亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

深度學習通常被描述為一個實驗驅動的領域,并不斷受到缺乏理論基礎的批評。這個問題已經部分地被大量的文獻解決了,這些文獻至今沒有被很好地組織起來。本文對深度學習理論的最新進展進行了綜述和整理。文獻可分為六類: (1)基于模型復雜度和容量的深度學習泛化; (2)用于建模隨機梯度下降及其變量的隨機微分方程及其動力學系統,其特征是深度學習的優化和泛化,部分受到貝葉斯推理啟發; (3)驅動動力系統軌跡的損失的幾何結構; (4)深度神經網絡的過參數化從積極和消極兩個方面的作用; (5)網絡架構中幾種特殊結構的理論基礎; (6)對倫理和安全及其與普遍性的關系的日益關注。

//arxiv.org/pdf/2012.10931.pdf

概述

深度學習可以廣義定義為使用人工神經網絡從經驗中發現知識以進行預測或決策的一系列算法[138]。經驗的規范形式可以是人類注解的電子記錄作為數據集,也可以是學習者或電子環境之間的交互作用,取決于場景[169]。在深度學習中,一般的人工神經網絡通常是把一個由非線性激活函數組成的序列的權值矩陣連接成一個網絡,這種網絡具有相當大的參數大小。

深度學習的術語是由Dechter[62]引入機器學習,然后由Aizenberg等人[5]引入腦啟發算法,其中幾個主要概念可以追溯到20世紀40年代早期。深度學習的研究在20世紀40 - 60年代[162,111,199]和80 - 90年代[201]經歷了兩次上升后下降。第三次和當前的浪潮開始于2006年[24,114,196],一直持續到現在。最近的浪潮已經從本質上重塑了許多真實世界的應用領域,包括計算機視覺[110]、自然語言處理[63,184]、語音處理[64]、3D點云處理[98]、數據挖掘[232]、推薦系統[247]、自動駕駛汽車[152,215]、醫療診斷[135,209]和藥物發現[43]。

然而,到目前為止,深度學習的發展嚴重依賴實驗,缺乏堅實的理論基礎。深度學習機制的許多方面仍然是未知的。我們不斷地驚訝地發現啟發式方法可以在廣泛的領域實現出色的性能,盡管有時也相當不穩定。與此同時,直覺方法往往未被證實,甚至未被驗證。這種做法是可以容忍的,并且在深度學習研究中已經變得普遍。這種黑盒特性給深度學習應用帶來了未知的風險。這種不了解在很大程度上削弱了我們識別、管理和預防算法導致的災難的能力,并進一步嚴重損害了我們將最近的進展應用于許多工業部門的信心,特別是在安全關鍵領域,如自動駕駛汽車、醫療診斷和藥物發現。這也對深度學習算法設計的未來發展產生了沖擊。

理論基礎的一個主要部分是泛化,泛化是指通過深度學習算法對未見數據進行預測,在訓練數據上訓練好的模型的能力[224,169]。由于訓練數據不能覆蓋未來的所有情況,良好的泛化性保證了所學的模型能夠處理未知事件。在長尾事件經常出現并有可能造成致命災難的地方,這一點尤其重要。

統計學習理論建立了基于假設復雜度的泛化理論[224,169]。這些工具能解決深度學習理論中的問題嗎?答案是否定的。傳統工具通常根據假設復雜度構建泛化邊界,如vc維[28,223]、Rademacher復雜度[130,129,21]和覆蓋數[73,104]。在經典的結果中,這些復雜性很大程度上依賴于模型的大小。這就引入了奧卡姆剃刀原理:

如無必要,勿增實體

即,只要模型能夠擬合訓練樣本,就需要找到一個足夠小的模型來防止過擬合。然而,深度學習模型通常具有非常大的模型規模,這有時會使泛化界甚至大于損失函數的潛在最大值。此外,根據Occam 's razor原理,可泛化性與模型大小之間存在正相關關系,而這在深度學習中已經不存在了。相比之下,更深更廣的網絡往往具有優越的性能[38]。深度學習卓越的泛化能力與其極端的過參數化之間的矛盾,就像傳統復雜學習理論的一朵“云”。

早期的工作試圖建立深度學習的理論基礎[172,90,22,20,23,158,11],但很大程度上由于深度學習研究的廣泛發展而停滯不前。

最近的研究始于Zhang等人在2017年的工作[244]。作者進行了系統的實驗來探索深度神經網絡的泛化能力。他們表明,即使訓練標簽是隨機的,神經網絡也能幾乎完美地擬合訓練數據。如何從理論上解釋深度神經網絡的成功,是學習理論界關注的一個重要話題。Kawaguchi等人[122]討論了許多關于深度神經網絡在容量大、復雜性、算法可能不穩定、非魯棒性和極小值尖銳的情況下仍具有出色泛化能力的開放問題。作者也提出了一些解決問題的見解。從那時起,深度學習理論的重要性得到了廣泛的認識。大量文獻的出現建立了深度學習的理論基礎。在本文中,我們回顧了相關文獻,并將其歸納為以下六類:

  • **基于復雜度和容量的方法分析深度學習泛化性。**傳統的統計學習理論根據假設空間的復雜度,建立了一系列泛化誤差(泛化界)的上界,如vc維[28,223],Rademacher復雜度[130,129,21],覆蓋數[73,104]。通常,這些泛化范圍明確地依賴于模型的大小。他們認為,控制模型的大小可以幫助模型更好地泛化。然而,深度學習模型龐大的模型規模也使得泛化范圍顯得空洞。因此,如果我們能夠開發出大小無關的假設復雜度度量和泛化邊界是非常值得期待的。一種有前景的方法是刻畫深度學習中可以學習的“有效”假設空間的復雜性。有效假設空間可以明顯小于整個假設空間。因此,我們可以期望得到一個小得多的泛化保證。

  • **隨機梯度下降(SGD)及其變體模型的隨機偏微分方程(SDE)在深度學習優化算法中占主導地位。**這些SDEs的動態系統決定了訓練神經網絡中權值的軌跡,其穩定分布代表了學習網絡。通過SDEs及其動力學,許多工作為深度學習的優化和泛化提供了保障。“有效”假設空間正是“SGD能找到的”假設空間。因此,通過SGD研究深度學習的普遍性將是直接的。此外,這一系列的方法部分受到貝葉斯推斷的啟發。這與前面的變異推斷相似,后者以優化的方式解決了貝葉斯推斷,以解決縮放問題。這種隨機梯度方法和貝葉斯推斷之間的相互作用將有助于這兩個領域的發展。

  • **高度復雜的經驗風險曲面的幾何結構驅動動態系統的軌跡。**損失曲面觀的幾何形狀在驅動SDEs的軌跡方面起著重要作用:(1)損失的導數是SDEs的組成部分;(2)損失作為SDEs的邊界條件。因此,理解損失面是建立深度學習理論基礎的關鍵一步。通常,“正則化”問題的可學習性和優化能力是有保證的。1“正則化”可以用許多術語來描述,包括凸性、李普希茨連續性和可微性。然而,在深度學習中,這些因素不再得到保障,至少不是很明顯。神經網絡通常由大量的非線性激活組成。激活過程中的非線性使得損失曲面極其不光滑和非凸。所建立的凸優化保證失效。損失曲面令人望而卻步的復雜性,使社區長時間難以接觸到損失曲面的幾何形狀,甚至深度學習理論。然而,損失面復雜的幾何形狀恰恰表征了深度學習的行為。通過損失曲面是理解深度學習的“捷徑”。

  • 深度神經網絡的過參數化作用。 過度參數化通常被認為是通過基于復雜性的方法為深度學習開發有意義的泛化邊界的主要障礙。然而,最近的研究表明,過度參數化將對塑造深度學習的損失曲面做出主要貢獻——使損失曲面更加光滑,甚至“類似”凸。此外,許多研究也證明了神經網絡在極端過參數化情況下與一些更簡單的模型(如高斯核)等效。

  • **網絡架構中幾種特殊結構的理論基礎。**在前面的綜述中,我們主要關注的結果一般代表所有的神經網絡。同時,深度神經網絡的設計涉及到許多特殊的技術。這些結構也對深度學習的卓越性能做出了重要貢獻。我們回顧了卷積神經網絡、遞歸神經網絡和置換不變/等變函數網絡的理論成果。

  • **深入關注倫理和安全以及它們與深度學習理論的關系。**深度學習已經被部署在越來越廣泛的應用領域。其中一些涉及高度隱私的個人數據,如手機上的圖像和視頻、健康數據和最終記錄。其他一些場景可能需要深度學習來提供高度敏感的決策,比如抵押貸款審批、大學入學和信用評估。此外,研究表明,深度學習模型容易受到對抗性例子的攻擊。如何保護深度學習系統免受隱私保護、公平保護和對抗攻擊等方面的破壞是非常重要的。

本文結構

本文綜述了深度學習理論基礎研究的最新進展。我們承認有一些論文回顧了深度學習理論。Alom等人[9]對深度學習中使用的技術進行了調查。Sun[214]綜述了深度學習中的優化理論。E等人[81]總結了深度學習中最優化的近似和ademacher復雜性、損失面以及收斂和隱式正則化相關的結果和挑戰。我們的調查是最全面的。我們以獨特的視角組織文獻,并為未來的作品提供新的見解。

深度學習的極好的泛化性就像傳統復雜學習理論的“云”:深度學習的過度參數化使得幾乎所有現有的工具都變得空洞。現有的工作試圖通過三個主要途徑來解決這一問題: (1)開發大小無關的復雜性測度,它可以表征可學習的“有效”假設空間的復雜性,而不是整個假設空間。第二節討論了相關工作; (2) 基于隨機微分函數和相關損失函數的幾何性質,利用深度學習中占主導地位的優化器隨機梯度方法對所學假設進行建模。有關的工作在第3及4節檢討; (3) 過度參數化出人意料地為損失函數帶來了許多良好的性質,進一步保證了優化和泛化性能。相關工作在第5節中給出。與此同時,第6節回顧了網絡體系結構特殊結構的理論基礎。

機器學習的另一個重要方面是對道德和安全問題的日益關注,包括隱私保護、對抗魯棒性和公平保護。具體地說,隱私保護和對抗魯棒性與可泛化性密切相關:泛化性好通常意味著隱私保護能力強;更穩健的算法可能會有。本文還討論了在深度學習場景中,如何理解這些問題之間的相互作用。相關工作將在第7節討論。

付費5元查看完整內容

相關內容

深度學習方法在許多人工智能任務中實現了不斷提高的性能。深度模型的一個主要限制是它們不具有可解釋性。這種限制可以通過開發事后技術來解釋預測來規避,從而產生可解釋的領域。近年來,深度模型在圖像和文本上的可解釋性研究取得了顯著進展。在圖數據領域,圖神經網絡(GNNs)及其可解釋性正經歷著快速的發展。然而,對GNN解釋方法并沒有統一的處理方法,也沒有一個標準的評價基準和試驗平臺。在這個綜述中,我們提供了一個統一的分類的視角,目前的GNN解釋方法。我們對這一問題的統一和分類處理,闡明了現有方法的共性和差異,并為進一步的方法論發展奠定了基礎。為了方便評估,我們為GNN的可解釋性生成了一組基準圖數據集。我們總結了當前的數據集和評價GNN可解釋性的指標。總之,這項工作為GNN的解釋提供了一個統一的方法處理和一個標準化的評價測試平臺。

引言

深度神經網絡的發展徹底改變了機器學習和人工智能領域。深度神經網絡在計算機視覺[1]、[2]、自然語言處理[3]、[4]、圖數據分析[5]、[6]等領域取得了良好的研究成果。這些事實促使我們開發深度學習方法,用于在跨學科領域的實際應用,如金融、生物學和農業[7]、[8]、[9]。然而,由于大多數深度模型是在沒有可解釋性的情況下開發的,所以它們被視為黑盒。如果沒有對預測背后的底層機制進行推理,深度模型就無法得到完全信任,這就阻止了它們在與公平性、隱私性和安全性有關的關鍵應用中使用。為了安全可靠地部署深度模型,有必要提供準確的預測和人類可理解的解釋,特別是為跨學科領域的用戶。這些事實要求發展解釋技術來解釋深度神經網絡。

深度模型的解釋技術通常研究深度模型預測背后的潛在關系機制。一些方法被提出來解釋圖像和文本數據的深度模型。這些方法可以提供與輸入相關的解釋,例如研究輸入特征的重要分數,或對深度模型的一般行為有較高的理解。例如,通過研究梯度或權重[10],[11],[18],我們可以分析輸入特征和預測之間的靈敏度。現有的方法[12],[13],[19]映射隱藏特征圖到輸入空間和突出重要的輸入特征。此外,通過遮擋不同的輸入特征,我們可以觀察和監測預測的變化,以識別重要的特征[14],[15]。與此同時,一些[10]、[16]研究側重于提供獨立于輸入的解釋,例如研究能夠最大化某類預測得分的輸入模式。進一步探究隱藏神經元的含義,理解[17]、[22]的整個預測過程。近年來對[23]、[24]、[25]、[26]等方法進行了較為系統的評價和分類。然而,這些研究只關注圖像和文本域的解釋方法,忽略了深度圖模型的可解釋性。

近年來,圖神經網絡(Graph Neural network, GNN)越來越受歡迎,因為許多真實世界的數據都以圖形的形式表示,如社交網絡、化學分子和金融數據。其中,節點分類[27]、[28]、[29]、圖分類[6]、[30]、鏈路預測[31]、[32]、[33]等與圖相關的任務得到了廣泛的研究。此外,許多高級的GNN操作被提出來提高性能,包括圖卷積[5],[34],[35],圖注意力[36],[37],圖池化[38],[39],[40]。然而,與圖像和文本領域相比,圖模型的可解釋性研究較少,這是理解深度圖神經網絡的關鍵。近年來,人們提出了幾種解釋GNN預測的方法,如XGNN[41]、GNNExplainer [42]、PGExplainer[43]等。這些方法是從不同的角度發展起來的,提供了不同層次的解釋。此外,它仍然缺乏標準的數據集和度量來評估解釋結果。因此,需要對GNN解釋技術的方法和評價進行系統的綜述。

為此,本研究提供了對不同GNN解釋技術的系統研究。我們的目的是提供對不同方法的直觀理解和高層次的洞察,讓研究者選擇合適的探索方向。這項工作的貢獻總結如下:

本綜述提供了對深度圖模型的現有解釋技術的系統和全面的回顧。據我們所知,這是第一次也是唯一一次關于這一主題的綜述工作。

我們對現有的GNN解釋技術提出了一個新的分類方法。我們總結了每個類別的關鍵思想,并提供了深刻的分析。

我們詳細介紹了每種GNN解釋方法,包括其方法論、優缺點以及與其他方法的區別。

我們總結了常用的GNN解釋任務的數據集和評估指標。我們討論了它們的局限性,并推薦了幾個令人信服的度量標準。

通過將句子轉換為圖表,我們從文本領域構建了三個人類可理解的數據集。這些數據集不久將向公眾開放,并可直接用于GNN解釋任務。

GNN解釋性分類法

近年來,人們提出了幾種解釋深圖模型預測的方法。這些方法關注于圖模型的不同方面,并提供不同的視圖來理解這些模型。他們通常會回答幾個問題;其中一些是,哪個輸入邊更重要?哪個輸入節點更重要?哪個節點特性更重要?什么樣的圖形模式將最大化某個類的預測?為了更好地理解這些方法,我們為GNN提供了不同解釋技術的分類。我們分類法的結構如圖1所示。根據提供的解釋類型,不同的技術分為兩大類:實例級方法和模型級方法。

首先,實例級方法為每個輸入圖提供依賴于輸入的解釋。給出一個輸入圖,這些方法通過識別用于預測的重要輸入特征來解釋深度模型。根據獲得的重要度分數,我們將方法分為4個不同的分支:基于梯度/特征的方法[53]1,[50],基于微擾的方法[42],[53]0,[53]3,[52],[53],分解方法[53]2,[50],[54],[55],以及代理方法[56],[57],[58]。具體來說,基于梯度/特征的方法使用梯度或特征值來表示不同輸入特征的重要性。此外,基于擾動的方法監測預測的變化與不同的輸入擾動,以研究輸入的重要性得分。分解方法首先將預測得分(如預測概率)分解到最后一隱藏層的神經元中。然后逐層反向傳播這些分數,直到輸入空間,并使用這些分解后的分數作為重要分數。與此同時,對于給定的輸入示例,基于代理的方法首先從給定示例的鄰居中采樣數據集。接下來,這些方法擬合一個簡單的和可解釋的模型,如決策樹,以采樣數據集。然后使用代理模型的解釋來解釋最初的預測。第二,模型級方法不考慮任何特定的輸入實例來解釋圖神經網絡。獨立于輸入的解釋是高層次的,解釋一般行為。與instance level方法相比,這個方向的研究仍然較少。現有的模型級方法只有基于圖生成的XGNN[41]。它生成圖形模式來最大化某個類的預測概率,并使用這些圖形模式來解釋該類。

總之,這兩類方法從不同的角度解釋了深度圖模型。實例級方法提供了特定于示例的解釋,而模型級方法提供了高層次的見解和對深度圖模型如何工作的一般理解。要驗證和信任深度圖模型,需要人工監督檢查解釋。對于實例級方法,需要更多的人工監督,因為專家需要探索不同輸入圖的解釋。對于模型級方法,由于解釋是高層次的,因此涉及的人力監督較少。此外,實例級方法的解釋基于真實的輸入實例,因此它們很容易理解。然而,對模型級方法的解釋可能不是人類能夠理解的,因為獲得的圖形模式甚至可能不存在于現實世界中。總之,這兩種方法可以結合起來更好地理解深度圖模型,因此有必要對兩者進行研究。

付費5元查看完整內容

【導讀】2020注定是寫入到歷史的一年,新冠變成主題詞。在2019年機器學習領域繼續快速發展,深度學習理論、對比學習、自監督學習、元學習、持續學習、小樣本學習等取得很多進展。在此,專知小編整理這一年這些研究熱點主題的綜述進展,共十篇,了解當下,方能向前。

1、Recent advances in deep learning theory(深度學習理論)

陶大程院士等最新《深度學習理論進展》綜述論文,41頁pdf255篇文獻闡述六大方面進展

作者:Fengxiang He,Dacheng Tao

摘要:深度學習通常被描述為一個實驗驅動的領域,并不斷受到缺乏理論基礎的批評。這個問題已經部分地被大量的文獻解決了,這些文獻至今沒有被很好地組織起來。本文對深度學習理論的最新進展進行了綜述和整理。文獻可分為六類: (1)基于模型復雜度和容量的深度學習泛化; (2)用于建模隨機梯度下降及其變量的隨機微分方程及其動力學系統,其特征是深度學習的優化和泛化,部分受到貝葉斯推理啟發; (3)驅動動力系統軌跡的損失的幾何結構; (4)深度神經網絡的過參數化從積極和消極兩個方面的作用; (5)網絡架構中幾種特殊結構的理論基礎; (6)對倫理和安全及其與泛化性的關系的日益關注。

網址: //www.zhuanzhi.ai/paper/b5ac0f259b59817b890b6c253123ee84

2、Learning from Very Few Samples: A Survey(少樣本學習)

清華大學張長水等最新《少樣本學習FSL》2020綜述論文,30頁pdf414篇參考文獻

作者:Jiang Lu,Pinghua Gong,Jieping Ye,Changshui Zhang

摘要:少樣本學習(FSL)在機器學習領域具有重要意義和挑戰性。成功地從很少的樣本中學習和歸納的能力是區分人工智能和人類智能的一個明顯的界限,因為人類可以很容易地從一個或幾個例子中建立他們對新穎性的認知,而機器學習算法通常需要數百或數千個監督樣本來保證泛化能力。盡管FSL的悠久歷史可以追溯到21世紀初,近年來隨著深度學習技術的蓬勃發展也引起了廣泛關注,但迄今為止,有關FSL的調研或評論還很少。在此背景下,我們廣泛回顧了2000年至2019年FSL的200多篇論文,為FSL提供了及時而全面的調研。在本綜述中,我們回顧了FSL的發展歷史和目前的進展,原則上將FSL方法分為基于生成模型和基于判別模型的兩大類,并特別強調了基于元學習的FSL方法。我們還總結了FSL中最近出現的幾個擴展主題,并回顧了這些主題的最新進展。此外,我們重點介紹了FSL在計算機視覺、自然語言處理、音頻和語音、強化學習和機器人、數據分析等領域的重要應用。最后,我們對調查進行了總結,并對未來的發展趨勢進行了討論,希望對后續研究提供指導和見解。

網址:

3、A Survey on Knowledge Graphs: Representation, Acquisition and Applications(知識圖譜研究綜述論文)

最新!知識圖譜研究綜述論文: 表示學習、知識獲取與應用,25頁pdf詳述Knowledge Graphs技術趨勢

作者:Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, Philip S. Yu

摘要:人類知識提供了對世界的認知理解。表征實體間結構關系的知識圖譜已經成為認知和人類智能研究的一個日益流行的方向。在本次綜述論文中,我們對知識圖譜進行了全面的綜述,涵蓋了知識圖譜表示學習、知識獲取與補全、時序知識圖譜、知識感知應用等方面的研究課題,并總結了最近的突破和未來的研究方向。我們提出對這些主題進行全視角分類和新的分類法。知識圖譜嵌入從表示空間、得分函數、編碼模型和輔助信息四個方面進行組織。對知識獲取,特別是知識圖譜的補全、嵌入方法、路徑推理和邏輯規則推理進行了綜述。我們進一步探討了幾個新興的主題,包括元關系學習、常識推理和時序知識圖譜。為了方便未來對知識圖的研究,我們還提供了不同任務的數據集和開源庫的集合。最后,我們對幾個有前景的研究方向進行了深入的展望。

網址:

4、A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications(生成式對抗網絡綜述論文)

密歇根大學28頁最新《GANs生成式對抗網絡綜述:算法、理論與應用》最新論文,帶你全面了解GAN技術趨勢

作者:Jie Gui,Zhenan Sun,Yonggang Wen,Dacheng Tao,Jieping Ye

摘要:生成對抗網絡(GANs)是最近的熱門研究主題。自2014年以來,人們對GAN進行了廣泛的研究,并且提出了許多算法。但是,很少有全面的研究來解釋不同GANs變體之間的聯系以及它們是如何演變的。在本文中,我們嘗試從算法,理論和應用的角度對各種GANs方法進行敘述。首先,詳細介紹了大多數GANs算法的動機,數學表示形式和結構。此外,GANs已與其他機器學習算法結合用于特定應用,例如半監督學習,遷移學習和強化學習。本文比較了這些GANs方法的共性和差異。其次,研究了與GANs相關的理論問題。第三,說明了GANs在圖像處理和計算機視覺,自然語言處理,音樂,語音和音頻,醫學領域以及數據科學中的典型應用。最后,指出了GANs未來的開放性研究問題。

網址:

5、A Survey on Causal Inference(因果推斷綜述論文)

最新「因果推斷Causal Inference」綜述論文38頁pdf,阿里巴巴、Buffalo、Georgia、Virginia

作者:Liuyi Yao,Zhixuan Chu,Sheng Li,Yaliang Li,Jing Gao,Aidong Zhang

摘要:數十年來,因果推理是一個跨統計、計算機科學、教育、公共政策和經濟學等多個領域的重要研究課題。目前,與隨機對照試驗相比,利用觀測數據進行因果關系估計已經成為一個有吸引力的研究方向,因為有大量的可用數據和較低的預算要求。隨著機器學習領域的迅速發展,各種針對觀測數據的因果關系估計方法層出不窮。在這項綜述中,我們提供了一個全面的綜述因果推理方法下的潛在結果框架,一個眾所周知的因果推理框架。這些方法根據是否需要潛在結果框架的所有三個假設分為兩類。對于每一類,分別對傳統的統計方法和最近的機器學習增強方法進行了討論和比較。并介紹了這些方法的合理應用,包括在廣告、推薦、醫藥等方面的應用。此外,還總結了常用的基準數據集和開放源代碼,便于研究者和實踐者探索、評價和應用因果推理方法。

網址:

6、Pre-trained Models for Natural Language Processing: A Survey(預訓練語言模型)

【復旦大學】最新《預訓練語言模型》2020綜述論文大全,50+PTMs分類體系,25頁pdf205篇參考文獻

作者:Xipeng Qiu,Tianxiang Sun,Yige Xu,Yunfan Shao,Ning Dai,Xuanjing Huang

摘要:近年來,預訓練模型(PTMs)的出現將自然語言處理(NLP)帶入了一個新的時代。在這項綜述中,我們提供了一個全面的PTMs調研。首先簡要介紹了語言表示學習及其研究進展。然后,我們根據四種觀點對現有的PTMs進行了系統的分類。接下來,我們將描述如何將PTMs的知識應用于下游任務。最后,我們概述了未來PTMs研究的一些潛在方向。本調查旨在為理解、使用和開發各種NLP任務的PTMs提供實際指導。

網址:

7、A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources(異質圖網絡嵌入)

異質圖嵌入綜述: 方法、技術、應用和資源, 23頁pdf

作者:Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, Philip S. Yu

摘要:

異質圖(Heterogeneous Graph, HG)也稱為異質信息網絡(Heterogeneous Information Network, HIN),在現實世界中已經無處不在。異質圖嵌入(Heterogeneous Graph Embedding, HGE),旨在在低維的空間中學習節點表示,同時保留異質結構和語義用于下游任務(例如,節點/圖分類,節點聚類,鏈接預測),在近年來受到了廣泛的關注。在綜述中,我們對異質圖嵌入的方法和技術的最新進展進行了全面回顧,探索了異質圖嵌入的問題和挑戰,并預測了該領域的未來研究方向。

該論文的主要貢獻如下:

討論了與同質圖相比,異質圖的異質性帶來的獨特挑戰 。該論文對現有的異質圖嵌入方法進行了全面的調研,并基于它們在學習過程中使用的信息進行分類,以解決異質性帶來的特定的挑戰。 對于每類代表性的異質圖嵌入方法和技術,提供詳細的介紹并進一步分析了其優缺點。此外,該論文首次探索了異質圖嵌入方法在現實工業環境中的可轉換性和適用性。 總結了開源代碼和基準數據集,并對現有的圖學習平臺進行了詳細介紹,以促進該領域的未來研究和應用。 探討異質圖嵌入的其他問題和挑戰,并預測該領域的未來研究方向。

網址:

8、Graph Neural Networks: Taxonomy, Advances and Trends(圖神經網絡)

太原理工最新《圖神經網絡:分類,進展,趨勢》綜述論文,50頁pdf400篇文獻

作者:Yu Zhou,Haixia Zheng,Xin Huang

摘要:圖神經網絡為根據特定任務將真實世界的圖嵌入低維空間提供了一個強大的工具包。到目前為止,已經有一些關于這個主題的綜述。然而,它們往往側重于不同的角度,使讀者看不到圖神經網絡的全貌。本論文旨在克服這一局限性,并對圖神經網絡進行了全面的綜述。首先,我們提出了一種新的圖神經網絡分類方法,然后參考了近400篇相關文獻,全面展示了圖神經網絡的全貌。它們都被分類到相應的類別中。為了推動圖神經網絡進入一個新的階段,我們總結了未來的四個研究方向,以克服所面臨的挑戰。希望有越來越多的學者能夠理解和開發圖神經網絡,并將其應用到自己的研究領域。

網址:

9、Efficient Transformers: A Survey(高效Transformer)

【Google】最新《高效Transformers》綜述大全,Efficient Transformers: A Survey

作者:Yi Tay, Mostafa Dehghani, Dara Bahri, Donald Metzler

摘要:Transformer模型架構最近引起了極大的興趣,因為它們在語言、視覺和強化學習等領域的有效性。例如,在自然語言處理領域,Transformer已經成為現代深度學習堆棧中不可缺少的主要部分。最近,提出的令人眼花繚亂的X-former模型如Linformer, Performer, Longformer等這些都改進了原始Transformer架構的X-former模型,其中許多改進了計算和內存效率。為了幫助熱心的研究人員在這一混亂中給予指導,本文描述了大量經過深思熟慮的最新高效X-former模型的選擇,提供了一個跨多個領域的現有工作和模型的有組織和全面的概述。

圖片

網址:

10、Self-supervised Learning: Generative or Contrastive(自監督學習)

作者:Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, Jie Tang

摘要:深度監督學習在過去的十年中取得了巨大的成功。然而,它依賴于手工標簽的缺陷和易受攻擊的弱點促使人們探索更好的解決方案。作為另一種學習方式,自監督學習以其在表征學習領域的飛速發展吸引了眾多研究者的關注。自監督表示學習利用輸入數據本身作為監督,并使得幾乎所有類型的下游任務從中受益。在這項綜述中,我們著眼于新的自監督學習方法,用于計算機視覺、自然語言處理和圖學習。我們全面回顧了現有的實證方法,并根據它們的目的將它們歸納為三大類:生成型、對比型和生成-對比型(對抗型)。我們進一步研究了相關的理論分析工作,以提供對自監督學習如何工作的更深層次的思考。最后,我們簡要討論了自監督學習有待解決的問題和未來的發展方向。

網址:

付費5元查看完整內容

近年來,圖神經網絡(GNNs)由于具有建模和從圖結構數據中學習的能力,在機器學習領域得到了迅猛發展。這種能力在數據具有內在關聯的各種領域具有很強的影響,而傳統的神經網絡在這些領域的表現并不好。事實上,正如最近的評論可以證明的那樣,GNN領域的研究已經迅速增長,并導致了各種GNN算法變體的發展,以及在化學、神經學、電子或通信網絡等領域的突破性應用的探索。然而,在目前的研究階段,GNN的有效處理仍然是一個開放的挑戰。除了它們的新穎性之外,由于它們依賴于輸入圖,它們的密集和稀疏操作的組合,或者在某些應用中需要伸縮到巨大的圖,GNN很難計算。在此背景下,本文旨在做出兩大貢獻。一方面,從計算的角度對GNNs領域進行了綜述。這包括一個關于GNN基本原理的簡短教程,在過去十年中該領域發展的概述,以及在不同GNN算法變體的多個階段中執行的操作的總結。另一方面,對現有的軟硬件加速方案進行了深入分析,總結出一種軟硬件結合、圖感知、以通信為中心的GNN加速方案。

付費5元查看完整內容

深度學習算法已經在圖像分類方面取得了最先進的性能,甚至被用于安全關鍵應用,如生物識別系統和自動駕駛汽車。最近的研究表明,這些算法甚至可以超越人類的能力,很容易受到對抗性例子的攻擊。在計算機視覺中,與之相對的例子是惡意優化算法為欺騙分類器而產生的含有細微擾動的圖像。為了緩解這些漏洞,文獻中不斷提出了許多對策。然而,設計一種有效的防御機制已被證明是一項困難的任務,因為許多方法已經證明對自適應攻擊者無效。因此,這篇自包含的論文旨在為所有的讀者提供一篇關于圖像分類中對抗性機器學習的最新研究進展的綜述。本文介紹了新的對抗性攻擊和防御的分類方法,并討論了對抗性實例的存在性。此外,與現有的調查相比,它還提供了相關的指導,研究人員在設計和評估防御時應該考慮到這些指導。最后,在文獻綜述的基礎上,對未來的研究方向進行了展望。

//www.zhuanzhi.ai/paper/396e587564dc2922d222cd3ac7b84288

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。

//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c

概述:

隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。

盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。

除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。

在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。

付費5元查看完整內容

【導讀】本文章從深度神經網絡(DNN)入手,對深度學習(DL)領域的研究進展進行了簡要的綜述。內容包括:卷積神經網絡(CNN)、循環神經網絡(RNN)、長時記憶(LSTM)和門控遞歸單元(GRU)、自動編碼器(AE)、深度信念網絡(DBN)、生成對抗性網絡(GAN)和深度強化學習(DRL)。

近年來,深度學習在各個應用領域都取得了巨大的成功。這個機器學習的新領域發展迅速,已經應用于大多數傳統的應用領域,以及一些提供更多機會的新領域。針對不同類型的學習,提出了不同的學習方法,包括監督學習、半監督學習和非監督學習。

實驗結果表明,與傳統機器學習方法相比,深度學習在圖像處理、計算機視覺、語音識別、機器翻譯、藝術、醫學成像、醫學信息處理、機器人與控制、生物信息學、自然語言處理、網絡安全等領域具有最先進的性能。

本研究從深度神經網絡(DNN)入手,對深度學習(DL)領域的研究進展進行了簡要的綜述。研究內容包括:卷積神經網絡(CNN)、循環神經網絡(RNN)、長時記憶(LSTM)和門控遞歸單元(GRU)、自動編碼器(AE)、深度信念網絡(DBN)、生成對抗性網絡(GAN)和深度強化學習(DRL)。

此外,我們還討論了最近的發展,例如基于這些DL方法的高級變體DL技術。這項工作考慮了2012年以后發表的大部分論文,當時深度學習的歷史開始了。此外,本文中還包括了在不同應用領域探索和評價的DL方法。我們還包括最近開發的框架、SDKs和基準數據集,用于實施和評估深度學習方法。目前有一些研究已經發表,例如使用神經網絡和一個關于強化學習(RL)的綜述。然而,這些論文還沒有討論大規模深度學習模型的個別高級訓練技術和最近發展起來的生成模型的方法。

關鍵詞:卷積神經網絡(CNN);循環神經網絡(RNN);自動編碼器(AE);受限Boltzmann機器(RBM);深度信念網絡(DBN);生成對抗性網絡(GAN);深度強化學習(DRL);遷移學習。

付費5元查看完整內容

目前諸多模式識別任務的識別精度獲得不斷提升,在一些任務上甚至超越了人的水平。單從識別精度的角度來看,模式識別似乎已經是一個被解決了的問題。然而,高精度的模式識別系統在實際應用中依舊會出現不穩定和不可靠的現象。因此,開放環境下的魯棒性成為制約模式識別技術發展的新瓶頸。實際上,在大部分模式識別模型和算法背后蘊含著三個基礎假設:封閉世界假設、獨立同分布假設、以及大數據假設。這三個假設直接或間接影響了模式識別系統的魯棒性,并且是造成機器智能和人類智能之間差異的主要原因。本文簡要論述如何通過打破三個基礎假設來提升模式識別系統的魯棒性。

付費5元查看完整內容

近年來,人們對學習圖結構數據表示的興趣大增。基于標記數據的可用性,圖表示學習方法一般分為三大類。第一種是網絡嵌入(如淺層圖嵌入或圖自動編碼器),它側重于學習關系結構的無監督表示。第二種是圖正則化神經網絡,它利用圖來增加半監督學習的正則化目標的神經網絡損失。第三種是圖神經網絡,目的是學習具有任意結構的離散拓撲上的可微函數。然而,盡管這些領域很受歡迎,但在統一這三種范式方面的工作卻少得驚人。在這里,我們的目標是彌合圖神經網絡、網絡嵌入和圖正則化模型之間的差距。我們提出了圖結構數據表示學習方法的一個綜合分類,旨在統一幾個不同的工作主體。具體來說,我們提出了一個圖編碼解碼器模型(GRAPHEDM),它將目前流行的圖半監督學習算法(如GraphSage、Graph Convolutional Networks、Graph Attention Networks)和圖表示的非監督學習(如DeepWalk、node2vec等)歸納為一個統一的方法。為了說明這種方法的一般性,我們將30多個現有方法放入這個框架中。我們相信,這種統一的觀點既為理解這些方法背后的直覺提供了堅實的基礎,也使該領域的未來研究成為可能。

概述

學習復雜結構化數據的表示是一項具有挑戰性的任務。在過去的十年中,針對特定類型的結構化數據開發了許多成功的模型,包括定義在離散歐幾里德域上的數據。例如,序列數據,如文本或視頻,可以通過遞歸神經網絡建模,它可以捕捉序列信息,產生高效的表示,如機器翻譯和語音識別任務。還有卷積神經網絡(convolutional neural networks, CNNs),它根據移位不變性等結構先驗參數化神經網絡,在圖像分類或語音識別等模式識別任務中取得了前所未有的表現。這些主要的成功僅限于具有簡單關系結構的特定類型的數據(例如,順序數據或遵循規則模式的數據)。

在許多設置中,數據幾乎不是規則的: 通常會出現復雜的關系結構,從該結構中提取信息是理解對象之間如何交互的關鍵。圖是一種通用的數據結構,它可以表示復雜的關系數據(由節點和邊組成),并出現在多個領域,如社交網絡、計算化學[41]、生物學[105]、推薦系統[64]、半監督學習[39]等。對于圖結構的數據來說,將CNNs泛化為圖并非易事,定義具有強結構先驗的網絡是一項挑戰,因為結構可以是任意的,并且可以在不同的圖甚至同一圖中的不同節點之間發生顯著變化。特別是,像卷積這樣的操作不能直接應用于不規則的圖域。例如,在圖像中,每個像素具有相同的鄰域結構,允許在圖像中的多個位置應用相同的過濾器權重。然而,在圖中,我們不能定義節點的順序,因為每個節點可能具有不同的鄰域結構(圖1)。此外,歐幾里德卷積強烈依賴于幾何先驗(如移位不變性),這些先驗不能推廣到非歐幾里德域(如平移可能甚至不能在非歐幾里德域上定義)。

這些挑戰導致了幾何深度學習(GDL)研究的發展,旨在將深度學習技術應用于非歐幾里德數據。特別是,考慮到圖在現實世界應用中的廣泛流行,人們對將機器學習方法應用于圖結構數據的興趣激增。其中,圖表示學習(GRL)方法旨在學習圖結構數據的低維連續向量表示,也稱為嵌入。

廣義上講,GRL可以分為兩類學習問題,非監督GRL和監督(或半監督)GRL。第一個系列的目標是學習保持輸入圖結構的低維歐幾里德表示。第二系列也學習低維歐幾里德表示,但為一個特定的下游預測任務,如節點或圖分類。與非監督設置不同,在非監督設置中輸入通常是圖結構,監督設置中的輸入通常由圖上定義的不同信號組成,通常稱為節點特征。此外,底層的離散圖域可以是固定的,這是直推學習設置(例如,預測一個大型社交網絡中的用戶屬性),但也可以在歸納性學習設置中發生變化(例如,預測分子屬性,其中每個分子都是一個圖)。最后,請注意,雖然大多數有監督和無監督的方法學習歐幾里德向量空間中的表示,最近有興趣的非歐幾里德表示學習,其目的是學習非歐幾里德嵌入空間,如雙曲空間或球面空間。這項工作的主要動機是使用一個連續的嵌入空間,它類似于它試圖嵌入的輸入數據的底層離散結構(例如,雙曲空間是樹的連續版本[99])。

鑒于圖表示學習領域的發展速度令人印象深刻,我們認為在一個統一的、可理解的框架中總結和描述所有方法是很重要的。本次綜述的目的是為圖結構數據的表示學習方法提供一個統一的視圖,以便更好地理解在深度學習模型中利用圖結構的不同方法。

目前已有大量的圖表示學習綜述。首先,有一些研究覆蓋了淺層網絡嵌入和自動編碼技術,我們參考[18,24,46,51,122]這些方法的詳細概述。其次,Bronstein等人的[15]也給出了非歐幾里德數據(如圖或流形)的深度學習模型的廣泛概述。第三,最近的一些研究[8,116,124,126]涵蓋了將深度學習應用到圖數據的方法,包括圖數據神經網絡。這些調查大多集中在圖形表示學習的一個特定子領域,而沒有在每個子領域之間建立聯系。

在這項工作中,我們擴展了Hamilton等人提出的編碼-解碼器框架,并介紹了一個通用的框架,圖編碼解碼器模型(GRAPHEDM),它允許我們將現有的工作分為四大類: (i)淺嵌入方法,(ii)自動編碼方法,(iii) 圖正則化方法,和(iv) 圖神經網絡(GNNs)。此外,我們還介紹了一個圖卷積框架(GCF),專門用于描述基于卷積的GNN,該框架在廣泛的應用中實現了最先進的性能。這使我們能夠分析和比較各種GNN,從在Graph Fourier域中操作的方法到將self-attention作為鄰域聚合函數的方法[111]。我們希望這種近期工作的統一形式將幫助讀者深入了解圖的各種學習方法,從而推斷出相似性、差異性,并指出潛在的擴展和限制。盡管如此,我們對前幾次綜述的貢獻有三個方面

  • 我們介紹了一個通用的框架,即GRAPHEDM,來描述一系列廣泛的有監督和無監督的方法,這些方法對圖形結構數據進行操作,即淺層嵌入方法、圖形正則化方法、圖形自動編碼方法和圖形神經網絡。

  • 我們的綜述是第一次嘗試從同一角度統一和查看這些不同的工作線,我們提供了一個通用分類(圖3)來理解這些方法之間的差異和相似之處。特別是,這種分類封裝了30多個現有的GRL方法。在一個全面的分類中描述這些方法,可以讓我們了解這些方法究竟有何不同。

  • 我們為GRL發布了一個開源庫,其中包括最先進的GRL方法和重要的圖形應用程序,包括節點分類和鏈接預測。我們的實現可以在//github.com/google/gcnn-survey-paper上找到。

付費5元查看完整內容

卷積神經網絡(Convolutional Neural Network, CNN)是深度學習領域中最重要的網絡之一。由于CNN在計算機視覺和自然語言處理等諸多領域都取得了令人矚目的成就,因此在過去的幾年里,CNN受到了業界和學術界的廣泛關注。現有的綜述主要關注CNN在不同場景下的應用,并沒有從整體的角度來考慮CNN,也沒有涉及到最近提出的一些新穎的想法。在這篇綜述中,我們的目標是在這個快速增長的領域提供盡可能多的新想法和前景。不僅涉及到二維卷積,還涉及到一維和多維卷積。首先,這篇綜述首先簡單介紹了CNN的歷史。第二,我們提供CNN的概述。第三,介紹了經典的和先進的CNN模型,特別是那些使他們達到最先進的結果的關鍵點。第四,通過實驗分析,得出一些結論,并為函數選擇提供一些經驗法則。第五,介紹了一維、二維和多維卷積的應用。最后,討論了CNN的一些有待解決的問題和有發展前景的方向,為今后的工作提供參考。

付費5元查看完整內容

【導讀】深度學習革新了很多應用,但是背后的理論作用機制一直沒有得到統一的解釋。最近來自谷歌大腦和斯坦福的學者共同撰寫了深度學習統計力學的綜述論文《Statistical Mechanics of Deep Learning》,共30頁pdf,從物理學視角闡述了深度學習與各種物理和數學主題之間的聯系。

最近,深度神經網絡在機器學習領域取得了驚人的成功,這對它們成功背后的理論原理提出了深刻的疑問。例如,這樣的深度網絡可以計算什么?我們如何訓練他們?信息是如何通過它們傳播的?為什么他們可以泛化?我們如何教他們想象?我們回顧了最近的工作,其中物理分析方法植根于統計力學已經開始提供這些問題的概念上的見解。這些見解產生了深度學習與各種物理和數學主題之間的聯系,包括隨機景觀、旋轉玻璃、干擾、動態相變、混沌、黎曼幾何、隨機矩陣理論、自由概率和非平衡統計力學。事實上,統計力學和機器學習領域長期以來一直享有強耦合交互作用的豐富歷史,而統計力學和深度學習交叉領域的最新進展表明,這些交互作用只會進一步深化。

概述

具有多層隱含層(1)的深度神經網絡在許多領域都取得了顯著的成功,包括機器視覺(2)、語音識別(3)、自然語言處理(4)、強化學習(5),甚至在神經科學(6、7)、心理學(8、9)和教育(10)中對動物和人類自身的建模。然而,用于獲得成功的深度神經網絡的方法仍然是一門高度熟練的藝術,充滿了許多啟發,而不是一門精確的科學。這為理論科學提出了令人興奮的挑戰和機會,以創建一個成熟的深度神經網絡理論,該理論強大到足以指導在深度學習中廣泛的工程設計選擇。雖然我們目前離這樣成熟的理論還有很長的距離,但是最近在統計力學和深度學習交叉領域出現的一批研究已經開始為深度網絡的學習和計算提供理論上的見解,有時還會提出新的和改進的方法來推動這些理論的深入學習。

在這里,我們回顧了建立在統計力學和機器學習相互作用的悠久而豐富的歷史基礎上的這一工作體系(11-15)。有趣的是,正如我們下面所討論的,這些工作在統計力學和深度學習之間建立了許多新的橋梁。在本介紹的其余部分中,我們將為機器學習的兩個主要分支提供框架。第一個是監督學習,它涉及到從例子中學習輸入-輸出映射的過程。第二種是無監督學習,它涉及到學習和挖掘數據中隱藏的結構模式的過程。有了這兩個框架,我們將在1.3節中介紹本綜述中討論的幾個深度學習的基本理論問題,以及它們與與統計力學相關的各種主題的聯系。

付費5元查看完整內容
北京阿比特科技有限公司