亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著數據驅動的機器學習研究的發展,各種各樣的預測問題得到了解決。探索如何利用機器學習,特別是深度學習方法來分析醫療數據已經變得至關重要。現有方法的一個主要局限性是專注于網格數據; 然而,生理記錄的結構通常是不規則的和無序的,這使得很難把它們作為一個矩陣來概念化。因此,圖神經網絡通過利用生物系統中的隱式信息,利用邊緣連接的交互節點吸引了大量的關注,這些邊的權重可以是時間關聯或解剖連接。在本綜述中,我們全面回顧了不同類型的圖架構及其在醫療保健中的應用。我們以系統的方式概述了這些方法,并按照它們的應用領域組織起來,包括功能連接、解剖結構和基于電的分析。我們還概述了現有技術的局限性,并討論了未來研究的潛在方向。

//www.zhuanzhi.ai/paper/93391ccf2368809646650183224eee1c

引言

醫學診斷是指一個人可以確定哪種疾病或狀況可以解釋病人的癥狀的過程。疾病診斷所需的信息來自患者的病史和各種醫學測試,這些測試通過診斷成像數據獲取患者的功能和解剖結構,如功能磁共振成像(fMRI)、磁共振成像(MRI)、計算機斷層掃描(CT)、超聲(美國)和X射線; 其他診斷工具包括腦電圖(EEG)。然而,考慮到通常耗時的診斷過程容易產生主觀解釋和觀察者間的變異,臨床專家已經開始從計算機輔助干預中獲益。自動化在醫療保健服務和醫生有限的情況下也有好處。自動化正在努力提高醫療保健系統的質量和降低成本[1]。通過將特征工程任務合并到學習任務[2]中,深度學習提供了一個解決這些需求的有效途徑。有幾篇綜述論文分析了傳統機器學習和深度學習方法在醫學異常和解剖結構檢測和分割、運動障礙和序列數據分析、計算機輔助檢測和計算機輔助診斷方面的好處。

圖網絡屬于一個新興領域,它也在許多技術領域產生了巨大的影響。來自化學、生物學、遺傳學和醫療保健等學科的許多信息并不適合基于矢量的表示,而是需要復雜的數據結構。圖本質上捕獲實體之間的關系,因此在這些應用中可能非常有用,可以對變量之間的關系信息進行編碼。例如,在醫療保健領域,可以通過在醫生的決策過程[7]中將疾病或癥狀與主題關聯起來,或為乳腺癌分析[8]建立RNA序列模型來構建知識圖譜。因此,特別將圖神經網絡(GNN)推廣為非結構(無序)和結構(有序)場景。然而,盡管基于圖的表示在醫學領域的使用越來越普遍,但與傳統的深度學習方法相比,此類方法仍然稀缺,而且它們解決許多具有挑戰性的醫學問題的潛力尚未完全實現。

關于GNNs的深度學習領域迅速增長,其受歡迎程度也反映在最近對圖形表示及其應用的大量綜述中。現有綜述全面概述了非歐氏數據深度學習、圖深度學習框架和現有技術的分類[9],[14];或者介紹包括生物學和信號處理領域[15]-[18]的一般應用。盡管一些論文使用深度學習技術概述了醫學圖像分析,并引入了GNN的概念來評估神經疾病[19],據我們所知,目前還沒有系統介紹和討論GNN在非結構化醫學數據中的當前應用。

在本文中,我們致力于提供一個多圖神經網絡(GNN)模型在醫療診斷和分析方面的全面回顧。我們試圖解釋為什么GNN在這個領域值得研究的根本原因,并強調了新興的醫療分析挑戰,GNN可以很好地解決。圖神經網絡在醫學信號處理和分析中的應用尚處于起步階段。在本文中,我們提出了一項綜述,將圖神經網絡應用于醫療診斷任務,并提出了該領域的最新方法和趨勢的現狀。

  1. 我們確定了傳統深度學習在應用于醫學信號分析時面臨的一些挑戰,并強調了了圖神經網絡在克服這些挑戰方面的貢獻。

  2. 我們介紹并討論了為醫療診斷提出的各種圖框架及其具體應用。我們涵蓋使用圖網絡與深度學習技術相結合的生物醫學成像應用的工作。

  3. 我們總結了當前基于圖的深度學習所面臨的挑戰,并基于目前觀察到的趨勢和局限性提出了醫學健康領域未來的發展方向。

付費5元查看完整內容

相關內容

圖像配準是醫學影像處理與智能分析領域中的重要環節和關鍵技術.傳統的圖像配準算法由于復雜性較高、計算代價較大等問題,無法實現配準的實時性要求.隨著深度學習方法的發展,基于學習的圖像配準方法也取得顯著效果.文中系統總結基于深度學習的醫學圖像配準方法.具體地,將方法歸為3類:監督學習,無監督學習和對偶監督/弱監督學習.在此基礎上,分析和討論各自優缺點.進一步,著重討論近年來提出的正則化方法,特別是基于微分同胚表示的正則和基于多尺度的正則.最后,根據當前醫學圖像配準方法的發展趨勢,展望基于深度學習的醫學圖像配準方法.

//manu46.magtech.com.cn/Jweb_prai/CN/abstract/abstract12159.shtml

付費5元查看完整內容

圖機器學習(GML)因其建模生物分子結構、它們之間的功能關系以及整合多組數據集的能力而受到制藥和生物技術行業越來越多的關注。在此,我們提出了一個關于藥物發現和研發多學科的學術-工業綜述的主題。在介紹了關鍵術語和建模方法之后,我們按時間順序介紹了藥物開發流程,以確定和總結工作包括: 靶標識別、小分子和生物制劑的設計,以及藥物的重新利用。盡管該領域仍處于新興階段,但關鍵的里程碑,包括重新用途的藥物進入體內研究,表明GML將成為生物醫學機器學習的建模框架選擇。

引言

從藥物發現到上市,平均超過10億美元,可能持續12年或更長時間[1 - 3]; 由于高流失率,很少有人能在10年內進入市場[4,5]。整個過程的高損耗不僅使投資不確定,而且需要市場批準的藥物為早期的失敗買單。盡管在過去十多年里,整個行業都在關注效率問題,同時也受到了一些出版物和年度報告的推動,這些報告強調了終結排他性和生產率下降會導致收入下降,但事實證明,在科學、技術和監管變革的背景下,明顯的改善是難以實現的。由于上述原因,現在人們對運用計算方法來加快藥物發現和研發管道[6]的各個部分更感興趣,見圖1。

數字技術已經改變了產生大量數據的藥物研發過程。變化范圍從電子實驗室筆記本[7],電子法規提交,通過增加實驗室、實驗和臨床試驗數據收集[8],包括設備的使用[9,10],到精準醫療和“大數據”[11]的使用。收集到的關于治療的數據遠遠超出了研發范圍,包括醫院、專家和初級保健醫療專業人員的患者記錄——包括從社交媒體上獲取的觀察數據,例如藥物警戒數據[12,13]。通過可重復使用藥物的數據庫,有無數的在線數據庫和其他信息來源,包括科學文獻、臨床試驗信息[14,15]。技術的進步現在允許更大的組學分析,而不僅僅是基因分型和全基因組測序(WGS);微流體技術和抗體標記的標準化使得單細胞技術廣泛應用于轉錄組的研究,例如使用RNA-seq[16],蛋白質組(靶向),例如通過大量細胞檢測[17],甚至多種方式結合[18]。

在藥物發現過程中產生和使用的生物醫學數據的關鍵特征之一是其相互關聯的性質。這種數據結構可以用圖表示,這是一種數學抽象,在生物學的各個學科和領域中廣泛使用,以模擬在不同尺度上進行干預的生物實體之間的各種相互作用。在分子尺度上,蛋白質和其他生物分子的氨基酸殘基[19,20]和小分子藥物的組成原子和化學鍵結構[21,22]可以用圖表示。在中間尺度上,相互作用組是捕獲生物分子物種(如代謝物、mRNA、蛋白質)[23]之間特定類型相互作用的圖,其中蛋白質-蛋白質相互作用(PPI)圖可能是最常見的。最后,在更高的抽象層次上,知識圖譜可以表示電子病歷(EMR)中藥物、副作用、診斷、相關治療和檢測結果之間的復雜關系[24,25]。

在過去的十年里,兩個新興趨勢重塑了數據建模社區: 網絡分析和深度學習。“網絡醫學”范式早已在生物醫學領域[26]得到認可,借用了圖論和復雜網絡科學的多種方法,運用于生物圖,如PPIs和基因調控網絡(GRNs)。這一領域的大多數方法都局限于手工繪制的圖特征,如中心性度量和聚類。相比之下,深度神經網絡是一種特殊的機器學習算法,用于學習最優的特定任務特征。深度學習的影響在計算機視覺[27]和自然語言處理[28]方面具有開創性,但受限于對數據結構規律性的要求,局限于特定領域。在這兩個領域的收斂處是圖機器學習(GML),這是一類利用圖和其他不規則數據集(點云、網格、流形等)的結構的新ML方法。

GML方法的基本思想是學習節點29,30、邊(如預測推薦系統中的未來交互)或整個圖31的有效特征表示。特別是,圖神經網絡(GNN)[32-34],它是專為圖結構數據設計的深度神經網絡體系結構,正引起越來越多的興趣。GNN通過傳播鄰近節點的信息來迭代更新圖中節點的特征。這些方法已經成功地應用于各種任務和領域,如社交媒體和電子商務中的推薦[35-38],谷歌地圖[39]中的流量估計,社交媒體[40]中的錯誤信息檢測,以及自然科學的各個領域,包括建模流體,硬質固體,以及可變形材料相互作用[41]和粒子物理學中的事件分類[44,43]。

在生物醫學領域,GML在挖掘圖結構數據(包括藥物-靶標相互作用和通過知識圖譜嵌入進行關系預測)方面已經達到了最新水平[30,44,45];分子特性預測[21,22],包括預測吸收、分布、代謝和排泄(ADME)譜[46];靶標識別[47]到重新設計分子的早期工作[48,49]。最值得注意的是,Stokes等人利用定向信息傳遞的GNN作用于分子結構,為抗生素研發提出了可重用的候選抗生素,驗證了他們在體內的預測,從而提出了結構明顯不同于已知抗生素的合適的可重用候選抗生素。因此,GML方法在藥物開發過程中具有極大的應用前景。

結論:

  • 歷史上,生物分子相互作用和基因調控網絡的分析一直具有巨大的學術興趣,但在藥物發現和開發中可翻譯的結果有限。

  • 網絡醫學使用手工繪制的圖特征提供了很有前景的結果,但在整合不同的生物數據源的問題上缺乏任何有原則的解決方案: 結構數據(藥物和生物分子)、功能關系(抑制、激活等)和表達(RNA-seq、蛋白質組學等)。

  • 深度學習目前已應用于生物醫學研究的多個領域,特別是在生物醫學圖像(如組織病理標本)的解釋方面,實現由上級到醫生的結果。

  • 圖機器學習將網絡拓撲分析技術與深度學習技術相結合,學習有效的節點特征表示。

  • 圖機器學習已被應用于藥物發現和開發中的問題,并取得了巨大的成功,出現了一些實驗結果: 小分子設計、藥物與靶標相互作用的預測、藥物與藥物相互作用的預測和藥物的重新利用都是比簡單的非圖ML方法取得了相當大的成功和改進的任務。

付費5元查看完整內容

隨著表示學習在提供強大的預測和數據洞察方面取得的顯著成功,我們見證了表示學習技術在建模、分析和網絡學習方面的快速擴展。生物醫學網絡是相互作用系統的通用描述,從蛋白質相互作用到疾病網絡,一直到醫療保健系統和科學知識。

在本綜述論文中,我們提出了一項觀察,即長期存在的網絡生物學和醫學原理(在機器學習研究中經常未被提及)可以為表示學習提供概念基礎,解釋其目前的成功和局限,并為未來的發展提供信息。我們整合了一系列算法方法,其核心是利用拓撲特征將網絡嵌入緊湊的向量空間。我們還提供了可能從算法創新中獲益最多的生物醫學領域的分類。

表示學習技術在識別復雜特征背后的因果變異、解開單細胞行為及其對健康的影響、用安全有效的藥物診斷和治療疾病等方面正變得至關重要。

//arxiv.org/abs/2104.04883

引言

網絡,或稱圖表,在生物學和醫學中非常普遍,從分子相互作用圖到一個人疾病之間的依賴關系,一直到包括社會和健康相互作用的人群。根據網絡中編碼的信息類型,兩個實體之間“交互”的含義可能不同。例如,蛋白質-蛋白質相互作用(PPI)網絡中的邊緣可以表明實驗中測量到的物理相互作用,如酵母雙雜交篩選和質譜分析(例如,[148,197]);調節網絡中的邊緣可以指示通過動態單細胞表達測量的基因之間的因果相互作用(例如,[174]);電子健康記錄(EHR)網絡中的邊緣可以表明在醫療本體中發現的層次關系(例如,[182,190])。從分子到醫療保健系統,網絡已經成為代表、學習和推理生物醫學系統的主要范式。

生物醫學網絡上表示學習的案例。捕捉生物醫學系統中的交互作用會帶來令人困惑的復雜程度,只有通過整體和集成系統的觀點才能完全理解[17,28,164]。為此,網絡生物學和醫學在過去二十年中已經確定了一系列管理生物醫學網絡的組織原則(例如,[16,86,106,262])。這些原則將網絡結構與分子表型、生物學作用、疾病和健康聯系起來。我們認為,長期存在的原則——雖然在機器學習研究中經常未被提及——提供了概念基礎,可以解釋表示學習在生物醫學網絡建模中的成功(和局限性),并為該領域的未來發展提供信息。特別是,當對網絡中邊緣的解釋取決于上下文時,相互作用的實體往往比非相互作用的實體更相似。例如,疾病本體的結構是這樣的:通過邊緣連接的疾病術語往往比不連接的疾病術語更相似。在PPI網絡中,相互作用的蛋白質突變常常導致類似的疾病。相反,與同一疾病有關的蛋白質之間相互作用的傾向增加。在細胞網絡中,與特定表型相關的成分往往聚集在同一網絡鄰居。

表示學習實現網絡生物學和醫學的關鍵原理。我們假設表示學習可以實現網絡生物學和醫學的關鍵原則。這個假設的一個推論是表示學習可以很好地適用于生物醫學網絡的分析、學習和推理。表示學習的核心是向量空間嵌入的概念。其思想是學習如何將網絡中的節點(或更大的圖結構)表示為低維空間中的點,該空間的幾何結構經過優化,以反映節點之間的交互結構。表示學習通過指定(深度的、非線性的)轉換函數,將節點映射到緊湊的向量空間(稱為嵌入)中的點,從而形式化了這一思想。這些函數被優化以嵌入輸入圖,以便在學習空間中執行代數運算反映圖的拓撲結構。節點被映射到嵌入點,這樣具有相似網絡鄰域的節點被緊密地嵌入到嵌入空間中。值得注意的是,嵌入空間對于理解生物醫學網絡(例如,PPI網絡)的意義在于空間中點的鄰近性(例如,蛋白質嵌入之間的距離)自然地反映了這些點所代表的實體的相似性(例如,蛋白質表型的相似性),提示嵌入可被認為是網絡生物醫學關鍵原理的可微表現。

算法范式(圖1)。網絡科學和圖論技術促進了生物醫學的發現,從揭示疾病之間的關系[91,135,159,200]到藥物再利用[41,42,96]。進一步的算法創新,如隨機游走[40,229,242]、核函數[83]和網絡傳播[214],也在從網絡中捕獲結構和鄰域信息以生成下游預測的嵌入信息方面發揮了關鍵作用。特征工程是生物醫學網絡上機器學習的另一個常用范例,包括但不限于硬編碼網絡特征(例如,高階結構、網絡主題、度計數和共同鄰居統計),并將工程特征向量輸入預測模型。這種策略雖然強大,但并不能充分利用網絡信息,也不能推廣到新的網絡類型和數據集[255]。

近年來,圖表示學習方法已成為生物醫學網絡深度學習的主要范式。然而,對圖的深度學習具有挑戰性,因為圖包含復雜的拓撲結構,沒有固定的節點排序和參考點,它們由許多不同類型的實體(節點)和各種類型的相互關系(邊)組成。傳統的深度學習方法無法考慮生物醫學網絡的本質——多樣性的結構特性和豐富的交互作用。這是因為經典的深度模型主要是為固定大小的網格(例如,圖像和表格數據集)設計的,或者是為文本和序列優化的。因此,它們在計算機視覺、自然語言處理、語音和機器人技術方面取得了非凡的成就。就像對圖像和序列的深度學習徹底改變了圖像分析和自然語言處理領域一樣,圖表示學習也將改變生物學和醫學中復雜系統的研究。

我們的重點是表示學習,特別是流形學習[27]、圖變壓器網絡[250]、微分幾何深度學習[25]、拓撲數據分析(TDA)[34,224]和圖神經網絡(GNN)[125]。圖2描述了這次評審的結構和組織。我們首先提供流行的圖學習范式的技術說明,并描述其在加速生物醫學研究的關鍵影響。在圖表示學習的每個當前應用領域(圖4),我們展示了圖表示學習的潛在方向,可以通過四個獨特的前瞻性研究,每個研究至少解決以下圖機器學習的關鍵預測任務之一:節點、邊緣、子圖和圖級預測、連續嵌入和生成。

付費5元查看完整內容

利用深度學習方法對醫學影像數據進行處理分析,極大地促進了精準醫療和個性化醫療的快速發展。深度學習在醫學圖像領域的應用較為廣泛,具有多病種、多模態、多組學和多功能的特點。為便于對深度學習在醫學圖像處理領域的應用進行更深入有效的探索,本文系統綜述了相關研究進展。首先,從深度學習在影像基因組學中的應用出發,理清了深度學習在醫學影像領域應用的一般思路和現狀,將醫學影像領域分為智能診斷、療效評估和預測預后等3個模塊,并對模塊內的各病種進行總結,展示了深度學習各算法的優缺點及面臨的問題和挑戰。其次,對深度學習中出現的新思路、新方法以及對傳統方法的改進進行了闡述。最后,總結了該領域現階段面臨的問題,并對未來的研究方向做出了展望。基于深度學習的醫學圖像智能處理與分析雖然取得了一些有價值的研究成果,但還需要根據臨床的實際需求,將深度學習與經典的機器學習算法及無創并且高效的多組學數據結合起來,對深度學習的理論和方法進行深入研究。

//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20210206&flag=1

付費5元查看完整內容

深度學習能自動從大樣本數據中學習獲得優良的特征表達,有效提升各種機器學習任務的性能,已廣泛應用于信號處理、計算機視覺和自然語言處理等諸多領域。基于深度學習的醫學影像智能計算是目前智慧醫療領域的研究熱點,其中深度學習方法已經應用于醫學影像處理、分析的全流程。由于醫學影像內在的特殊性、復雜性,特別是考慮到醫學影像領域普遍存在的小樣本問題,相關學習任務和應用場景對深度學習方法提出了新要求。本文以臨床常用的X射線、超聲、計算機斷層掃描和磁共振等4種影像為例,對深度學習在醫學影像中的應用現狀進行綜述, 特別面向圖像重建、病灶檢測、圖像分割、圖像配準和計算機輔助診斷這5大任務的主要深度學習方法的進展進行介紹,并對發展趨勢進行展望。

//www.cjig.cn/jig/ch/reader/view_abstract.aspx?edit_id=20200923131243001&flag=2&file_no=202006020000002&journal_id=jig

付費5元查看完整內容

雖然像CNNs這樣的深度學習模型在醫學圖像分析方面取得了很大的成功,但是小型的醫學數據集仍然是這一領域的主要瓶頸。為了解決這個問題,研究人員開始尋找現有醫療數據集之外的外部信息。傳統的方法通常利用來自自然圖像的信息。最近的研究利用了來自醫生的領域知識,通過讓網絡模仿他們如何被訓練,模仿他們的診斷模式,或者專注于他們特別關注的特征或領域。本文綜述了將醫學領域知識引入疾病診斷、病變、器官及異常檢測、病變及器官分割等深度學習模型的研究進展。針對不同類型的任務,我們系統地對所使用的不同類型的醫學領域知識進行了分類,并給出了相應的整合方法。最后,我們總結了挑戰、未解決的問題和未來研究的方向。

付費5元查看完整內容
北京阿比特科技有限公司