隨著表示學習在提供強大的預測和數據洞察方面取得的顯著成功,我們見證了表示學習技術在建模、分析和網絡學習方面的快速擴展。生物醫學網絡是相互作用系統的通用描述,從蛋白質相互作用到疾病網絡,一直到醫療保健系統和科學知識。
在本綜述論文中,我們提出了一項觀察,即長期存在的網絡生物學和醫學原理(在機器學習研究中經常未被提及)可以為表示學習提供概念基礎,解釋其目前的成功和局限,并為未來的發展提供信息。我們整合了一系列算法方法,其核心是利用拓撲特征將網絡嵌入緊湊的向量空間。我們還提供了可能從算法創新中獲益最多的生物醫學領域的分類。
表示學習技術在識別復雜特征背后的因果變異、解開單細胞行為及其對健康的影響、用安全有效的藥物診斷和治療疾病等方面正變得至關重要。
引言
網絡,或稱圖表,在生物學和醫學中非常普遍,從分子相互作用圖到一個人疾病之間的依賴關系,一直到包括社會和健康相互作用的人群。根據網絡中編碼的信息類型,兩個實體之間“交互”的含義可能不同。例如,蛋白質-蛋白質相互作用(PPI)網絡中的邊緣可以表明實驗中測量到的物理相互作用,如酵母雙雜交篩選和質譜分析(例如,[148,197]);調節網絡中的邊緣可以指示通過動態單細胞表達測量的基因之間的因果相互作用(例如,[174]);電子健康記錄(EHR)網絡中的邊緣可以表明在醫療本體中發現的層次關系(例如,[182,190])。從分子到醫療保健系統,網絡已經成為代表、學習和推理生物醫學系統的主要范式。
生物醫學網絡上表示學習的案例。捕捉生物醫學系統中的交互作用會帶來令人困惑的復雜程度,只有通過整體和集成系統的觀點才能完全理解[17,28,164]。為此,網絡生物學和醫學在過去二十年中已經確定了一系列管理生物醫學網絡的組織原則(例如,[16,86,106,262])。這些原則將網絡結構與分子表型、生物學作用、疾病和健康聯系起來。我們認為,長期存在的原則——雖然在機器學習研究中經常未被提及——提供了概念基礎,可以解釋表示學習在生物醫學網絡建模中的成功(和局限性),并為該領域的未來發展提供信息。特別是,當對網絡中邊緣的解釋取決于上下文時,相互作用的實體往往比非相互作用的實體更相似。例如,疾病本體的結構是這樣的:通過邊緣連接的疾病術語往往比不連接的疾病術語更相似。在PPI網絡中,相互作用的蛋白質突變常常導致類似的疾病。相反,與同一疾病有關的蛋白質之間相互作用的傾向增加。在細胞網絡中,與特定表型相關的成分往往聚集在同一網絡鄰居。
表示學習實現網絡生物學和醫學的關鍵原理。我們假設表示學習可以實現網絡生物學和醫學的關鍵原則。這個假設的一個推論是表示學習可以很好地適用于生物醫學網絡的分析、學習和推理。表示學習的核心是向量空間嵌入的概念。其思想是學習如何將網絡中的節點(或更大的圖結構)表示為低維空間中的點,該空間的幾何結構經過優化,以反映節點之間的交互結構。表示學習通過指定(深度的、非線性的)轉換函數,將節點映射到緊湊的向量空間(稱為嵌入)中的點,從而形式化了這一思想。這些函數被優化以嵌入輸入圖,以便在學習空間中執行代數運算反映圖的拓撲結構。節點被映射到嵌入點,這樣具有相似網絡鄰域的節點被緊密地嵌入到嵌入空間中。值得注意的是,嵌入空間對于理解生物醫學網絡(例如,PPI網絡)的意義在于空間中點的鄰近性(例如,蛋白質嵌入之間的距離)自然地反映了這些點所代表的實體的相似性(例如,蛋白質表型的相似性),提示嵌入可被認為是網絡生物醫學關鍵原理的可微表現。
算法范式(圖1)。網絡科學和圖論技術促進了生物醫學的發現,從揭示疾病之間的關系[91,135,159,200]到藥物再利用[41,42,96]。進一步的算法創新,如隨機游走[40,229,242]、核函數[83]和網絡傳播[214],也在從網絡中捕獲結構和鄰域信息以生成下游預測的嵌入信息方面發揮了關鍵作用。特征工程是生物醫學網絡上機器學習的另一個常用范例,包括但不限于硬編碼網絡特征(例如,高階結構、網絡主題、度計數和共同鄰居統計),并將工程特征向量輸入預測模型。這種策略雖然強大,但并不能充分利用網絡信息,也不能推廣到新的網絡類型和數據集[255]。
近年來,圖表示學習方法已成為生物醫學網絡深度學習的主要范式。然而,對圖的深度學習具有挑戰性,因為圖包含復雜的拓撲結構,沒有固定的節點排序和參考點,它們由許多不同類型的實體(節點)和各種類型的相互關系(邊)組成。傳統的深度學習方法無法考慮生物醫學網絡的本質——多樣性的結構特性和豐富的交互作用。這是因為經典的深度模型主要是為固定大小的網格(例如,圖像和表格數據集)設計的,或者是為文本和序列優化的。因此,它們在計算機視覺、自然語言處理、語音和機器人技術方面取得了非凡的成就。就像對圖像和序列的深度學習徹底改變了圖像分析和自然語言處理領域一樣,圖表示學習也將改變生物學和醫學中復雜系統的研究。
我們的重點是表示學習,特別是流形學習[27]、圖變壓器網絡[250]、微分幾何深度學習[25]、拓撲數據分析(TDA)[34,224]和圖神經網絡(GNN)[125]。圖2描述了這次評審的結構和組織。我們首先提供流行的圖學習范式的技術說明,并描述其在加速生物醫學研究的關鍵影響。在圖表示學習的每個當前應用領域(圖4),我們展示了圖表示學習的潛在方向,可以通過四個獨特的前瞻性研究,每個研究至少解決以下圖機器學習的關鍵預測任務之一:節點、邊緣、子圖和圖級預測、連續嵌入和生成。
社區揭示了不同于網絡中其他社區成員的特征和聯系。社區檢測在網絡分析中具有重要意義。除了經典的譜聚類和統計推理方法,我們注意到近年來用于社區檢測的深度學習技術在處理高維網絡數據方面的優勢有了顯著的發展。因此,通過深度學習對社區檢測的最新進展進行全面概述,對學者和從業者都是及時的。本文設計并提出了一種新的分類方法,包括基于深度神經網絡的深度學習模型、深度非負矩陣分解和深度稀疏濾波。主要的類別,即深度神經網絡,進一步分為卷積網絡,圖注意力網絡,生成對抗網絡和自動編碼器。綜述還總結了流行的基準數據集、模型評估指標和開源實現,以解決實驗設置。然后討論了社區檢測在各個領域的實際應用,并提出了實現方案。最后,通過提出這一快速發展的深度學習領域中具有挑戰性的課題,我們概述了未來的發展方向。
//www.zhuanzhi.ai/paper/eb70a346cb2540dab57be737828445c6
引言
早在20世紀20年代,社會學和社會人類學就對社區進行了研究。然而,直到21世紀之后,研究人員才開始利用強大的數學工具和大規模數據操作來檢測社區,以解決具有挑戰性的問題[2]。自2002年[3]以來,Girvan和Newman將圖劃分問題引起了更廣泛的關注。在過去的10年里,計算機科學研究者廣泛研究了基于網絡拓撲結構[5]-[8]和實體語義信息[9]-[11]、靜態網絡[12]-[14]、小型網絡和大型網絡[15]-[17]的社區檢測問題[4]。越來越多的基于圖的方法被開發出來用于檢測具有復雜數據結構[18],[19]環境中的社區。通過社區檢測,可以詳細分析網絡中社區的動態和影響,如謠言傳播、病毒爆發、腫瘤進化等。
社區的存在推動了社區檢測研究的發展,是一個越來越具有現實意義的研究領域。俗話說,物以類聚,人以群分。根據六度分離理論,世界上任何一個人都可以通過六個熟人認識其他人[21]。事實上,我們的世界是一個由一系列社區組成的巨大網絡。例如,通過檢測社交網絡[22]-[24]中的社區,如圖1所示,平臺贊助商可以向目標用戶推廣他們的產品。在引文網絡[25]中,社區檢測決定了研究主題的重要性、關聯性、演化和識別研究趨勢。在代謝網絡[26]、[27]和蛋白質-蛋白質相互作用(PPI)網絡[28]中,社區檢測揭示了具有相似生物學功能的代謝和蛋白質。同樣,腦網絡[19]、[29]中的社區檢測反映了腦區域的功能和解剖分離。
許多傳統的技術,如譜聚類[30],[31]和統計推理[32]-[35],被用于小型網絡和簡單的場景。然而,由于它們的計算和空間成本巨大,它們無法擴展到大型網絡或具有高維特征的網絡。現實網絡中非線性結構信息豐富,使得傳統模型在實際應用中不太適用。因此,需要更強大的具有良好計算性能的技術。目前,深度學習提供了最靈活的解決方案,因為深度學習模型: (1) 學習非線性網絡屬性,如節點之間的關系,(2) 提供一個低維的網絡表示,保持復雜的網絡結構,(3) 提高了從各種信息中檢測社區的性能。因此,深度學習用于社區檢測是一種新的趨勢,需要及時全面的調查。
據我們所知,本文是第一次全面調研深度學習在社區檢測方面的貢獻。以往的研究主要集中在傳統的社區檢測上,回顧了其在發現網絡固有模式和功能[36]、[37]方面的重要影響。這篇論文綜述了一些具體的技術,但不限于: 基于隨機塊模型(sms)的部分檢測[38],標簽傳播算法(LPAs)[39],[40],以及單目標和多目標優化的進化計算[13],[14]。在網絡類型方面,研究人員綜述了動態網絡[12]、有向網絡[41]和多層網絡[5]中的社區檢測方法。此外,[6],[7]還回顧了一系列關于不相交和重疊的社區缺陷的概述。圍繞應用場景,以往的論文綜述了社交網絡[9]、[42]中的社區檢測技術。
本文旨在幫助研究人員和從業者從以下幾個方面了解社區檢測領域的過去、現在和未來趨勢:
系統性分類和綜合評價。我們為此項綜述提出了一個新的系統分類(見圖3)。對于每個類別,我們回顧、總結和比較代表性的工作。我們還簡要介紹了現實世界中的社區檢測應用。這些場景為未來的社區檢測研究和實踐提供了見解。
豐富的資源和高影響力的參考資料。該綜述不僅是文獻綜述,而且是基準數據集、評估指標、開源實現和實際應用的資源集合。我們在最新的高影響力國際會議和高質量同行評審期刊上廣泛調查社區檢測出版物,涵蓋人工智能、機器學習、數據挖掘和數據發現等領域。
未來的發展方向。由于深度學習是一個新的研究趨勢,我們討論了當前的局限性,關鍵的挑戰和開放的問題,為未來的方向。
社區檢測在網絡分析和數據挖掘中具有重要意義。圖4展示了傳統學習方法和深度學習方法的發展。傳統的方法是在網絡結構上探索社區。這七種方法(圖3左圖)僅以一種簡單的方式捕捉淺連接。傳統方法的檢測結果往往是次優的。我們將在本節簡要回顧它們的代表性方法。深度學習方法(圖3右圖)揭示了深度網絡信息,復雜關系,處理高維數據。
本文提出了一種深度社區檢測的分類方法。分類法將方法歸納為六類: 卷積網絡、圖注意力網絡(GAT)、生成對抗網絡(GAN)、自動編碼器(AE)、深度非負矩陣分解(DNMF)和基于深度稀疏濾波(DSF)的深度社區檢測方法。卷積網絡包括卷積神經網絡(CNN)和圖卷積網絡(GCN)。AE又分為堆疊型AE、稀疏型AE、去噪型AE、圖卷積型AE、圖關注型AE和變分型AE (VAE)。
圖是連接數據網絡結構的一種常用表示形式。圖數據可以在廣泛的應用領域中找到,如社會系統、生態系統、生物網絡、知識圖譜和信息系統。隨著人工智能技術的不斷滲透發展,圖學習(即對圖進行機器學習)越來越受到研究者和實踐者的關注。圖學習對許多任務都非常有效,如分類,鏈接預測和匹配。圖學習方法通常是利用機器學習算法提取圖的相關特征。在這個綜述中,我們提出了一個關于圖學習最全面的概述。特別關注四類現有的圖學習方法,包括圖信號處理、矩陣分解、隨機游走和深度學習。分別回顧了這些類別下的主要模型和算法。我們研究了諸如文本、圖像、科學、知識圖譜和組合優化等領域的圖學習應用。此外,我們還討論了該領域幾個有前景的研究方向。
真實的智能系統通常依賴于機器學習算法處理各種類型的數據。盡管圖數據無處不在,但由于其固有的復雜性,給機器學習帶來了前所未有的挑戰。與文本、音頻和圖像不同,圖數據嵌入在一個不規則的領域,使得現有機器學習算法的一些基本操作不適用。許多圖學習模型和算法已經被開發出來解決這些挑戰。本文系統地綜述了目前最先進的圖學習方法及其潛在的應用。這篇論文有多種用途。首先,它作為不同領域(如社會計算、信息檢索、計算機視覺、生物信息學、經濟學和電子商務)的研究人員和從業者提供圖學習的快速參考。其次,它提供了對該領域的開放研究領域的見解。第三,它的目的是激發新的研究思路和更多的興趣在圖學習。
圖,又稱網絡,可以從現實世界中豐富的實體之間的各種關系中提取。一些常見的圖表已經被廣泛用于表達不同的關系,如社會網絡、生物網絡、專利網絡、交通網絡、引文網絡和通信網絡[1]-[3]。圖通常由兩個集合定義,即頂點集和邊集。頂點表示圖形中的實體,而邊表示這些實體之間的關系。由于圖學習在數據挖掘、知識發現等領域的廣泛應用,引起了人們的廣泛關注。由于圖利用了頂點[4],[5]之間的本質和相關關系,在捕獲復雜關系方面,圖學習方法變得越來越流行。例如,在微博網絡中,通過檢測信息級聯,可以跟蹤謠言的傳播軌跡。在生物網絡中,通過推測蛋白質的相互作用可以發現治療疑難疾病的新方法。在交通網絡中,通過分析不同時間戳[6]的共現現象,可以預測人類的移動模式。對這些網絡的有效分析很大程度上取決于網絡的表示方式。
一般來說,圖學習是指對圖進行機器學習。圖學習方法將圖的特征映射到嵌入空間中具有相同維數的特征向量。圖學習模型或算法直接將圖數據轉換為圖學習體系結構的輸出,而不將圖投影到低維空間。由于深度學習技術可以將圖數據編碼并表示為向量,所以大多數圖學習方法都是基于或從深度學習技術推廣而來的。圖學習的輸出向量在連續空間中。圖學習的目標是提取圖的期望特征。因此,圖的表示可以很容易地用于下游任務,如節點分類和鏈接預測,而無需顯式的嵌入過程。因此,圖學習是一種更強大、更有意義的圖分析技術。
在這篇綜述論文中,我們試圖以全面的方式檢驗圖機器學習方法。如圖1所示,我們關注現有以下四類方法:基于圖信號處理(GSP)的方法、基于矩陣分解的方法、基于隨機游走的方法和基于深度學習的方法。大致來說,GSP處理圖的采樣和恢復,并從數據中學習拓撲結構。矩陣分解可分為圖拉普拉斯矩陣分解和頂點接近矩陣分解。基于隨機游動的方法包括基于結構的隨機游動、基于結構和節點信息的隨機游動、異構網絡中的隨機游動和時變網絡中的隨機游動。基于深度學習的方法包括圖卷積網絡、圖注意力網絡、圖自編碼器、圖生成網絡和圖時空網絡。基本上,這些方法/技術的模型架構是不同的。本文對目前最先進的圖學習技術進行了廣泛的回顧。
傳統上,研究人員采用鄰接矩陣來表示一個圖,它只能捕捉相鄰兩個頂點之間的關系。然而,許多復雜和不規則的結構不能被這種簡單的表示捕獲。當我們分析大規模網絡時,傳統的方法在計算上是昂貴的,并且很難在現實應用中實現。因此,有效地表示這些網絡是解決[4]的首要問題。近年來提出的網絡表示學習(NRL)可以學習低維表示[7]-[9]的網絡頂點潛在特征。當新的表示被學習后,可以使用以前的機器學習方法來分析圖數據,并發現數據中隱藏的關系。
當復雜網絡被嵌入到一個潛在的、低維的空間中時,結構信息和頂點屬性可以被保留[4]。因此,網絡的頂點可以用低維向量表示。在以往的機器學習方法中,這些向量可以看作是輸入的特征。圖學習方法為新的表示空間中的圖分析鋪平了道路,許多圖分析任務,如鏈接預測、推薦和分類,都可以有效地解決[10],[11]。網絡的圖形化表現方式揭示了社會生活的各個方面,如交流模式、社區結構和信息擴散[12],[13]。根據頂點、邊和子圖的屬性,可以將圖學習任務分為基于頂點、基于邊和基于子圖三類。圖中頂點之間的關系可以用于分類、風險識別、聚類和社區檢測[14]。通過判斷圖中兩個頂點之間的邊的存在,我們可以進行推薦和知識推理。基于子圖[15]的分類,該圖可用于聚合物分類、三維可視化分類等。對于GSP,設計合適的圖形采樣方法以保持原始圖形的特征,從而有效地恢復原始圖形[16]具有重要意義。在存在不完整數據[17]的情況下,可以使用圖恢復方法構造原始圖。然后利用圖學習從圖數據中學習拓撲結構。綜上所述,利用圖學習可以解決傳統的圖分析方法[18]難以解決的以下挑戰。
深度學習方法在許多人工智能任務中實現了不斷提高的性能。深度模型的一個主要限制是它們不具有可解釋性。這種限制可以通過開發事后技術來解釋預測來規避,從而產生可解釋的領域。近年來,深度模型在圖像和文本上的可解釋性研究取得了顯著進展。在圖數據領域,圖神經網絡(GNNs)及其可解釋性正經歷著快速的發展。然而,對GNN解釋方法并沒有統一的處理方法,也沒有一個標準的評價基準和試驗平臺。在這個綜述中,我們提供了一個統一的分類的視角,目前的GNN解釋方法。我們對這一問題的統一和分類處理,闡明了現有方法的共性和差異,并為進一步的方法論發展奠定了基礎。為了方便評估,我們為GNN的可解釋性生成了一組基準圖數據集。我們總結了當前的數據集和評價GNN可解釋性的指標。總之,這項工作為GNN的解釋提供了一個統一的方法處理和一個標準化的評價測試平臺。
引言
深度神經網絡的發展徹底改變了機器學習和人工智能領域。深度神經網絡在計算機視覺[1]、[2]、自然語言處理[3]、[4]、圖數據分析[5]、[6]等領域取得了良好的研究成果。這些事實促使我們開發深度學習方法,用于在跨學科領域的實際應用,如金融、生物學和農業[7]、[8]、[9]。然而,由于大多數深度模型是在沒有可解釋性的情況下開發的,所以它們被視為黑盒。如果沒有對預測背后的底層機制進行推理,深度模型就無法得到完全信任,這就阻止了它們在與公平性、隱私性和安全性有關的關鍵應用中使用。為了安全可靠地部署深度模型,有必要提供準確的預測和人類可理解的解釋,特別是為跨學科領域的用戶。這些事實要求發展解釋技術來解釋深度神經網絡。
深度模型的解釋技術通常研究深度模型預測背后的潛在關系機制。一些方法被提出來解釋圖像和文本數據的深度模型。這些方法可以提供與輸入相關的解釋,例如研究輸入特征的重要分數,或對深度模型的一般行為有較高的理解。例如,通過研究梯度或權重[10],[11],[18],我們可以分析輸入特征和預測之間的靈敏度。現有的方法[12],[13],[19]映射隱藏特征圖到輸入空間和突出重要的輸入特征。此外,通過遮擋不同的輸入特征,我們可以觀察和監測預測的變化,以識別重要的特征[14],[15]。與此同時,一些[10]、[16]研究側重于提供獨立于輸入的解釋,例如研究能夠最大化某類預測得分的輸入模式。進一步探究隱藏神經元的含義,理解[17]、[22]的整個預測過程。近年來對[23]、[24]、[25]、[26]等方法進行了較為系統的評價和分類。然而,這些研究只關注圖像和文本域的解釋方法,忽略了深度圖模型的可解釋性。
近年來,圖神經網絡(Graph Neural network, GNN)越來越受歡迎,因為許多真實世界的數據都以圖形的形式表示,如社交網絡、化學分子和金融數據。其中,節點分類[27]、[28]、[29]、圖分類[6]、[30]、鏈路預測[31]、[32]、[33]等與圖相關的任務得到了廣泛的研究。此外,許多高級的GNN操作被提出來提高性能,包括圖卷積[5],[34],[35],圖注意力[36],[37],圖池化[38],[39],[40]。然而,與圖像和文本領域相比,圖模型的可解釋性研究較少,這是理解深度圖神經網絡的關鍵。近年來,人們提出了幾種解釋GNN預測的方法,如XGNN[41]、GNNExplainer [42]、PGExplainer[43]等。這些方法是從不同的角度發展起來的,提供了不同層次的解釋。此外,它仍然缺乏標準的數據集和度量來評估解釋結果。因此,需要對GNN解釋技術的方法和評價進行系統的綜述。
為此,本研究提供了對不同GNN解釋技術的系統研究。我們的目的是提供對不同方法的直觀理解和高層次的洞察,讓研究者選擇合適的探索方向。這項工作的貢獻總結如下:
本綜述提供了對深度圖模型的現有解釋技術的系統和全面的回顧。據我們所知,這是第一次也是唯一一次關于這一主題的綜述工作。
我們對現有的GNN解釋技術提出了一個新的分類方法。我們總結了每個類別的關鍵思想,并提供了深刻的分析。
我們詳細介紹了每種GNN解釋方法,包括其方法論、優缺點以及與其他方法的區別。
我們總結了常用的GNN解釋任務的數據集和評估指標。我們討論了它們的局限性,并推薦了幾個令人信服的度量標準。
通過將句子轉換為圖表,我們從文本領域構建了三個人類可理解的數據集。這些數據集不久將向公眾開放,并可直接用于GNN解釋任務。
GNN解釋性分類法
近年來,人們提出了幾種解釋深圖模型預測的方法。這些方法關注于圖模型的不同方面,并提供不同的視圖來理解這些模型。他們通常會回答幾個問題;其中一些是,哪個輸入邊更重要?哪個輸入節點更重要?哪個節點特性更重要?什么樣的圖形模式將最大化某個類的預測?為了更好地理解這些方法,我們為GNN提供了不同解釋技術的分類。我們分類法的結構如圖1所示。根據提供的解釋類型,不同的技術分為兩大類:實例級方法和模型級方法。
首先,實例級方法為每個輸入圖提供依賴于輸入的解釋。給出一個輸入圖,這些方法通過識別用于預測的重要輸入特征來解釋深度模型。根據獲得的重要度分數,我們將方法分為4個不同的分支:基于梯度/特征的方法[53]1,[50],基于微擾的方法[42],[53]0,[53]3,[52],[53],分解方法[53]2,[50],[54],[55],以及代理方法[56],[57],[58]。具體來說,基于梯度/特征的方法使用梯度或特征值來表示不同輸入特征的重要性。此外,基于擾動的方法監測預測的變化與不同的輸入擾動,以研究輸入的重要性得分。分解方法首先將預測得分(如預測概率)分解到最后一隱藏層的神經元中。然后逐層反向傳播這些分數,直到輸入空間,并使用這些分解后的分數作為重要分數。與此同時,對于給定的輸入示例,基于代理的方法首先從給定示例的鄰居中采樣數據集。接下來,這些方法擬合一個簡單的和可解釋的模型,如決策樹,以采樣數據集。然后使用代理模型的解釋來解釋最初的預測。第二,模型級方法不考慮任何特定的輸入實例來解釋圖神經網絡。獨立于輸入的解釋是高層次的,解釋一般行為。與instance level方法相比,這個方向的研究仍然較少。現有的模型級方法只有基于圖生成的XGNN[41]。它生成圖形模式來最大化某個類的預測概率,并使用這些圖形模式來解釋該類。
總之,這兩類方法從不同的角度解釋了深度圖模型。實例級方法提供了特定于示例的解釋,而模型級方法提供了高層次的見解和對深度圖模型如何工作的一般理解。要驗證和信任深度圖模型,需要人工監督檢查解釋。對于實例級方法,需要更多的人工監督,因為專家需要探索不同輸入圖的解釋。對于模型級方法,由于解釋是高層次的,因此涉及的人力監督較少。此外,實例級方法的解釋基于真實的輸入實例,因此它們很容易理解。然而,對模型級方法的解釋可能不是人類能夠理解的,因為獲得的圖形模式甚至可能不存在于現實世界中。總之,這兩種方法可以結合起來更好地理解深度圖模型,因此有必要對兩者進行研究。
深度學習通常被描述為一個實驗驅動的領域,并不斷受到缺乏理論基礎的批評。這個問題已經部分地被大量的文獻解決了,這些文獻至今沒有被很好地組織起來。本文對深度學習理論的最新進展進行了綜述和整理。文獻可分為六類: (1)基于模型復雜度和容量的深度學習泛化; (2)用于建模隨機梯度下降及其變量的隨機微分方程及其動力學系統,其特征是深度學習的優化和泛化,部分受到貝葉斯推理啟發; (3)驅動動力系統軌跡的損失的幾何結構; (4)深度神經網絡的過參數化從積極和消極兩個方面的作用; (5)網絡架構中幾種特殊結構的理論基礎; (6)對倫理和安全及其與普遍性的關系的日益關注。
//arxiv.org/pdf/2012.10931.pdf
概述
深度學習可以廣義定義為使用人工神經網絡從經驗中發現知識以進行預測或決策的一系列算法[138]。經驗的規范形式可以是人類注解的電子記錄作為數據集,也可以是學習者或電子環境之間的交互作用,取決于場景[169]。在深度學習中,一般的人工神經網絡通常是把一個由非線性激活函數組成的序列的權值矩陣連接成一個網絡,這種網絡具有相當大的參數大小。
深度學習的術語是由Dechter[62]引入機器學習,然后由Aizenberg等人[5]引入腦啟發算法,其中幾個主要概念可以追溯到20世紀40年代早期。深度學習的研究在20世紀40 - 60年代[162,111,199]和80 - 90年代[201]經歷了兩次上升后下降。第三次和當前的浪潮開始于2006年[24,114,196],一直持續到現在。最近的浪潮已經從本質上重塑了許多真實世界的應用領域,包括計算機視覺[110]、自然語言處理[63,184]、語音處理[64]、3D點云處理[98]、數據挖掘[232]、推薦系統[247]、自動駕駛汽車[152,215]、醫療診斷[135,209]和藥物發現[43]。
然而,到目前為止,深度學習的發展嚴重依賴實驗,缺乏堅實的理論基礎。深度學習機制的許多方面仍然是未知的。我們不斷地驚訝地發現啟發式方法可以在廣泛的領域實現出色的性能,盡管有時也相當不穩定。與此同時,直覺方法往往未被證實,甚至未被驗證。這種做法是可以容忍的,并且在深度學習研究中已經變得普遍。這種黑盒特性給深度學習應用帶來了未知的風險。這種不了解在很大程度上削弱了我們識別、管理和預防算法導致的災難的能力,并進一步嚴重損害了我們將最近的進展應用于許多工業部門的信心,特別是在安全關鍵領域,如自動駕駛汽車、醫療診斷和藥物發現。這也對深度學習算法設計的未來發展產生了沖擊。
理論基礎的一個主要部分是泛化,泛化是指通過深度學習算法對未見數據進行預測,在訓練數據上訓練好的模型的能力[224,169]。由于訓練數據不能覆蓋未來的所有情況,良好的泛化性保證了所學的模型能夠處理未知事件。在長尾事件經常出現并有可能造成致命災難的地方,這一點尤其重要。
統計學習理論建立了基于假設復雜度的泛化理論[224,169]。這些工具能解決深度學習理論中的問題嗎?答案是否定的。傳統工具通常根據假設復雜度構建泛化邊界,如vc維[28,223]、Rademacher復雜度[130,129,21]和覆蓋數[73,104]。在經典的結果中,這些復雜性很大程度上依賴于模型的大小。這就引入了奧卡姆剃刀原理:
如無必要,勿增實體
即,只要模型能夠擬合訓練樣本,就需要找到一個足夠小的模型來防止過擬合。然而,深度學習模型通常具有非常大的模型規模,這有時會使泛化界甚至大于損失函數的潛在最大值。此外,根據Occam 's razor原理,可泛化性與模型大小之間存在正相關關系,而這在深度學習中已經不存在了。相比之下,更深更廣的網絡往往具有優越的性能[38]。深度學習卓越的泛化能力與其極端的過參數化之間的矛盾,就像傳統復雜學習理論的一朵“云”。
早期的工作試圖建立深度學習的理論基礎[172,90,22,20,23,158,11],但很大程度上由于深度學習研究的廣泛發展而停滯不前。
最近的研究始于Zhang等人在2017年的工作[244]。作者進行了系統的實驗來探索深度神經網絡的泛化能力。他們表明,即使訓練標簽是隨機的,神經網絡也能幾乎完美地擬合訓練數據。如何從理論上解釋深度神經網絡的成功,是學習理論界關注的一個重要話題。Kawaguchi等人[122]討論了許多關于深度神經網絡在容量大、復雜性、算法可能不穩定、非魯棒性和極小值尖銳的情況下仍具有出色泛化能力的開放問題。作者也提出了一些解決問題的見解。從那時起,深度學習理論的重要性得到了廣泛的認識。大量文獻的出現建立了深度學習的理論基礎。在本文中,我們回顧了相關文獻,并將其歸納為以下六類:
**基于復雜度和容量的方法分析深度學習泛化性。**傳統的統計學習理論根據假設空間的復雜度,建立了一系列泛化誤差(泛化界)的上界,如vc維[28,223],Rademacher復雜度[130,129,21],覆蓋數[73,104]。通常,這些泛化范圍明確地依賴于模型的大小。他們認為,控制模型的大小可以幫助模型更好地泛化。然而,深度學習模型龐大的模型規模也使得泛化范圍顯得空洞。因此,如果我們能夠開發出大小無關的假設復雜度度量和泛化邊界是非常值得期待的。一種有前景的方法是刻畫深度學習中可以學習的“有效”假設空間的復雜性。有效假設空間可以明顯小于整個假設空間。因此,我們可以期望得到一個小得多的泛化保證。
**隨機梯度下降(SGD)及其變體模型的隨機偏微分方程(SDE)在深度學習優化算法中占主導地位。**這些SDEs的動態系統決定了訓練神經網絡中權值的軌跡,其穩定分布代表了學習網絡。通過SDEs及其動力學,許多工作為深度學習的優化和泛化提供了保障。“有效”假設空間正是“SGD能找到的”假設空間。因此,通過SGD研究深度學習的普遍性將是直接的。此外,這一系列的方法部分受到貝葉斯推斷的啟發。這與前面的變異推斷相似,后者以優化的方式解決了貝葉斯推斷,以解決縮放問題。這種隨機梯度方法和貝葉斯推斷之間的相互作用將有助于這兩個領域的發展。
**高度復雜的經驗風險曲面的幾何結構驅動動態系統的軌跡。**損失曲面觀的幾何形狀在驅動SDEs的軌跡方面起著重要作用:(1)損失的導數是SDEs的組成部分;(2)損失作為SDEs的邊界條件。因此,理解損失面是建立深度學習理論基礎的關鍵一步。通常,“正則化”問題的可學習性和優化能力是有保證的。1“正則化”可以用許多術語來描述,包括凸性、李普希茨連續性和可微性。然而,在深度學習中,這些因素不再得到保障,至少不是很明顯。神經網絡通常由大量的非線性激活組成。激活過程中的非線性使得損失曲面極其不光滑和非凸。所建立的凸優化保證失效。損失曲面令人望而卻步的復雜性,使社區長時間難以接觸到損失曲面的幾何形狀,甚至深度學習理論。然而,損失面復雜的幾何形狀恰恰表征了深度學習的行為。通過損失曲面是理解深度學習的“捷徑”。
深度神經網絡的過參數化作用。 過度參數化通常被認為是通過基于復雜性的方法為深度學習開發有意義的泛化邊界的主要障礙。然而,最近的研究表明,過度參數化將對塑造深度學習的損失曲面做出主要貢獻——使損失曲面更加光滑,甚至“類似”凸。此外,許多研究也證明了神經網絡在極端過參數化情況下與一些更簡單的模型(如高斯核)等效。
**網絡架構中幾種特殊結構的理論基礎。**在前面的綜述中,我們主要關注的結果一般代表所有的神經網絡。同時,深度神經網絡的設計涉及到許多特殊的技術。這些結構也對深度學習的卓越性能做出了重要貢獻。我們回顧了卷積神經網絡、遞歸神經網絡和置換不變/等變函數網絡的理論成果。
**深入關注倫理和安全以及它們與深度學習理論的關系。**深度學習已經被部署在越來越廣泛的應用領域。其中一些涉及高度隱私的個人數據,如手機上的圖像和視頻、健康數據和最終記錄。其他一些場景可能需要深度學習來提供高度敏感的決策,比如抵押貸款審批、大學入學和信用評估。此外,研究表明,深度學習模型容易受到對抗性例子的攻擊。如何保護深度學習系統免受隱私保護、公平保護和對抗攻擊等方面的破壞是非常重要的。
本文結構
本文綜述了深度學習理論基礎研究的最新進展。我們承認有一些論文回顧了深度學習理論。Alom等人[9]對深度學習中使用的技術進行了調查。Sun[214]綜述了深度學習中的優化理論。E等人[81]總結了深度學習中最優化的近似和ademacher復雜性、損失面以及收斂和隱式正則化相關的結果和挑戰。我們的調查是最全面的。我們以獨特的視角組織文獻,并為未來的作品提供新的見解。
深度學習的極好的泛化性就像傳統復雜學習理論的“云”:深度學習的過度參數化使得幾乎所有現有的工具都變得空洞。現有的工作試圖通過三個主要途徑來解決這一問題: (1)開發大小無關的復雜性測度,它可以表征可學習的“有效”假設空間的復雜性,而不是整個假設空間。第二節討論了相關工作; (2) 基于隨機微分函數和相關損失函數的幾何性質,利用深度學習中占主導地位的優化器隨機梯度方法對所學假設進行建模。有關的工作在第3及4節檢討; (3) 過度參數化出人意料地為損失函數帶來了許多良好的性質,進一步保證了優化和泛化性能。相關工作在第5節中給出。與此同時,第6節回顧了網絡體系結構特殊結構的理論基礎。
機器學習的另一個重要方面是對道德和安全問題的日益關注,包括隱私保護、對抗魯棒性和公平保護。具體地說,隱私保護和對抗魯棒性與可泛化性密切相關:泛化性好通常意味著隱私保護能力強;更穩健的算法可能會有。本文還討論了在深度學習場景中,如何理解這些問題之間的相互作用。相關工作將在第7節討論。
深度學習方法對各種醫學診斷任務都非常有效,甚至在其中一些任務上擊敗了人類專家。然而,算法的黑箱特性限制了臨床應用。最近的可解釋性研究旨在揭示對模型決策影響最大的特征。這一領域的大多數文獻綜述都集中在分類學、倫理學和解釋的需要上。本文綜述了可解釋的深度學習在不同醫學成像任務中的應用。本文從一個為臨床最終用戶設計系統的深度學習研究者的實際立場出發,討論了各種方法、臨床部署的挑戰和需要進一步研究的領域。
深度神經網絡(DNN)是實現人類在許多學習任務上的水平的不可缺少的機器學習工具。然而,由于其黑箱特性,很難理解輸入數據的哪些方面驅動了網絡的決策。在現實世界中,人類需要根據輸出的dna做出可操作的決定。這種決策支持系統可以在關鍵領域找到,如立法、執法等。重要的是,做出高層決策的人員能夠確保DNN決策是由數據特征的組合驅動的,這些數據特征在決策支持系統的部署上下文中是適當的,并且所做的決策在法律上或倫理上是可辯護的。由于DNN技術發展的驚人速度,解釋DNN決策過程的新方法和研究已經發展成為一個活躍的研究領域。在定義什么是能夠解釋深度學習系統的行為和評估系統的“解釋能力”時所存在的普遍困惑,進一步加劇了這種復雜性。為了緩解這一問題,本文提供了一個“領域指南”,為那些在該領域沒有經驗的人提供深度學習解釋能力指南: i)討論了研究人員在可解釋性研究中增強的深度學習系統的特征,ii)將可解釋性放在其他相關的深度學習研究領域的背景下,iii)介紹了定義基礎方法空間的三個簡單維度。
圖神經網絡是解決各種圖學習問題的有效的機器學習模型。盡管它們取得了經驗上的成功,但是GNNs的理論局限性最近已經被揭示出來。因此,人們提出了許多GNN模型來克服這些限制。在這次調查中,我們全面概述了GNNs的表達能力和可證明的強大的GNNs變體。
【導讀】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 于美國紐約舉辦。遷移學習近年來受到了非常大的關注,今年AAAI也有很多相關論文,這場Tutorial全面回顧可遷移表示學習方法的最新發展,重點介紹文本、多關系和多媒體數據的可遷移表示學習方法。除了介紹域內嵌入學習方法外,還討論各種半監督、弱監督、多視圖和自監督學習技術來連接多個域特定的嵌入表示,是一個非常全面的遷移表示學習總結,講者最后也介紹了其未來發展趨勢,值得研究者關注和收藏。
遷移表示學習最新進展
Recent Advances in Transferable Representation Learning
Tutorial 目標
本教程針對有興趣將深度學習技術應用于跨域決策任務的AI研究人員和從業人員。這些任務包括涉及多語言和跨語言自然語言處理,特定領域知識以及不同數據模式的任務。本教程將為聽眾提供以下方面的整體觀點:(i)針對未標記的文本,多關系和多媒體數據的多種表示學習方法;(ii)在有限的監督下跨多種表示對齊和遷移知識的技術;以及(iii)在自然語言理解,知識庫和計算生物學中使用這些技術的大量AI應用程序。我們將通過概述該領域未來的研究方向來結束本教程。觀眾不需要有特定的背景知識。
概述
許多人工智能任務需要跨域決策。例如,許多NLP任務涉及跨多種語言的預測,其中可以將不同的語言視為不同的域;在人工智能輔助的生物醫學研究中,藥物副作用的預測常常與蛋白質和有機體相互作用的建模并行進行。為了支持機器學習模型來解決這種跨域任務,必須提取不同域中數據組件的特征和關系,并在統一的表示方案中捕獲它們之間的關聯。為了滿足這一需求,表示學習的最新進展往往涉及到將不同域的未標記數據映射到共享嵌入空間。這樣,跨域的知識遷移可以通過向量搭配或變換來實現。這種可遷移的表現形式在涉及跨域決策的一系列人工智能應用中取得了成功。然而,這一領域的前沿研究面臨兩大挑戰。一是在學習資源很少的情況下如何有效地從特定領域中提取特性。另一個是在最少的監督下精確地對齊和傳遞知識,因為連接不同域的對齊信息常常是不充分和有噪聲的。
在本教程中,我們將全面回顧可遷移表示學習方法的最新發展,重點介紹文本、多關系和多媒體數據的可遷移表示學習方法。除了介紹域內嵌入學習方法外,我們還將討論各種半監督、弱監督、多視圖和自監督學習技術來連接多個域特定的嵌入表示。我們還將比較域內嵌入算法和跨域對齊算法的改進和聯合學習過程。此外,我們將討論如何利用獲得的可遷移表征來解決低資源和無標簽的學習任務。參會者將了解本主題的最新趨勢和挑戰,了解代表性工具和學習資源以獲取即用型模型,以及相關的模型和技術如何有益于現實世界AI應用程序。
講者介紹
Muhao Chen目前是美國賓夕法尼亞大學研究生院博士后。他于2019年在加州大學洛杉磯分校獲得了計算機科學博士學位。Muhao從事過機器學習和NLP方面的各種課題。他最近的研究也將相關技術應用于計算生物學。更多信息請訪問//muhaochen.github.io。
Kai-Wei Chang是加州大學洛杉磯分校計算機科學系的助理教授。他的研究興趣包括為大型復雜數據設計魯棒的機器學習方法,以及為社會公益應用程序構建語言處理模型。其他信息請訪問
Dan Roth是賓夕法尼亞大學CIS的Eduardo D. Glandt Distinguished Professor,也是AAAS、ACM、AAAI和ACL的Fellow。Roth因在自然語言理解建模、機器學習和推理方面的重大概念和理論進展而被認可。更多信息可以參考: /.