《圖:理論和算法》這本書是一本現代文章的集合,介紹了幾種基于圖的方法和算法。它還涵蓋了與圖的矩陣表示有關的重要理論方面,如拉普拉斯矩陣和距離矩陣,可用于解決諸如哈密頓矩陣和最短路徑等問題,以及尋找最小生成樹和匹配模式。
圖論首先由Leonhard Euler在他對K?nigsberg問題的七橋分析中提出并引入(Euler, 1741;Newman等人,1953)。為解決該問題,Euler將每個地塊替換為一個抽象的頂點(圖節點),將每個橋梁替換為一個抽象的連接(圖邊)。如今,圖可以用來表示不同類型的數據,因此在許多研究領域有著廣泛的應用。例如,圖形已被用于表示網絡結構、分子模型、物種遷移模式、自然語言語法結構等(例如Gross和Yellen, 2009;Foulds, 2012)。
//www.perlego.com/book/2076412/graphs-theory-and-algorithms-pdf
分布式算法指南的新版本,強調示例和練習而不是復雜的數學模型。
本書為學生和研究人員提供了分布式算法指南,強調示例和練習,而不是復雜的數學模型。它避免了經常阻礙學生學習的數學論證,教授算法思想,而不是證明和邏輯。這種方法允許學生在相對較短的時間內學習大量算法。通過簡短、非正式的描述、說明示例和實際練習來解釋算法。示例和練習讓讀者從不同的角度直觀地理解算法。證明草圖,爭論算法的正確性或解釋基本結果背后的思想,也包括在內。書中介紹的算法大部分都是“經典”算法,之所以選擇它們,是因為它們闡明了分布式系統的算法設計或分布式計算和并發編程中的關鍵問題。
第二版已作了重大修訂。關于分布式事務的新一章提供了數據庫事務的最新處理方法和事務內存的重要發展領域。關于安全的新章節討論了兩個令人興奮的新主題:區塊鏈和量子密碼學。其中增加了一些章節,涵蓋了回滾恢復、容錯終止檢測和共享內存的共識等主題。附錄提供了許多算法的偽代碼描述。
//mitpress.mit.edu/9780262037662/distributed-algorithms/
學習如何在編寫高性能python程序和算法中使用數據結構這篇關于數據結構和算法的實用介紹可以幫助每一個想要編寫更高效軟件的程序員。本書以Robert Lafore基于java的傳奇指南為基礎,幫助學生準確理解數據結構和算法是如何運行的。您將學習如何用非常流行的Python語言有效地應用它們,并擴展您的代碼以應對當今的大數據挑戰。在整個過程中,作者關注現實世界的例子,用直觀的交互式可視化交流關鍵思想,并將復雜性和數學限制在提高性能所需的范圍內。他們逐步介紹了數組、排序、堆棧、隊列、鏈表、遞歸、二叉樹、2-3-4樹、哈希表、空間數據結構、圖等等。它們的代碼示例和插圖非常清晰,即使你是一個接近初學者,或者你有使用其他過程或面向對象語言的經驗,你也可以理解它們。
本書涵蓋處理矩陣和線性代數的基本原理。它涵蓋求解線性方程組,矩陣算術,行列式,特征值,和線性變換。在易于閱讀的文本中給出了許多例子。第三版修正了文本中的幾個錯誤并更新了字體。
作者在前言中明確指出,本文不是線性代數。它避免了很多線性代數相關的理論; 盡管如此,作者還是在必要的時候提到了定理。避免使用理論但使用“定理”這一術語可能需要在課堂上進行一些教科書中避免的討論。
記住,這本書的重點是計算而不是理論,它涵蓋了矩陣代數的主要計算方面。雖然作業使用非方陣,但在例子中矩陣乘法部分重點強調方陣。
1 Systems of Linear Equations
1.1 Introduction to Linear Equations
1.2 Using Matrices To Solve Systems of Linear Equations
1.3 Elementary Row Operations and Gaussian Elimination
1.4 Existence and Uniqueness of Solutions
1.5 Applications of Linear Systems
2 Matrix Arithmetic
2.1 Matrix Addition and Scalar Multiplication
2.2 Matrix Multiplication
2.3 Visualizing Matrix Arithmetic in 2D
2.4 Vector Solutions to Linear Systems
2.5 Solving Matrix Equations AX = B
2.6 The Matrix Inverse
2.7 Properties of the Matrix Inverse
3 Operations on Matrices
3.1 The Matrix Transpose
3.2 The Matrix Trace
3.3 The Determinant
3.4 Properties of the Determinant
3.5 Cramer’s Rule
4 Eigenvalues and Eigenvectors
4.1 Eigenvalues and Eigenvectors
4.2 Properties of Eigenvalues and Eigenvectors
5 Graphical Explorations of Vectors
5.1 Transformations of the Cartesian Plane
5.2 Properties of Linear Transformations
5.3 Visualizing Vectors: Vectors in Three Dimensions
這本典型的數據結構課程,介紹了基本的數據結構和算法的集合,可以使用任何不同的編程語言進行教學。近年來,越來越多的學院開始采用Python語言向學生介紹編程和問題解決。與c++和Java等其他語言相比,Python提供了一些優勢,其中最重要的是Python有一個簡單的語法,更容易學習。本書通過為數據結構課程提供以Python為中心的文本,擴展了Python的使用。該語言干凈的語法和強大的特性貫穿始終,但這些特性的底層機制也得到了充分的探索,不僅揭示了“魔力”,而且研究了它們的總體效率。正文由14章和4個附錄組成。前四章介紹了與抽象數據類型、數據結構和算法相關的基本概念。后面的章節將在這些早期概念的基礎上介紹更高級的主題,并向學生介紹更多的抽象數據類型和更高級的數據結構。這本書包含了幾個主題的線索,在整個文本中,主題是重新訪問在不同的章節作為適當的。
大量大維度數據是現代機器學習(ML)的默認設置。標準的ML算法,從支持向量機這樣的內核方法和基于圖的方法(如PageRank算法)開始,最初的設計是基于小維度的,在處理真實世界的大數據集時,即使不是完全崩潰的話,往往會表現失常。隨機矩陣理論最近提出了一系列廣泛的工具來幫助理解這種新的維數詛咒,幫助修復或完全重建次優算法,最重要的是提供了處理現代數據挖掘的新方向。本編著的主要目的是提供這些直覺,通過提供一個最近的理論和應用突破的隨機矩陣理論到機器學習摘要。針對廣泛的受眾,從對統計學習感興趣的本科生到人工智能工程師和研究人員,這本書的數學先決條件是最小的(概率論、線性代數和真實和復雜分析的基礎是足夠的):與隨機矩陣理論和大維度統計的數學文獻中的介紹性書籍不同,這里的理論重點僅限于機器學習應用的基本要求。這些應用范圍從檢測、統計推斷和估計,到基于圖和核的監督、半監督和非監督分類,以及神經網絡: 為此,本文提供了對算法性能的精確理論預測(在不采用隨機矩陣分析時往往難以實現)、大維度的洞察力、改進方法,以及對這些方法廣泛適用于真實數據的基本論證。該專著中提出的大多數方法、算法和圖形都是用MATLAB和Python編寫的,讀者可以查閱(//github.com/Zhenyu-LIAO/RMT4ML)。本專著也包含一系列練習兩種類型:短的練習與修正附加到書的最后讓讀者熟悉隨機矩陣的基本理論概念和工具分析,以及長期指導練習應用這些工具進一步具體的機器學習應用程序。
圖論因其在計算機科學、通信網絡和組合優化方面的應用而成為一門重要的學科。它與其他數學領域的互動也越來越多。雖然這本書可以很好地作為圖表理論中許多最重要的主題的參考,但它甚至正好滿足了成為一本有效的教科書的期望。主要關注的是服務于計算機科學、應用數學和運籌學專業的學生,確保滿足他們對算法的需求。在材料的選擇和介紹方面,已試圖在基本的基礎上容納基本概念,以便對那些剛進入這一領域的人提供指導。此外,由于它既強調定理的證明,也強調應用,所以應該先吸收主題,然后對主題的深度和方法有一個印象。本書是一篇關于圖論的綜合性文章,主題是有組織的、系統的。這本書在理論和應用之間取得了平衡。這本書以這樣一種方式組織,主題出現在完美的順序,以便于學生充分理解主題。這些理論已經用簡單明了的數學語言進行了描述。這本書各方面都很完整。它將為主題提供一個完美的開端,對主題的完美理解,以及正確的解決方案的呈現。本書的基本特點是,概念已經用簡單的術語提出,并詳細解釋了解決過程。
這本書有10章。每一章由緊湊但徹底的理論、原則和方法的基本討論組成,然后通過示例進行應用。本書所介紹的所有理論和算法都通過大量的算例加以說明。這本書在理論和應用之間取得了平衡。第一章介紹圖。第一章描述了同構、完全圖、二部圖和正則圖的基本和初等定義。第二章介紹了不同類型的子圖和超圖。本章包括圖形運算。第二章還介紹了步行、小徑、路徑、循環和連通或不連通圖的基本定義。第三章詳細討論了歐拉圖和哈密頓圖。第四章討論樹、二叉樹和生成樹。本章深入探討了基本電路和基本割集的討論。第五章涉及提出各種重要的算法,在數學和計算機科學中是有用的。第六章的數學前提包括線性代數的第一個基礎。矩陣關聯、鄰接和電路在應用科學和工程中有著廣泛的應用。第七章對于討論割集、割頂點和圖的連通性特別重要。第八章介紹了圖的著色及其相關定理。第九章著重介紹了平面圖的基本思想和有關定理。最后,第十章給出了網絡流的基本定義和定理。
高效數據結構的設計和分析長期以來被認為是計算機領域的一個重要學科,是計算機科學和計算機工程本科學位的核心課程的一部分。Python中的數據結構和算法介紹了數據結構和算法,包括它們的設計、分析和實現。本書適用于入門級數據結構課程,或中級算法入門課程。我們將在本序言后面更詳細地討論它在此類課程中的使用。
為了促進魯棒的和可重用的軟件的開發,我們試圖在整本書中采取一致的面向對象的觀點。面向對象方法的主要思想之一是,數據應該被封裝在訪問和修改它們的方法中。也就是說,不是簡單地將數據看作字節和地址的集合,而是將數據對象看作抽象數據類型(ADT)的實例,ADT包含了對這種類型的數據對象執行操作的一整套方法。然后我們強調,對于特定的ADT可能有幾種不同的實現策略,并探討這些選擇的優缺點。我們為幾乎所有討論過的數據結構和算法提供了完整的Python實現,我們還引入了重要的面向對象設計模式,將這些實現組織成可重用的組件。
我們書的讀者期望的結果包括: 他們了解最常見的數據集合抽象(如堆棧、隊列、列表、樹、地圖)。 他們理解算法產生有效的實現策略常見的數據結構。 他們可以從理論上和實驗上分析算法性能,并識別競爭策略之間的共同權衡。 他們可以明智地使用現代編程語言庫中現有的數據結構和算法。 他們有處理大多數基本數據結構和算法的具體實現的經驗。 他們可以運用數據結構和算法來解決復雜的問題。
//www.wiley.com/en-us/Data+Structures+and+Algorithms+in+Python-p-9781118290279
矩陣代數是數據分析和統計理論中最重要的數學領域之一。這本書的第一部分為統計中的應用提出矩陣代數的理論的相關方面。本部分從向量和向量空間的基本概念開始,接著介紹矩陣的基本代數性質,然后描述向量和矩陣在多元演算中的解析性質,最后討論線性系統解和特征分析中矩陣的運算。這部分基本上是獨立的。
本書的第二部分開始考慮在統計中遇到的各種類型的矩陣,例如投影矩陣和正定矩陣,并描述這些矩陣的特殊性質。第二部分也介紹了矩陣理論在統計中的一些應用,包括線性模型、多元分析和隨機過程。本部分說明了在本書第一部分中發展的矩陣理論。書的前兩個部分可以作為為統計學生的矩陣代數課程的文本,或作為在線性模型或多元統計的各種課程的補充文本。
這本書的第三部分涵蓋了數值線性代數。它以數值計算的基礎討論開始,然后描述精確和有效的算法因式分解矩陣,求解線性方程組,并提取特征值和特征向量。雖然這本書沒有捆綁到任何特定的軟件系統,它描述并給出了使用數字線性代數的現代計算機軟件的例子。這部分基本上是自包含的,盡管它假設有一些能力用Fortran或C編程和/或使用R/S-Plus或Matlab的能力。書的這一部分可以作為在統計計算中的一門課程的文本使用,或者作為強調計算的各種課程的補充文本。
這本書包括大量的練習,并在附錄中提供了一些解決方案。
James E. Gentle是喬治梅森大學計算統計學教授。他是美國統計協會(ASA)和美國科學促進會的會員。他曾在美國標準局擔任過幾個國家職務并擔任過美國標準局期刊的副主編以及其他統計和計算期刊的副主編。他是隨機數生成和蒙特卡羅方法,第二版,和計算統計元素的作者。
有很多關于傅里葉變換的書; 然而,很少有面向多學科讀者的。為工程師寫一本關于代數概念的書是一個真正的挑戰,即使不是太難的事,也要比寫一本關于理論應用的代數書更有挑戰性。這就是本書試圖面對的挑戰。因此,每個讀者都能夠創建一個“按菜單”的程序,并從語句或計算機程序中提取特定元素,以建立他們在該領域的知識,或將其運用于更具體的問題。
本文敘述是非常詳細的。讀者可能偶爾需要一些關于有限組的高級概念,以及對組行為的熟悉程度。我強調了那些重要的定義和符號。例如,從多個角度(交換群、信號處理、非交換群)研究卷積的概念,每次都要放在它的背景知識中。因此,不同的段落,雖然遵循一個邏輯遞進,有一個真正的統一,但可以根據自己需要選取閱讀。
第一章用群論的語言來解釋主要概念,并解釋后面將用到的符號。第二章將所得結果應用于各種問題,并首次接觸快速算法(例如Walsh 變換)。第三章對離散傅里葉變換進行了闡述。第四章介紹了離散傅里葉變換的各種應用,并構成了對前一章的必要補充,以充分理解所涉及的機制以及在實際情況中使用。第五章圍繞傅里葉變換提出了更多新穎的思想和算法,產生了大量的應用。第六章需要一些更高級的知識,特別是對有限場理論的一些熟悉。它研究了有限域中的值變換,并給出了在校正碼中的應用。最后兩章(最困難的一章),具有更多的代數性質,并建議推廣已經在有限非交換群的情況下進行的構造。第七章揭示了線性表示的理論。第八章和最后一章將這一理論應用于理論(群的簡潔性研究)和實際(光譜分析)領域。
在復雜的以人為中心的系統中,每天的決策都具有決策相關信息不完全的特點。現有決策理論的主要問題是,它們沒有能力處理概率和事件不精確的情況。在這本書中,我們描述了一個新的理論的決策與不完全的信息。其目的是將決策分析和經濟行為的基礎從領域二價邏輯轉向領域模糊邏輯和Z約束,從行為決策的外部建模轉向組合狀態的框架。
這本書將有助于在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學的專業人員,學者,經理和研究生。
讀者:專業人士,學者,管理者和研究生在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學。