亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

《通向人工智能之路》向讀者介紹了機器學習的關鍵概念,討論了機器使用數據產生的預測的潛在應用和局限性,并為學者、律師和政策制定者之間關于如何明智地使用和管理它的辯論提供了信息。技術人員還將從過去120年與問責制、可解釋性和有偏見的數據的法律斗爭中汲取有用的經驗教訓。

//link.springer.com/book/10.1007/978-3-030-43582-0#about

付費5元查看完整內容

相關內容

 是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。 人工智能是計算機科學的一個分支。

Graph Data Science For Dummies將帶您了解圖數據科學的基礎——從定義圖分析和算法到向您展示如何使用它們進行機器學習和解決現實世界的問題。

  • 了解圖表數據科學基礎

  • 用圖表分析做出更好的預測

  • 使用GDS技術升級您的應用程序

//neo4j.com/graph-data-science-for-dummies/

付費5元查看完整內容

這本書是關于運用機器和深度學習來解決石油和天然氣行業的一些挑戰。這本書開篇簡要討論石油和天然氣勘探和生產生命周期中不同階段的數據流工業操作。這導致了對一些有趣問題的調查,這些問題很適合應用機器和深度學習方法。最初的章節提供了Python編程語言的基礎知識,該語言用于實現算法;接下來是監督和非監督機器學習概念的概述。作者提供了使用開源數據集的行業示例以及對算法的實際解釋,但沒有深入研究所使用算法的理論方面。石油和天然氣行業中的機器學習涵蓋了包括地球物理(地震解釋)、地質建模、油藏工程和生產工程在內的各種行業主題。

在本書中,重點在于提供一種實用的方法,提供用于實現機器的逐步解釋和代碼示例,以及用于解決油氣行業現實問題的深度學習算法。

你將學到什么

  • 了解石油和天然氣行業的端到端的行業生命周期和數據流
  • 了解計算機編程和機器的基本概念,以及實現所使用的算法所需的深度學習
  • 研究一些有趣的行業問題,這些問題很有可能被機器和深度學習解決
  • 發現在石油和天然氣行業中執行機器和深度學習項目的實際考慮和挑戰

這本書是給誰的

  • 石油和天然氣行業的專業人員,他們可以受益于對機器的實際理解和解決現實問題的深度學習方法。
付費5元查看完整內容

在Jupyter Notebook環境中使用Python和TensorFlow 2.0創建、執行、修改和共享機器學習應用程序。這本書打破了編程機器學習應用程序的任何障礙,通過使用Jupyter Notebook而不是文本編輯器或常規IDE。

您將從學習如何使用Jupyter筆記本來改進使用Python編程的方式開始。在獲得一個良好的基礎與Python工作在木星的筆記本,你將深入什么是TensorFlow,它如何幫助機器學習愛好者,以及如何解決它提出的挑戰。在此過程中,使用Jupyter筆記本創建的示例程序允許您應用本書前面的概念。

那些剛接觸機器學習的人可以通過這些簡單的程序來學習基本技能。本書末尾的術語表提供了常見的機器學習和Python關鍵字和定義,使學習更加容易。

你將學到什么

程序在Python和TensorFlow 解決機器學習的基本障礙 在Jupyter Notebook環境中發展

這本書是給誰的

理想的機器學習和深度學習愛好者誰對Python編程感興趣使用Tensorflow 2.0在Jupyter 筆記本應用程序。了解一些機器學習概念和Python編程(使用Python version 3)的基本知識會很有幫助。

//file.allitebooks.com/20200923/Machine%20Learning%20Concepts%20with%20Python%20and%20the%20Jupyter%20Notebook%20Environment.pdf

付費5元查看完整內容

這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。

這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。

//link.springer.com/book/10.1007/978-3-319-63913-0#about

付費5元查看完整內容

機器學習是計算機科學中增長最快的領域之一,具有深遠的應用。本書的目的是介紹機器學習,以及它所提供的算法范例。本書對機器學習的基本原理和將這些原理轉化為實際算法的數學推導提供了理論解釋。在介紹了基礎知識之后,這本書涵蓋了以前教科書沒有涉及到的一系列廣泛的中心主題。這些包括討論學習的計算復雜性和凸性和穩定性的概念;重要的算法范例包括隨機梯度下降、神經網絡和結構化輸出學習;以及新興的理論概念,如PAC-Bayes方法和基于壓縮的界限。本文面向高級本科生或剛畢業的學生,使統計學、計算機科學、數學和工程學領域的學生和非專業讀者都能接觸到機器學習的基本原理和算法。

//www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

概述

機器學習是指自動檢測數據中有意義的模式。在過去的幾十年里,它已經成為幾乎所有需要從大數據集中提取信息的任務的通用工具。我們被一種基于機器學習的技術包圍著:搜索引擎學習如何給我們帶來最好的結果(同時投放有利可圖的廣告),反垃圾郵件軟件學習如何過濾我們的電子郵件信息,信用卡交易被一種學習如何偵測欺詐的軟件保護著。數碼相機學會識別人臉,智能手機上的智能個人輔助應用學會識別語音指令。汽車配備了使用機器學習算法構建的事故預防系統。機器學習還廣泛應用于生物信息學、醫學和天文學等科學領域。

所有這些應用程序的一個共同特征是,與計算機的更傳統使用相比,在這些情況下,由于需要檢測的模式的復雜性,人類程序員無法提供關于這些任務應該如何執行的明確、詳細的規范。以智慧生物為例,我們的許多技能都是通過學習我們的經驗(而不是遵循給我們的明確指示)而獲得或改進的。機器學習工具關注的是賦予程序“學習”和適應的能力。

這本書的第一個目標是提供一個嚴格的,但易于遵循,介紹機器學習的主要概念: 什么是機器學習?

本書的第二個目標是介紹幾種關鍵的機器學習算法。我們選擇展示的算法一方面在實踐中得到了成功應用,另一方面提供了廣泛的不同的學習技術。此外,我們特別關注適合大規模學習的算法(又稱“大數據”),因為近年來,我們的世界變得越來越“數字化”,可用于學習的數據量也在急劇增加。因此,在許多應用中數據量大,計算時間是主要瓶頸。因此,我們明確地量化了學習給定概念所需的數據量和計算時間。

目錄:

  • Introduction

Part I: Foundations

  • A gentle start
  • A formal learning model
  • Learning via uniform convergence
  • The bias-complexity trade-off
  • The VC-dimension
  • Non-uniform learnability
  • The runtime of learning

Part II: From Theory to Algorithms

  • Linear predictors
  • Boosting
  • Model selection and validation
  • Convex learning problems
  • Regularization and stability
  • Stochastic gradient descent
  • Support vector machines
  • Kernel methods
  • Multiclass, ranking, and complex prediction problems
  • Decision trees
  • Nearest neighbor
  • Neural networks

Part III: Additional Learning Models

  • Online learning
  • Clustering
  • Dimensionality reduction
  • Generative models
  • Feature selection and generation

Part IV: Advanced Theory

  • Rademacher complexities
  • Covering numbers
  • Proof of the fundamental theorem of learning theory
  • Multiclass learnability
  • Compression bounds
  • PAC-Bayes

Appendices

  • Technical lemmas
  • Measure concentration
  • Linear algebra
付費5元查看完整內容

本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。

付費5元查看完整內容

在六個步驟中學習高級Python 3主題的基礎知識,所有這些都是為了讓您成為一個有價值的實踐者而設計的。這個更新版本的方法基于“六度分離”理論,該理論指出每個人和每件事都是最多六步之遙,并將每個主題分為兩部分: 理論概念和使用適當的Python 3包的實際實現。

您將從Python 3編程語言基礎、機器學習歷史、發展和系統開發框架開始。本文還介紹了一些關鍵的數據挖掘/分析概念,如探索性分析、特征降維、回歸、時間序列預測及其在Scikit-learn中的有效實現。您還將學習常用的模型診斷和調優技術。其中包括最優的類創建概率截止點、方差、偏差、裝袋、提升、集成投票、網格搜索、隨機搜索、貝葉斯優化和物聯網數據降噪技術。

最后,您將回顧先進的文本挖掘技術,推薦系統,神經網絡,深度學習,強化學習技術及其實現。本書中提供的所有代碼都將以iPython筆記本的形式提供,使您能夠嘗試這些示例并將其擴展到您的優勢。

你將學習

  • 了解機器學習開發和框架
  • 評估模型診斷和機器學習中的調優
  • 檢查文本挖掘、自然語言處理(NLP)和推薦系統
  • 復習強化學習和CNN

這本書是給誰看的

Python開發人員、數據工程師和機器學習工程師希望將他們的知識或職業擴展到機器學習領域。

付費5元查看完整內容

簡介:

科學專業人員可以通過本書學習Scikit-Learn庫以及機器學習的基礎知識。該書將Anaconda Python發行版與流行的Scikit-Learn庫結合在一起,展示了各種有監督和無監督的機器學習算法。通過Python編寫的清晰示例向讀者介紹機器學習的原理,以及相關代碼。

本書涵蓋了掌握這些內容所需的所有應用數學和編程技能。不需要深入的面向對象編程知識,因為可以提供并說明完整的示例。必要時,編碼示例很深入且很復雜。它們也簡潔,準確,完整,是對引入的機器學習概念的補充。處理示例有助于建立理解和應用復雜機器學習算法所需的技能。

本書的學生將學習作為勝任力前提的基礎知識。讀者將了解專門為數據科學專業人員設計的Python Anaconda發行版,并將在流行的Scikit-Learn庫中構建技能,該庫是Python領域許多機器學習應用程序的基礎。

本書內容包括:

  • 使用Scikit-Learn通用的簡單和復雜數據集
  • 將數據處理為向量和矩陣以進行算法處理
  • 熟悉數據科學中使用的Anaconda發行版
  • 通過分類器,回歸器和降維應用機器學習
  • 調整算法并為每個數據集找到最佳算法
  • 從CSV,JSON,Numpy和Pandas格式加載數據并保存

內容介紹:

這本書分為八章。 第1章介紹了機器學習,Anaconda和Scikit-Learn的主題。 第2章和第3章介紹算法分類。 第2章對簡單數據集進行分類,第3章對復雜數據集進行分類。 第4章介紹了回歸預測模型。 第5章和第6章介紹分類調整。 第5章調整簡單數據集,第6章調整復雜數據集。 第7章介紹了預測模型回歸調整。 第8章將所有知識匯總在一起,以整體方式審查和提出發現。

作者介紹:

David Paper博士是猶他州立大學管理信息系統系的教授。他寫了兩本書-商業網絡編程:Oracle的PHP面向對象編程和Python和MongoDB的數據科學基礎。他在諸如組織研究方法,ACM通訊,信息與管理,信息資源管理期刊,AIS通訊,信息技術案例與應用研究期刊以及遠程計劃等參考期刊上發表了70余篇論文。他還曾在多個編輯委員會擔任過各種職務,包括副編輯。Paper博士還曾在德州儀器(TI),DLS,Inc.和鳳凰城小型企業管理局工作。他曾為IBM,AT&T,Octel,猶他州交通運輸部和空間動力實驗室執行過IS咨詢工作。 Paper博士的教學和研究興趣包括數據科學,機器學習,面向對象的程序設計和變更管理。

目錄:

付費5元查看完整內容

斯坦福大學Stephen Boyd教授與加州大學Lieven Vandenberghe教授合著的應用線性代數導論:向量、矩陣和最小二乘法《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares》在2018年由劍橋大學出版社發行,開源書包含19章,473頁pdf,這本書的目的是提供一個介紹向量,矩陣,最小二乘方法,應用線性代數的基本主題。目標是讓學生通俗易懂,入門學習。讓學習者了解在包括數據擬合、機器學習和人工智能,斷層、導航、圖像處理、金融、和自動控制系統的應用。是一本不可多得好教材。?

Stephen P. Boyd是斯坦福大學電子工程Samsung 教授,信息系統實驗室電子工程教授,斯坦福大學電子工程系系主任。他在管理科學與工程系和計算機科學系任職,是計算與數學工程研究所的成員。他目前的研究重點是凸優化在控制、信號處理、機器學習和金融方面的應用。 //web.stanford.edu/~boyd/

Lieven Vandenberghe,美國加州大學洛杉磯分校電子與計算機工程系和數學系教授

這本書的目的是提供一個介紹向量,矩陣,最小二乘方法,應用線性代數的基本主題。我們的目標是讓很少或根本沒有接觸過線性代數的學生快速學習,以及對如何使用它們在許多應用程序中, 包括數據擬合、機器學習和人工智能, 斷層、導航、圖像處理、金融、和自動控制系統。

讀者所需要的背景知識是熟悉基本的數學符號。我們只在少數地方使用微積分,但它并不是一個關鍵的角色,也不是一個嚴格的先決條件。雖然這本書涵蓋了許多傳統上作為概率和統計的一部分來教授的話題,比如如何將數學模型與數據相匹配,但它并不需要概率和統計方面的知識或背景。

這本書涉及的數學比應用線性代數的典型文本還少。我們只使用線性代數中的一個理論概念,線性無關,和一個計算工具,QR分解;我們處理大多數應用程序的方法只依賴于一種方法,即最小二乘(或某種擴展)。從這個意義上說,我們的目標是知識經濟:僅用一些基本的數學思想、概念和方法,我們就涵蓋了許多應用。然而,我們所提供的數學是完整的,因為我們仔細地證明了每一個數學命題。然而,與大多數介紹性的線性代數文本不同,我們描述了許多應用程序,包括一些通常被認為是高級主題的應用程序,如文檔分類、控制、狀態估計和組合優化。

這本書分為三部分。第一部分向讀者介紹向量,以及各種向量運算和函數,如加法、內積、距離和角度。我們還將描述如何在應用程序中使用向量來表示文檔中的字數、時間序列、病人的屬性、產品的銷售、音軌、圖像或投資組合。第二部分對矩陣也做了同樣的處理,最終以矩陣的逆和求解線性方程的方法結束。第三部分,關于最小二乘,是回報,至少在應用方面。我們展示了近似求解一組超定方程的簡單而自然的思想,以及對這一基本思想的一些擴展,可以用來解決許多實際問題。

付費5元查看完整內容
北京阿比特科技有限公司