這本書是關于運用機器和深度學習來解決石油和天然氣行業的一些挑戰。這本書開篇簡要討論石油和天然氣勘探和生產生命周期中不同階段的數據流工業操作。這導致了對一些有趣問題的調查,這些問題很適合應用機器和深度學習方法。最初的章節提供了Python編程語言的基礎知識,該語言用于實現算法;接下來是監督和非監督機器學習概念的概述。作者提供了使用開源數據集的行業示例以及對算法的實際解釋,但沒有深入研究所使用算法的理論方面。石油和天然氣行業中的機器學習涵蓋了包括地球物理(地震解釋)、地質建模、油藏工程和生產工程在內的各種行業主題。
在本書中,重點在于提供一種實用的方法,提供用于實現機器的逐步解釋和代碼示例,以及用于解決油氣行業現實問題的深度學習算法。
你將學到什么
這本書是給誰的
學習設計、構建和部署由機器學習(ML)支持的應用程序所必需的技能。通過這本親力親為的書,您將構建一個示例ML驅動的應用程序,從最初的想法到部署的產品。數據科學家、軟件工程師和產品經理—包括有經驗的實踐者和新手—將逐步學習構建真實的ML應用程序所涉及的工具、最佳實踐和挑戰。
作者Emmanuel Ameisen是一位經驗豐富的數據科學家,他領導了一個人工智能教育項目,通過代碼片段、插圖、截圖和對行業領袖的采訪展示了實用的ML概念。第1部分將告訴您如何計劃ML應用程序并度量成功。第2部分解釋了如何構建一個工作的ML模型。第三部分演示了改進模型的方法,直到它滿足您最初的設想。第4部分介紹部署和監控策略。
這本書會對你有所幫助:
深入機器學習模型的超參數調整,關注什么是超參數以及它們是如何工作的。這本書討論了不同的超參數調優技術,從基礎到高級方法。
這是一個關于超參數優化的分步指南,從什么是超參數以及它們如何影響機器學習模型的不同方面開始。然后介紹一些基本的超參數優化算法。此外,作者利用分布式優化方法解決了時間和內存約束的問題。接下來您將討論超參數搜索的貝葉斯優化,它從以前的歷史中吸取了教訓。
這本書討論了不同的框架,如Hyperopt和Optuna,它實現了基于順序模型的全局優化(SMBO)算法。在這些討論中,您將關注不同的方面,比如搜索空間的創建和這些庫的分布式優化。
機器學習中的超參數優化有助于理解這些算法是如何工作的,以及如何在現實數據科學問題中使用它們。最后一章總結了超參數優化在自動機器學習中的作用,并以一個創建自己的自動腳本的教程結束。
超參數優化是一項冗長乏味的任務,所以請坐下來,讓這些算法來完成您的工作。你將學到什么
這本書是給誰的
在構建機器學習模型時選擇正確的超參數是數據科學從業者面臨的最大問題之一。這本書是超參數優化(HPO)的指南。它從超參數的最基本定義開始,并帶您使用高級HPO技術構建您自己的AutoML腳本。這本書是打算為學生和數據科學專業人員。這本書由五章組成。
這本書的目的是讓讀者以一種直觀和實用的方式來理解HPO的概念,每個部分都提供了代碼實現。我希望你能喜歡。
本書建立在基本的Python教程的基礎上,解釋了許多沒有被常規覆蓋的Python語言特性:從通過利用入口點作為微服務扮演雙重角色的可重用控制臺腳本,到使用asyncio高效地整理大量來源的數據。通過這種方式,它涵蓋了基于類型提示的linting、低開銷測試和其他自動質量檢查,以演示一個健壯的實際開發過程。
Python的一些功能強大的方面通常用一些設計的示例來描述,這些示例僅作為一個獨立示例來解釋該特性。通過遵循從原型到生產質量的真實應用程序示例的設計和構建,您不僅將看到各種功能是如何工作的,而且還將看到它們如何作為更大的系統設計過程的一部分進行集成。此外,您還將受益于一些有用的附加說明和庫建議,它們是Python會議上問答會議的主要內容,也是討論現代Python最佳實踐和技術的主要內容,以便更好地生成易于維護的清晰代碼。
高級Python開發是為已經能用Python編寫簡單程序的開發人員準備的,這些開發人員希望了解什么時候使用新的和高級語言特性是合適的,并且能夠以一種自信的方式這樣做。它對于希望升級到更高級別的開發人員和迄今為止使用過較老版本Python的非常有經驗的開發人員特別有用。
你將學習
這本書是給誰的 -已經有Python經驗的中高級開發人員。
管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。
教材:
這本書來自統計學習課程,這是一門統計機器學習的入門課程,面向具有一些微積分、線性代數和統計學背景的學生。這門課程的重點是監督學習:分類和回歸。本課程將涵蓋機器學習和數據科學中使用的一系列方法,包括:
這些方法將在整個課程中被研究并應用于來自各種應用的真實數據。課程還涵蓋了一些重要的實際問題,如交叉驗證、模型選擇和偏方差權衡。課程包括理論(例如,推導和證明)以及實踐(特別是實驗室和小型項目)。實際部分將使用Python實現。
本書介紹了自由軟件Python及其在統計數據分析中的應用。它涵蓋了連續、離散和分類數據的常見統計測試,以及線性回歸分析和生存分析和貝葉斯統計的主題。每個測試的Python解決方案的工作代碼和數據,以及易于遵循的Python示例,可以被讀者復制,并加強他們對主題的直接理解。隨著Python生態系統的最新進展,Python已經成為科學計算的一種流行語言,為統計數據分析提供了一個強大的環境,并且是R的一個有趣的替代選擇。本書面向碩士和博士學生,主要來自生命和醫學科學,具有統計學的基本知識。由于該書還提供了一些統計方面的背景知識,因此任何想要執行統計數據分析的人都可以使用這本書。
利用物聯網(IoT)將機器學習應用于農業、電信和能源領域的案例研究。本書首先介紹如何設置軟件和硬件組件,包括各種傳感器,以實現Python中的案例研究。
案例研究部分首先對電信行業的物聯網電話掉線進行了研究,然后對工業機器的能源審計和預測維護進行了案例研究,最后介紹了農業企業預測現金作物歉收的技術。最后一節討論在這些領域中實現機器學習和物聯網時要避免的陷阱。
閱讀本書后,您將了解物聯網和機器學習如何在示例領域中使用,并有實際的案例研究來使用和擴展。使用Python,您將能夠使用Raspberry pi3b +和Arduino Mega 2560創建企業級應用程序。
你會學到什么
這本書是給誰的
獲得高級數據分析概念的廣泛基礎,并發現數據庫中的最新革命,如Neo4j、Elasticsearch和MongoDB。這本書討論了如何實現ETL技術,包括主題爬行,這是應用在諸如高頻算法交易和面向目標的對話系統等領域。您還將看到機器學習概念的示例,如半監督學習、深度學習和NLP。使用Python的高級數據分析還包括時間序列和主成分分析等重要的傳統數據分析技術。
讀完這本書,你將對分析項目的每個技術方面都有了經驗。您將了解使用Python代碼的概念,并提供在您自己的項目中使用的示例。
你會學到什么
這本書是給誰看的
對數據分析領域感興趣的數據科學家和軟件開發人員。
這本書在對算法工作原理的高層次理解和對優化模型的具體細節的了解之間找到一個平衡點。這本書將給你的信心和技能時,開發所有主要的機器學習模型。在這本Pro機器學習算法中,您將首先在Excel中開發算法,以便在用Python/R實現模型之前,實際了解可以在模型中調優的所有細節。
你將涵蓋所有主要的算法:監督和非監督學習,其中包括線性/邏輯回歸;k - means聚類;主成分分析;推薦系統;決策樹;隨機森林;“GBM”;和神經網絡。您還將通過CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度學習。你不僅要學習算法,還要學習特征工程的概念來最大化模型的性能。您將看到該理論與案例研究,如情緒分類,欺詐檢測,推薦系統,和圖像識別,以便您得到最佳的理論和實踐為工業中使用的絕大多數機器學習算法。在學習算法的同時,您還將接觸到在所有主要云服務提供商上運行的機器學習模型。
你會學到什么?
這本書是給誰看的
希望轉換到數據科學角色的業務分析師/ IT專業人員。想要鞏固機器學習知識的數據科學家。