亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

課程介紹: 最近兩年,注意力模型(Attention Model)被廣泛使用在自然語言處理、圖像識別及語音識別等各種不同類型的深度學習任務中,是深度學習技術中最值得關注與深入了解的核心技術之一,本課程從基礎著手,由淺及深,詳細介紹注意力神經網絡。

主講人: Xavier Bresson,人工智能/深度學習方面的頂級研究員,培訓師和顧問。在“圖深度學習”上的NeurIPS'17和CVPR'17(2019年頂級人工智能會議排名)上的演講者,在劍橋,加州大學洛杉磯分校,布朗,清華,龐加萊,海德堡等地進行了30多次國際演講。

課程大綱:

  • 神經網絡
  • 神經網絡sets
  • 記憶網絡
  • Transformers
  • seq2seq Transformers
  • 語言模型Transformers
  • 圖網絡VS神經網絡
  • 總結
付費5元查看完整內容

相關內容

Transformer是谷歌發表的論文《Attention Is All You Need》提出一種完全基于Attention的翻譯架構

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

在本課中我們將專注在序列數據上并講解機器學習方法如何來處理這種類型的數據。我們首先介紹關于序列建模的基礎概念,包括常用架構如RNN、LSTM。隨后我們將介紹序列到序列解碼和他的應用。

付費5元查看完整內容

芬蘭阿爾托大學CSE4890深度學習課程第7講:圖神經網絡,由Alexander Ilin主講,全面詳細地介紹了GNN的背景動機、GCN、循環關系網絡、通用網絡。

付費5元查看完整內容

本課程涉及深度學習和表示學習的最新技術,重點是有監督和無監督的深度學習、嵌入方法、度量學習、卷積網和遞歸網,并應用于計算機視覺、自然語言理解和語音識別。

第五講:

第六講:

第七講:

付費5元查看完整內容

簡介: 機器學習在處理結構化數據集(例如表格數據)方面歷來是成功的。 隨著最近的進步,特別是在深度學習方面的進步,現在還存在用于處理圖像,文本和語音數據的完善且強大的方法。 但是,許多現實世界的數據并不屬于這些類別。 這種數據重要的一種是網絡或圖形數據,可用于對諸如社交網絡,交易流,計算機網絡甚至分子相互作用之類的概念進行建模。 使用圖,我們可以輕松地表示和捕獲對象之間的復雜交互和依賴關系,但同時也提出了一個問題:我們如何將機器學習應用于結構化數據圖?

嘉賓介紹: Xavier Bresson,NTU計算機科學副教授。 他是圖深度學習領域的領先研究人員,圖深度學習是一個新的框架,該框架結合了圖和深度學習技術,可以處理多個領域的復雜數據。 演講的目的是介紹基于圖的卷積神經網絡體系結構,以及此類問題的應用。

大綱:

  • Motivation
  • Graph Deep Learning
  • Applications
  • DGL
  • Tutorials
  • Trainings
付費5元查看完整內容

課程介紹: 最近,圖神經網絡 (GNN) 在各個領域越來越受到歡迎,包括社交網絡、知識圖譜、推薦系統,甚至生命科學。GNN 在對圖形中節點間的依賴關系進行建模方面能力強大,使得圖分析相關的研究領域取得了突破性進展。本次課程對比傳統的卷積神經網絡以及圖譜圖卷積與空間圖卷積,從理論知識入手,并結合相關論文進行詳細講解。

主講人: Xavier Bresson,人工智能/深度學習方面的頂級研究員,培訓師和顧問。在“圖深度學習”上的NeurIPS'17和CVPR'17(2019年頂級人工智能會議排名)上的演講者,在劍橋,加州大學洛杉磯分校,布朗,清華,龐加萊,海德堡等地進行了30多次國際演講。

課程大綱:

  • 傳統卷積神經網絡
  • 譜圖圖卷積
  • 空間圖卷積
  • 總結
付費5元查看完整內容
北京阿比特科技有限公司