科。在這里,我們將它們描述為一個在特異性和參數化方面不斷變化的連續光譜的邊緣,并為位于這個光譜中間的方法提供一個教程式的展示,稱為基于模型的深度學習。在我們的演示中,我們還附帶了超分辨率和隨機控制方面的運行示例,并展示了如何使用所提供的特性和每種詳細方法來表示它們。將基于模型的優化和深度學習結合在一起,在生物醫學成像和數字通信等各種應用中使用實驗結果,證明了這種結合的好處。

付費5元查看完整內容

相關內容

現代深度學習已經在多個學科中帶來了許多發現:計算機視覺、語音識別、自然語言處理技術以及純粹通過自我游戲學習游戲的能力。這在很大程度上是由獲取大量數據的能力以及與問題域匹配的適當的歸納偏差所驅動的。在本教程中,我們將探討這一新興技術與信息論的相互作用。特別地,我們將討論兩個主題。

(1) 深度學習在信息論中的應用:信息論學界在編碼設計和解碼算法方面率先取得了幾項突破,徹底改變了現代數字通信。在這一主題中,我們將研究是否有可能利用現代深度學習技術來加速這種編碼方案的發現。我們將介紹這一領域的各種發展,展示Viterbi和BCJR算法可以從觀測數據中“學習”,以及如何為高密度編碼學習比消息傳遞更好的算法。此外,經過充分研究的信道編碼設置,我們基本上可以獲得無限數量的訓練數據,并且在一些設置中已經知道了接近最優的編碼策略,可以提供一個視角,通過它可以改進和增強目前的深度學習技術。除了代碼設計,深度學習作為一種通用函數逼近器在信息論中有更廣泛的應用潛力。我們將談到這個大致的概念。事實上,最近的一些研究已經將深度學習用于(條件)獨立檢驗、互信息估計、壓縮感知以及多假設檢驗中的誤發現率控制。

(2)在第二個主題中,我們將對信息論原理在理解和設計深度學習系統中的應用進行調研。這些工作大致可分為三類:(a)代表性(b)可學習性。(A)事實上,深度學習的一個基本結果是緊密逼近任何連續函數的能力。有幾個現代的表示定理的概括理解的數量和深度這樣的網絡需要近似各種函數類,以及一些不變的性質。我們將調研這些結果。(B)有一些新興的工作,包括張量方法,在一些數學假設下為神經網絡和混合專家提供了各種可學習性保證。

付費5元查看完整內容

我們目前正處于一場數據革命之中。在科學、健康甚至日常生活中產生的海量和不斷增長的數據集將影響社會的許多領域。許多這樣的數據集不僅大,而且是高維的,每個數據點可能包含數百萬甚至數十億個數字。以成像為例,一張圖像可能包含數百萬個或更多的像素;一段視頻可能很容易包含10億個“體素”。為什么在高維空間學習具有挑戰性,這是有根本原因的(“維度詛咒”)。跨越信號處理、統計和優化的一個基本挑戰是在高維數據集中利用低維結構。低維信號建模推動了理論和應用領域的發展,從醫學和科學成像,到低功耗傳感器,再到生物信息學數據集的建模和解釋,這只是其中的一小部分。然而,大量的現代數據集帶來了額外的挑戰:隨著數據集的增長,數據收集技術變得越來越不受控制,經常會遇到嚴重錯誤或惡意破壞,以及非線性。傳統的技術在這種情況下完全崩潰,需要新的理論和算法。

為了應對這些挑戰,在過去的二十年里,高維空間中低維結構的研究取得了爆炸性的發展。在很大程度上,代表性低維模型的幾何和統計性質(如稀疏和低秩及其變體和擴展)現在已經被很好地理解。在何種條件下,這些模型可以有效地和高效地從(最小數量的抽樣)數據恢復已經明確的特征。為了從高維數據中恢復這種低維模型,人們開發了許多高效、可擴展的算法。這些算法的工作條件、數據和計算復雜度也得到了全面而精確的刻畫。這些新的理論成果和算法已經徹底改變了數據科學和信號處理的實踐,并對傳感、成像和信息處理產生了重大影響。另一方面,最近深度神經網絡和低維模型之間在學習表示、網絡架構和優化策略等多個層次上出現了強大的聯系。這種連接不僅有助于解釋深度學習中許多有趣的現象,而且為更好的網絡設計、優化、魯棒性和在監督和無監督場景下的深度網絡泛化提供了新的指導原則。

作為這樣的歷史進步的見證人,我們相信這是一個正確的時機,將這個新的知識體系交付給信號處理社區的下一代學生和研究人員。通過過去20年令人振奮的研究進展,信號處理界已經見證了稀疏和低維模型的力量。然而,與此同時,社區仍然處于擁抱現代機器學習的力量的過渡階段,尤其是深度學習,在建模和可解釋性方面面臨前所未有的新挑戰。與過去關于壓縮感知、凸優化和相關主題的教程相比,本教程(以及相關的書籍、練習和課程材料)的獨特之處在于,它將信號處理的基礎數學模型與非凸優化和深度學習的當代主題連接起來。目的是展示(i)這些低維模型和原理如何為制定問題和理解方法的行為提供一個有價值的視角,以及(ii)來自非凸性和深度學習的思想如何幫助這些核心模型實用于具有非線性數據和觀測模型、測量非理想性等的現實問題。

本課程首先介紹基本的線性低維模型(例如,基本的稀疏和低秩模型)和凸松弛方法,以及激勵工程應用,隨后介紹一套可擴展和有效的優化方法。基于此,從對稱和幾何角度介紹了若干基本學習和逆問題(如字典學習和稀疏盲反卷積)的非線性低維模型、非凸方法及其正確性保證和高效的非凸優化方法。在這些結果的基礎上,我們繼續討論低維結構和深度模型之間強大的概念、算法和理論聯系,為理解最先進的深度模型提供了新的視角,并為設計用于學習低維結構的深度網絡提供了新的原則,具有明確的可解釋性和實際效益。

付費5元查看完整內容

隨著數據驅動的機器學習研究的發展,各種各樣的預測問題得到了解決。探索如何利用機器學習,特別是深度學習方法來分析醫療數據已經變得至關重要。現有方法的一個主要局限性是專注于網格數據; 然而,生理記錄的結構通常是不規則的和無序的,這使得很難把它們作為一個矩陣來概念化。因此,圖神經網絡通過利用生物系統中的隱式信息,利用邊緣連接的交互節點吸引了大量的關注,這些邊的權重可以是時間關聯或解剖連接。在本綜述中,我們全面回顧了不同類型的圖架構及其在醫療保健中的應用。我們以系統的方式概述了這些方法,并按照它們的應用領域組織起來,包括功能連接、解剖結構和基于電的分析。我們還概述了現有技術的局限性,并討論了未來研究的潛在方向。

//www.zhuanzhi.ai/paper/93391ccf2368809646650183224eee1c

引言

醫學診斷是指一個人可以確定哪種疾病或狀況可以解釋病人的癥狀的過程。疾病診斷所需的信息來自患者的病史和各種醫學測試,這些測試通過診斷成像數據獲取患者的功能和解剖結構,如功能磁共振成像(fMRI)、磁共振成像(MRI)、計算機斷層掃描(CT)、超聲(美國)和X射線; 其他診斷工具包括腦電圖(EEG)。然而,考慮到通常耗時的診斷過程容易產生主觀解釋和觀察者間的變異,臨床專家已經開始從計算機輔助干預中獲益。自動化在醫療保健服務和醫生有限的情況下也有好處。自動化正在努力提高醫療保健系統的質量和降低成本[1]。通過將特征工程任務合并到學習任務[2]中,深度學習提供了一個解決這些需求的有效途徑。有幾篇綜述論文分析了傳統機器學習和深度學習方法在醫學異常和解剖結構檢測和分割、運動障礙和序列數據分析、計算機輔助檢測和計算機輔助診斷方面的好處。

圖網絡屬于一個新興領域,它也在許多技術領域產生了巨大的影響。來自化學、生物學、遺傳學和醫療保健等學科的許多信息并不適合基于矢量的表示,而是需要復雜的數據結構。圖本質上捕獲實體之間的關系,因此在這些應用中可能非常有用,可以對變量之間的關系信息進行編碼。例如,在醫療保健領域,可以通過在醫生的決策過程[7]中將疾病或癥狀與主題關聯起來,或為乳腺癌分析[8]建立RNA序列模型來構建知識圖譜。因此,特別將圖神經網絡(GNN)推廣為非結構(無序)和結構(有序)場景。然而,盡管基于圖的表示在醫學領域的使用越來越普遍,但與傳統的深度學習方法相比,此類方法仍然稀缺,而且它們解決許多具有挑戰性的醫學問題的潛力尚未完全實現。

關于GNNs的深度學習領域迅速增長,其受歡迎程度也反映在最近對圖形表示及其應用的大量綜述中。現有綜述全面概述了非歐氏數據深度學習、圖深度學習框架和現有技術的分類[9],[14];或者介紹包括生物學和信號處理領域[15]-[18]的一般應用。盡管一些論文使用深度學習技術概述了醫學圖像分析,并引入了GNN的概念來評估神經疾病[19],據我們所知,目前還沒有系統介紹和討論GNN在非結構化醫學數據中的當前應用。

在本文中,我們致力于提供一個多圖神經網絡(GNN)模型在醫療診斷和分析方面的全面回顧。我們試圖解釋為什么GNN在這個領域值得研究的根本原因,并強調了新興的醫療分析挑戰,GNN可以很好地解決。圖神經網絡在醫學信號處理和分析中的應用尚處于起步階段。在本文中,我們提出了一項綜述,將圖神經網絡應用于醫療診斷任務,并提出了該領域的最新方法和趨勢的現狀。

  1. 我們確定了傳統深度學習在應用于醫學信號分析時面臨的一些挑戰,并強調了了圖神經網絡在克服這些挑戰方面的貢獻。

  2. 我們介紹并討論了為醫療診斷提出的各種圖框架及其具體應用。我們涵蓋使用圖網絡與深度學習技術相結合的生物醫學成像應用的工作。

  3. 我們總結了當前基于圖的深度學習所面臨的挑戰,并基于目前觀察到的趨勢和局限性提出了醫學健康領域未來的發展方向。

付費5元查看完整內容

在過去的十年里,神經網絡在視覺、語音、語言理解、醫學、機器人和游戲等領域取得了驚人的成果。人們原本以為,這種成功需要克服理論上存在的重大障礙。畢竟,深度學習優化是非凸的、高度非線性的、高維的,那么我們為什么能夠訓練這些網絡呢?在許多情況下,它們擁有的參數遠遠多于記憶數據所需的參數,那么為什么它們能夠很好地推廣呢?盡管這些主題已經占據了機器學習研究領域的大部分注意力,但當涉及到更簡單的模型時,神經網絡領域的原則是先數據訓練再說。顯然,這招奏效了。

//www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/

結果,神經網絡的實際成功已經超過了我們理解它們如何工作的能力。這門課是關于開發概念工具來理解當神經網絡訓練時會發生什么。其中一些思想早在幾十年前就已經形成了(可能已經被社區的大部分人遺忘了),而另一些思想今天才剛剛開始被理解。我將試圖傳達我們最好的現代理解,盡管它可能不完整。

這門課從優化中汲取靈感,它不是一門優化課。一方面,優化的研究通常是指令性的,從優化問題的信息和明確定義的目標(如在特定規范下快速收斂)開始,并找出保證實現該目標的計劃。對于現代神經網絡來說,分析通常是描述性的: 采用在使用的程序,并找出它們(似乎)有效的原因。希望這種理解能讓我們改進算法。

與優化研究的另一個區別是,目標不是簡單地擬合一個有限的訓練集,而是一般化。盡管神經網絡有巨大的能力,但為什么它能泛化與訓練的動態密切相關。因此,如果我們從優化中引入一個想法,我們不僅需要考慮它是否會更快地最小化成本函數,還需要考慮它是否以一種有利于泛化的方式實現。

這類應用不會為您提供在ImageNet上實現最先進性能的方法。它也不是那種為了證明定理而去證明定理的理論課。相反,我們的目的是為您提供概念性工具,以便您在任何特定情況下推斷出影響訓練的因素。

除了讓你的網絡更好地訓練之外,學習神經網絡訓練動力學的另一個重要原因是,許多現代架構本身就足夠強大,可以進行優化。這可能是因為我們在體系結構中明確地構建了優化,就像在MAML或深度均衡模型中那樣。或者,我們可能只是在大量數據上訓練一個靈活的架構,然后發現它具有驚人的推理能力,就像GPT3一樣。不管怎樣,如果網絡架構本身在優化某些東西,那么外部訓練過程就會與本課程中討論的問題糾纏在一起,不管我們喜歡與否。為了有希望理解它提出的解決方案,我們需要理解問題。因此,本課程將以雙層優化結束,利用課程中涵蓋的所有內容。

目錄內容:

  • 線性回歸

我們將通過分析一個簡單的模型開始這門課,梯度下降動力學可以被精確地確定:線性回歸。盡管線性回歸很簡單,但它提供了對神經網絡訓練驚人的洞察力。我們將使用線性回歸來理解兩種神經網絡訓練現象: 為什么對輸入進行歸一化是一個好策略,以及增加維度可以減少過擬合。

  • 泰勒近似

線性化是我們理解非線性系統最重要的工具之一。我們將涵蓋神經網絡的一階泰勒近似(梯度,方向導數)和二階近似(Hessian)。我們將看到如何用雅可比向量乘積有效地計算它們。我們將使用Hessian診斷緩慢收斂和解釋網絡預測。

  • 度量

度量給出了流形上距離的一個局部概念。在許多情況下,兩個神經網絡之間的距離可以更有效地定義為它們所代表的函數之間的距離,而不是權重向量之間的距離。這就引出了一個重要的優化工具,叫做自然梯度。

  • 二階優化

我們從幾個角度來激勵神經網絡的二階優化:最小化二階泰勒近似、預處理、不變性和近端優化。我們將看到如何使用共軛梯度或克羅內克因子近似來近似二階更新。

  • 自適應梯度法、歸一化和權值衰減

我們看看已經成為神經網絡訓練的主要內容的三個算法特征。我們試圖理解它們對動力學的影響,并找出構建深度學習系統的一些陷阱。

  • 無窮極限與過度參數化
  • Stochastic Optimization and Scaling
  • Bayesian Inference and Implicit Regularization
  • Dynamical Systems and Momentum
  • Differential Games
  • Bilevel Optimization
付費5元查看完整內容

深度卷積網絡的出現推動了視覺識別領域的新一波進步。這些學習到的表示大大優于手工設計的特征,在視覺任務上獲得更高的性能,同時在數據集上有更好的泛化性。盡管這些模型看起來很普遍,但當它們所訓練的數據與所要求操作的數據之間存在不匹配時,它們仍然會受到影響。領域適應提供了一種潛在的解決方案,允許我們將網絡從源領域訓練到新的目標領域。在這些領域中,標記數據是稀疏的或完全缺失的。然而,在端到端可學習表示出現之前,視覺域適應技術很大程度上局限于在固定的、手工設計的視覺特征上訓練的分類器。在這篇論文中,我們展示了如何將視覺域適應與深度學習相結合,以直接學習能夠適應域移動的表示,從而使模型能夠泛化到源域之外。

在第2章中,我們將演示如何設計損失,以衡量兩個領域的不同程度。我們表明,通過優化表示來最小化這些損失,我們可以學習從源到目標更好地泛化的表示。在第3章和第4章中,我們展示了我們可以訓練模型來嘗試測量域差異,而不是手工設計這些域損失。由于這些模型本身是端到端可學習的,我們可以通過它們反向傳播來學習表示,從而最小化學習的差異。這在概念上與生成式對抗網絡類似,我們還探索了兩者之間的關系,以及我們如何在對抗環境中使用為GANs開發的技術。最后,在第5章和第6章中,我們證明了適應性不需要局限于深度網絡的中間特征。對抗適應技術也可以用于訓練模型,直接改變圖像的像素,將它們轉換成跨域的類似物。然后,這些轉換后的圖像可以用作標記的偽目標數據集,以學習更適合目標領域的監督模型。我們表明,這種技術是基于特征的適應性的補充,當兩者結合時產生更好的性能。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-69.html

付費5元查看完整內容

現代機器學習擅長于從固定的數據集和固定的環境中訓練出強大的模型,常常超過人類的能力。然而,這些模型未能模擬人類的學習過程,而人類的學習過程是有效的、穩健的,并且能夠從非平穩世界的連續經驗中逐步學習。對于這一局限性的見解可以從神經網絡優化的本質中獲得,這意味著持續學習技術可以從根本上提高深度學習,并打開了新的應用領域的大門。持續學習的有前途的方法可以在最細粒度的層次上找到,使用基于梯度的方法,也可以在體系結構層次上找到,使用模塊化和基于內存的方法。我們也認為元學習是一個潛在的重要方向。

人工智能研究在過去的幾個月中取得了巨大的進步,但它主要依賴于固定的數據集和固定的環境。持續學習是一個日益相關的研究領域,它表明人工系統可能像生物系統一樣,從連續不斷的相關數據流中有序地學習。在目前的回顧中,我們將持續學習與神經網絡的學習動力學聯系起來,強調它在穩步提高數據效率方面的潛力。我們進一步考慮了近年來出現的許多受生物學啟發的新方法,重點關注那些利用正規化、模塊化、記憶和元學習的方法,并強調了一些最有前途和最有影響的方向。

世界不是靜止不動的

人工智能成功的一個常見基準是模仿人類學習的能力。我們測量人類識別圖像、玩游戲和駕駛汽車的能力,舉幾個例子,然后開發機器學習模型,如果有足夠的訓練數據,它可以匹配或超過這些能力。這種范式把重點放在最終結果上,而不是學習過程上,并且忽略了人類學習的一個關鍵特征:它對不斷變化的任務和連續的經驗是魯棒的。人類以這種方式學習也許并不奇怪,畢竟,時間是不可逆的,世界是不穩定的(見詞匯表),所以人類的學習已經進化到在動態學習環境中茁壯成長。然而,這種魯棒性與最強大的現代機器學習方法形成了鮮明的對比,后者只有在數據經過仔細的洗牌、平衡和均質后才能表現良好。這些模型不僅表現不佳,而且在某些情況下,它們會完全失敗,或者在早期學習的任務上遭遇快速的性能下降,即所謂的災難性遺忘。

基于生物系統持續學習基礎

對自然世界及其智能物種的研究經常與人工智能研究交叉,包括與持續學習有關的方面[1]。生物學為在復雜環境中成功地持續學習提供了存在證據,也暗示了成功方法的設計原則和權衡。有多種機制使生物系統能夠適應不斷變化的環境,而不固執或遺忘。因此,在本節中,我們將通過類比來介紹四種持續學習模式,并將每種方法的詳細討論留到后面的章節中。此外,可以通過描述它們的規范模型來簡要地描述這些方法,如圖1(關鍵圖)所示。

持續學習的定義

持續學習的問題通常是由順序訓練協議和解決方案所期望的特性來定義的。與靜態數據集或環境的普通機器學習設置相反,持續學習設置明確地關注非平穩或變化的環境,通常被劃分為需要按順序完成的一組任務。這種設置可能在任務轉換(平滑或離散)、任務長度和重復、任務類型(如無監督、監督或強化學習)方面有所不同,或者甚至可能沒有定義明確的任務[9-11]。與課程學習相比[12,13],學習者不能控制任務的順序。

支持現代機器學習的獨立同分布假設

神經網絡大量利用現代技術來并行計算,同時考慮大量數據;事實上,這種易于伸縮的特性使得它們在過去的十年中成為了語音、視覺和語言應用程序的主流方法。 在典型的學習設置中,目標是通過設置網絡的參數來最小化一些損失函數,例如真輸出和預測輸出之間的誤差。基于梯度的學習,最有效的和廣泛使用的范式,是一種迭代算法,在每一次迭代,使一個小變化的參數,以減少損失(更詳細的解釋,見盒2)。這條規則的機制在拔河的動態結果,其中每個數據樣本正試圖拉動每個參數更大或更小。通過平均梯度,我們因此創建了一個拔河游戲,其中應用于每個參數的更新(因為它是正的或負的)揭示了哪個數據樣本贏了或輸了。在許多優化步驟上組合許多拔河式更新,可以進行學習(圖3)。

基于梯度的解決方案

由前面描述的拔河式學習動態驅動,一種有前途的方法是直接調節不同任務的梯度。這不僅是優化問題的核心,而且是由生物大腦[3]中突觸鞏固的研究激發的。一種方法是迫使梯度與之前學習任務的梯度保持一致[19,20],消除潛在干擾。這些方法在其他環境中也有好處,例如,在多任務學習中,它們有可能在目標沖突的情況下提高學習效率[21-23]。

模塊化架構

模塊化的神經網絡結構是一種自然有效的解決持續學習中的干擾和災難性遺忘問題的方法。模塊化提供了一個折衷方案,即使用一個容易遺忘的單一單片網絡,以及為每個任務使用獨立的網絡,這既可以防止災難性遺忘,也可以防止任務之間的轉移(參見圖1C的模塊化架構說明)。模塊化在生物系統中也很明顯,它支持大腦區域的功能專門化。

人工學習系統的記憶

基于梯度和模塊化的方法可能更適合短期的持續學習,而不是長期的記憶。基于梯度的方法不能防止任意長任務序列的遺忘,而模塊化方法可以在長時間尺度上保存知識,它們可能在神經網絡能力方面達到實際的極限。考慮一下這樣一個具有挑戰性的場景:在幾個月的時間里,把食物藏在1000個不同的地方,然后在更多的食物消失后,正確地找到每一個食物。這個特征是每個冬天都會出現的,比如夜鶯、松鴉和鴉類[57]。通過調整一個簡單的神經網絡的參數來保存存儲食物的順序經驗既具有挑戰性又效率低下。一個更可伸縮的策略是使用專用的讀寫內存對空間位置進行編碼。

元學習:發現持續學習的歸納偏差

到目前為止所討論的所有解決方案都規定了用于持續學習的手工設計的機制或架構,歸納偏差。每種歸納偏差都在需求(如良好的知識保留與基于記憶的方法中的正向遷移)之間達成了不同的權衡。值得考慮的是,從數據中學習解決方案,而不是依靠人類的獨創性來設計它,是否能夠實現更好的權衡。歷史上,許多元學習或學習-學習方法已經證明,解決方案可以通過自動學習歸納偏差(如架構、數據和學習參數)來改進,否則需要手工設計(圖1E) 。

結論和未來方向

機器學習研究人員經常指出,人類具有快速學習和概括(例如,從幾個例子中推斷出一個模式)的非凡能力。然而,我們并不經常重新評價人類在一生的教育和經歷中不斷學習的能力,盡管正是這種能力使人類在科學、藝術和工業上取得成就。這篇文章不僅試圖強調持續學習的重要性,而且還暴露了現代神經網絡在這方面的局限性,特別是導致效率低下、基于梯度的拔河的信用分配問題。

通過對這一空間的調查,我們發現了一種學習模式,如果擴展到更有雄心的領域,它就有可能發揮真正的影響力。毫不奇怪,這些范式都有很強的平行神經科學和生物系統。基于梯度的方法直接修改了神經網絡的操作時間,并被證明可以減少災難性遺忘。

模塊化架構為干擾和災難性遺忘提供了實用的解決方案,同時通過技能和知識的層次重組實現面向遷移。端到端記憶模型可以成為長時間學習的可擴展解決方案,元學習方法可以超越手工設計的算法和架構。有了這些潛在的積極影響,也必須認識到部署不斷變化的機器學習模型所涉及的風險,因為任何安全和預期行為的初始評估都不能輕易地永久保證。然而,通過提高學習算法的長期可靠性,以及通過開發確保某些規則或邊界不被違反的架構,持續學習解決方案可以降低這些風險。

付費5元查看完整內容
北京阿比特科技有限公司