自動化機器學習(AutoML)的目標是讓每個人都能使用機器學習(ML),包括醫生、土木工程師、材料科學家、小企業主,以及統計學家和計算機科學家。這一長期愿景與微軟office的愿景非常相似——讓普通用戶能夠輕松地創建文檔和準備報告——以及智能手機中的攝像頭,方便隨時隨地拍攝照片。盡管ML社區為實現這一目標付出了大量的研發努力,但通過與領域專家和數據科學家的合作,我們認為人們對揭示AutoML背后的魔力有著很高的需求,包括基本概念、算法和工具。
《自動機器學習實戰(Automated Machine Learning in Action)》揭示了如何自動化設計和調整機器學習系統的繁瑣元素。它是用簡單易懂的方式編寫的,并且充滿了將AutoML技術應用到管道的每個階段的實踐示例。AutoML甚至可以由機器學習新手來實現!如果你是ML的新手,你會欣賞這本書如何讓你了解機器學習的基礎知識。有經驗的實踐者會喜歡學習AutoKeras和KerasTuner這樣的自動化工具如何創建管道,自動為您的任務選擇最佳方法,或者使用用戶定義的超參數調優任何定制的搜索空間,這消除了手動調優的負擔。
在Automated Machine Learning In Action中,您將學習如何:
圖書簡介
本書的主題元學習,作為機器學習研究中增長最快的領域之一,研究了通過調整機器學習和數據挖掘過程來獲得有效模型和解決方案的方法。這種適應能力通常利用來自過去其他任務的經驗信息,并且適應過程可能涉及機器學習方法。作為與元學習相關的領域和當前的熱門話題,自動化機器學習(AutoML)關注的是機器學習過程的自動化。元學習和AutoML可以幫助AI學習控制不同學習方法的應用并更快地獲取新的解決方案,而無需用戶進行不必要的干預。
本書全面而透徹地介紹了元學習和 AutoML的幾乎所有方面,涵蓋了基本概念和架構、評估、數據集、超參數優化、集成和工作流,以及如何使用這些知識來選擇、組合、調整和配置算法和模型,以更快更好地解決數據挖掘和數據科學問題。因此,它可以幫助開發人員開發可以通過經驗改進自己的系統。
本書是2009年第一版的重大更新,共18章,內容幾乎是上一版的兩倍。這使作者能夠更深入地涵蓋最相關的主題,并結合各自領域最近研究的概述。這本書適用于對機器學習、數據挖掘、數據科學和人工智能領域感興趣的研究人員和研究生。
章節瀏覽
元學習(Metalearning)或者叫做“學會學習”(Learning to learn),它希望模型獲取一種“學會學習”的能力,使其可以在獲取已有“知識”的基礎上快速學習新的任務,它的意圖在于通過少量的訓練實例設計能夠快速學習新技能或適應新環境的模型。
作者寄語
“本書的第一版出版于2009年,在過去的十幾年中,元學習的飛速發展,取得了巨大的進步。于是我們決定出版本書的第二版。在新的版本中,我們添加了AutoML的相關知識,并且深入探討了AutoML與Metalearning的關系;同時,由于自動化工作流程設計仍在初期發育的階段,我們也把相關研究和信息增加到了本書的第二版中。”
圖書簡介
本書的主題元學習,作為機器學習研究中增長最快的領域之一,研究了通過調整機器學習和數據挖掘過程來獲得有效模型和解決方案的方法。這種適應能力通常利用來自過去其他任務的經驗信息,并且適應過程可能涉及機器學習方法。作為與元學習相關的領域和當前的熱門話題,自動化機器學習(AutoML)關注的是機器學習過程的自動化。元學習和AutoML可以幫助AI學習控制不同學習方法的應用并更快地獲取新的解決方案,而無需用戶進行不必要的干預。
本書全面而透徹地介紹了元學習和 AutoML的幾乎所有方面,涵蓋了基本概念和架構、評估、數據集、超參數優化、集成和工作流,以及如何使用這些知識來選擇、組合、調整和配置算法和模型,以更快更好地解決數據挖掘和數據科學問題。因此,它可以幫助開發人員開發可以通過經驗改進自己的系統。
本書是2009年第一版的重大更新,共18章,內容幾乎是上一版的兩倍。這使作者能夠更深入地涵蓋最相關的主題,并結合各自領域最近研究的概述。這本書適用于對機器學習、數據挖掘、數據科學和人工智能領域感興趣的研究人員和研究生。
機器學習(ML)是一組用于發現數據關系的編程技術。使用ML算法,您可以對數據進行聚類和分類,以執行建議或欺詐檢測之類的任務,并對銷售趨勢、風險分析和其他預測進行預測。機器學習曾經是學術數據科學家的領域,現在已經成為主流的業務流程,而像易于學習的R編程語言這樣的工具將高質量的數據分析交到任何程序員的手中。《使用R、tidyverse和mlr的機器學習》將教會您廣泛使用的ML技術,以及如何使用R編程語言及其強大的工具生態系統將它們應用于您自己的數據集。這本書會讓你開始!
對這項技術
機器學習技術準確而有效地識別數據中的模式和關系,并使用這些模型對新數據進行預測。ML技術甚至可以在相對較小的數據集上工作,使這些技能成為幾乎所有數據分析任務的強大盟友。R語言的設計考慮了數學和統計的應用。小型數據集是它的最佳選擇,它的現代數據科學工具(包括流行的tidyverse包)使R成為ML的自然選擇。
關于這本書
《使用R、tidyverse和mlr的機器學習》將教會您如何使用強大的R編程語言從數據中獲得有價值的見解。作者兼R專家Hefin Ioan Rhys以其引人入勝的、非正式的風格為ML基礎知識打下了堅實的基礎,并向您介紹了tidyverse,這是一套專門為實用數據科學設計的強大的R工具。有了這些基礎知識,您將更深入地研究常用的機器學習技術,包括分類、預測、約簡和聚類算法,并將每種技術應用于實際數據,從而對有趣的問題進行預測。
使用tidyverse包,您將轉換、清理和繪制您的數據,并在工作中使用數據科學最佳實踐。為了簡化您的學習過程,您還將使用R的mlr包,這是一個非常靈活的接口,用于各種核心算法,允許您以最少的編碼執行復雜的ML任務。您將探索一些基本概念,如過擬合、欠擬合、驗證模型性能,以及如何為您的任務選擇最佳模型。富有啟發性的圖片提供了清晰的解釋,鞏固了你的新知識。
無論您是在處理業務問題、處理研究數據,還是僅僅是一個有數據頭腦的開發人員,您都可以通過本實用教程立即構建自己的ML管道!
里面有什么
掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。
使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。
第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。
第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。
第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。
實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!
你將學習:
這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生
目錄:
Part I: Understanding Machine Learning
Chapter 12: Deep Learning for Computer Vision
地址:
//www.manning.com/books/algorithms-and-data-structures-in-action
對這項技術
數據結構和算法是程序存儲和處理信息的基礎。選擇最佳算法可以確保您的程序是快速、高效和可靠的。
關于這本書
算法和數據結構的作用向您介紹了您將在web應用程序、系統編程和數據操作中使用的各種算法。一章一章地,這本書擴展了你已經知道的基本算法,給你一個更好的選擇不同的編程問題的解決方案。在本文中,您將發現用于改進優先級隊列、高效緩存、集群數據等的技術。每個示例都用各種語言的圖形、語言無關偽代碼和代碼示例進行了完整的說明。完成之后,您將能夠實現高級的和不太知名的算法來提高代碼的性能。當需要自定義解決方案時,您甚至可以設計自己的數據結構來解決這些情況。
里面有什么:
對讀者
適合具有基本或中級技能的程序員。以語言無關的方式編寫,不需要特定的語言知識。
關于作者
Marcello La Rocca是一名研究科學家和全堆棧工程師,專注于優化算法、遺傳算法、機器學習和量子計算。他為Twitter和微軟(Microsoft)等公司的大型web應用程序做出了貢獻,在學術界和工業界進行了應用研究,并撰寫了《Neatsort自適應排序算法》(the Neatsort adaptive sort algorithm)一書。
地址:
//www.apress.com/gp/book/9781484228449
從MATLAB開始進行深度學習,掌握人工智能。在這本書中,你從機器學習基礎開始,然后繼續學習神經網絡,深度學習,然后是卷積神經網絡。在基礎和應用的混合,MATLAB深度學習使用MATLAB作為基礎編程語言和工具的例子和案例研究,在這本書。
有了這本書,你將能夠解決當今現實世界中的一些大數據、智能機器人和其他復雜的數據問題。您將看到,對于現代智能數據分析和使用來說,深度學習是機器學習中多么復雜和智能的一個方面。
你將學習:
這本書是給誰看的
想用MATLAB學習深度學習的同學。一些MATLAB的經驗可能會有用。
Phil Kim博士是一位經驗豐富的MATLAB程序員和用戶。他還研究從人工智能和機器學習中提取的大型數據集的算法。他曾在韓國航空航天研究院擔任高級研究員。在那里,他的主要任務是為無人機開發自主飛行算法和機載軟件。一個名為“Clickey”的屏幕鍵盤程序是他在攻讀博士學位期間開發的,它充當了一個橋梁,將作者帶到了他目前的工作崗位——韓國國立康復研究所(National Rehabilitation Research Institute of Korea)高級研究員。
目錄:
題目: Machine Learning in Action
摘要: 這本書向人們介紹了重要的機器學習算法,介紹了使用這些算法的工具和應用程序,讓讀者了解它們在今天的實踐中是如何使用的。大部分的機器學習書籍都是討論數學,但很少討論如何編程算法。這本書旨在成為從矩陣中提出的算法到實際運行程序之間的橋梁。有鑒于此,請注意這本書重代碼輕數學。
代碼下載鏈接: //pan.baidu.com/s/1--8P9Hlp7vzJdvhnnhsDvw 提取碼:vqhg