亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

【導讀】Yann Lecun在紐約大學開設的2020春季《深度學習》課程,干貨滿滿。最新的一期是來自新加坡南洋理工大學的Xavier Bresson教授的圖卷積神經網絡課程,共76頁PPT,非常硬核干貨,講述了GCN近年來的研究進展,包括經典卷積網絡、譜圖卷積網、 空間域圖卷積網、GCN基準等。

圖卷積網絡

目錄:

  • 第一部分傳統卷積網
    • 架構
    • 圖域
    • 卷積
  • 譜域圖卷積網
  • 譜卷積
  • 譜GCN
  • 空間域圖卷積網
    • 模板匹配
    • 各向同性 GCNs
    • 各向異性 GCNs
    • GatedGCNs
  • 圖神經網絡基準
  • 結論

付費5元查看完整內容

相關內容

自2006年以來,神經網絡是引發深度學習革命的模型,但它們的基礎可以追溯到20世紀60年代。在這堂課中,DeepMind研究科學家Wojciech Czarnecki將介紹這些模型如何操作、學習和解決問題的基礎知識。他還介紹了各種術語/命名慣例,為與會者進一步、更高級的會談做準備。最后,他簡要介紹了神經網絡設計和開發的更多研究方向。

付費5元查看完整內容

芬蘭阿爾托大學CSE4890深度學習課程第7講:圖神經網絡,由Alexander Ilin主講,全面詳細地介紹了GNN的背景動機、GCN、循環關系網絡、通用網絡。

付費5元查看完整內容

本課程涉及深度學習和表示學習的最新技術,重點是有監督和無監督的深度學習、嵌入方法、度量學習、卷積網和遞歸網,并應用于計算機視覺、自然語言理解和語音識別。

第五講:

第六講:

第七講:

付費5元查看完整內容

本課程涉及深度學習和表示學習的最新技術,重點是有監督和無監督的深度學習、嵌入方法、度量學習、卷積網和遞歸網,并應用于計算機視覺、自然語言理解和語音識別。

● Course public folder: bit.ly/DLSP20.

● Class material available .

● Piazza Q&A interface available here. Sign-up token: DLSP20.

Yann LeCun(//www.zhuanzhi.ai/topic/20021)

在人工智能研究領域,Yann LeCun、Geoffrey Hinton 和 Yoshua Bengio一直被公認為深度學習三巨頭,一起獲得2018年圖靈獎。

Yann LeCun,自稱中文名“楊立昆”,計算機科學家,被譽為“卷積網絡之父”,為卷積神經網絡(CNN,Convolutional Neural Networks)和圖像識別領域做出了重要貢獻,以手寫字體識別、圖像壓縮和人工智能硬件等主題發表過 190 多份論文,研發了很多關于深度學習的項目,并且擁有14項相關的美國專利。他同Léon Bottou和Patrick Haffner等人一起創建了DjVu圖像壓縮技術,同Léon Bottou一起開發了一種開源的Lush語言,比Matlab功能還要強大,并且也是一位Lisp高手。(Backpropagation,簡稱BP)反向傳播這種現階段常用來訓練人工神經網絡的算法,就是 LeCun 和其老師“神經網絡之父”Geoffrey Hinton 等科學家于 20 世紀 80 年代中期提出的,而后 LeCun 在貝爾實驗室將 BP 應用于卷積神經網絡中,并將其實用化,推廣到各種圖像相關任務中。

下載鏈接:鏈接: 提取碼: i3ed

付費5元查看完整內容

簡介: 機器學習在處理結構化數據集(例如表格數據)方面歷來是成功的。 隨著最近的進步,特別是在深度學習方面的進步,現在還存在用于處理圖像,文本和語音數據的完善且強大的方法。 但是,許多現實世界的數據并不屬于這些類別。 這種數據重要的一種是網絡或圖形數據,可用于對諸如社交網絡,交易流,計算機網絡甚至分子相互作用之類的概念進行建模。 使用圖,我們可以輕松地表示和捕獲對象之間的復雜交互和依賴關系,但同時也提出了一個問題:我們如何將機器學習應用于結構化數據圖?

嘉賓介紹: Xavier Bresson,NTU計算機科學副教授。 他是圖深度學習領域的領先研究人員,圖深度學習是一個新的框架,該框架結合了圖和深度學習技術,可以處理多個領域的復雜數據。 演講的目的是介紹基于圖的卷積神經網絡體系結構,以及此類問題的應用。

大綱:

  • Motivation
  • Graph Deep Learning
  • Applications
  • DGL
  • Tutorials
  • Trainings
付費5元查看完整內容

課程介紹: 最近,圖神經網絡 (GNN) 在各個領域越來越受到歡迎,包括社交網絡、知識圖譜、推薦系統,甚至生命科學。GNN 在對圖形中節點間的依賴關系進行建模方面能力強大,使得圖分析相關的研究領域取得了突破性進展。本次課程對比傳統的卷積神經網絡以及圖譜圖卷積與空間圖卷積,從理論知識入手,并結合相關論文進行詳細講解。

主講人: Xavier Bresson,人工智能/深度學習方面的頂級研究員,培訓師和顧問。在“圖深度學習”上的NeurIPS'17和CVPR'17(2019年頂級人工智能會議排名)上的演講者,在劍橋,加州大學洛杉磯分校,布朗,清華,龐加萊,海德堡等地進行了30多次國際演講。

課程大綱:

  • 傳統卷積神經網絡
  • 譜圖圖卷積
  • 空間圖卷積
  • 總結
付費5元查看完整內容

課程介紹: 最近兩年,注意力模型(Attention Model)被廣泛使用在自然語言處理、圖像識別及語音識別等各種不同類型的深度學習任務中,是深度學習技術中最值得關注與深入了解的核心技術之一,本課程從基礎著手,由淺及深,詳細介紹注意力神經網絡。

主講人: Xavier Bresson,人工智能/深度學習方面的頂級研究員,培訓師和顧問。在“圖深度學習”上的NeurIPS'17和CVPR'17(2019年頂級人工智能會議排名)上的演講者,在劍橋,加州大學洛杉磯分校,布朗,清華,龐加萊,海德堡等地進行了30多次國際演講。

課程大綱:

  • 神經網絡
  • 神經網絡sets
  • 記憶網絡
  • Transformers
  • seq2seq Transformers
  • 語言模型Transformers
  • 圖網絡VS神經網絡
  • 總結
付費5元查看完整內容
北京阿比特科技有限公司