亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

學習設計、構建和部署由機器學習(ML)支持的應用程序所必需的技能。通過這本親力親為的書,您將構建一個示例ML驅動的應用程序,從最初的想法到部署的產品。數據科學家、軟件工程師和產品經理—包括有經驗的實踐者和新手—將逐步學習構建真實的ML應用程序所涉及的工具、最佳實踐和挑戰。

作者Emmanuel Ameisen是一位經驗豐富的數據科學家,他領導了一個人工智能教育項目,通過代碼片段、插圖、截圖和對行業領袖的采訪展示了實用的ML概念。第1部分將告訴您如何計劃ML應用程序并度量成功。第2部分解釋了如何構建一個工作的ML模型。第三部分演示了改進模型的方法,直到它滿足您最初的設想。第4部分介紹部署和監控策略。

這本書會對你有所幫助:

  • 定義你的產品目標,設置一個機器學習問題
  • 快速構建第一個端到端管道并獲取初始數據集
  • 訓練和評估您的ML模型并解決性能瓶頸
  • 在生產環境中部署和監控您的模型

付費5元查看完整內容

相關內容

內容簡介

要想在數據科學、機器學習、計算機圖形學和密碼學方面工作,需要強大的數學技能。

本書教授這些熱門職業所需的數學,專注于您作為開發人員需要了解的內容。這本書充滿了大量有用的圖形和200多個練習及迷你項目,為當今一些最熱門的編程領域中的有趣且有利可圖的職業開啟了大門。

關于技術

大多數企業意識到他們需要應用數據科學和有效的機器學習來獲得并保持競爭優勢。要構建這些應用程序,他們需要開發人員輕松編寫代碼并使用沉浸在統計,線性代數和微積分中的工具。

數學在其他現代應用中也扮演著不可或缺的角色,如游戲開發,計算機圖形和動畫,圖像和信號處理,定價引擎和股票市場分析。無論你是一個沒有核心大學數學基礎的自學成才的程序員,還是你只需要重新點燃數學余燼,這本書就是激發你技能的好方法。

關于本書

Math for Programmers教你解決代碼中的數學問題。由于作者的幽默和引人入勝的風格,你會喜歡像程序員一樣思考數學。通過可訪問的示例,場景和練習,非常適合工作開發人員,您將首先探索2D和3D中的函數和幾何。

有了這些基本構建模塊,您將進入機器學習和游戲編程的面包和黃油數學,包括矩陣和線性變換,導數和積分,微分方程,概率,分類算法等。不要擔心它聽起來令人生畏,或者更糟糕的是,無聊!編碼和數學家保羅奧蘭德會讓學習這些重要概念變得相關和有趣!

本實踐教程中的實際示例包括構建和渲染3D模型,使用矩陣變換的動畫,操縱圖像和聲波,以及為視頻游戲構建物理引擎。在此過程中,你將通過大量練習來測試自己,以確保牢牢掌握這些概念。當你完成后,你將擁有當今最流行的技術趨勢所必需的數學技能的堅實基礎。

你將學到

  • 2D和3D矢量數學
  • 矩陣和線性變換
  • 線性代數的核心概念
  • 具有一個或多個變量的微積分
  • 回歸,分類和聚類的算法
  • 有趣的現實世界的例子
  • 超過200個練習和迷你項目
付費5元查看完整內容

深入機器學習模型的超參數調整,關注什么是超參數以及它們是如何工作的。這本書討論了不同的超參數調優技術,從基礎到高級方法。

這是一個關于超參數優化的分步指南,從什么是超參數以及它們如何影響機器學習模型的不同方面開始。然后介紹一些基本的超參數優化算法。此外,作者利用分布式優化方法解決了時間和內存約束的問題。接下來您將討論超參數搜索的貝葉斯優化,它從以前的歷史中吸取了教訓。

這本書討論了不同的框架,如Hyperopt和Optuna,它實現了基于順序模型的全局優化(SMBO)算法。在這些討論中,您將關注不同的方面,比如搜索空間的創建和這些庫的分布式優化。

機器學習中的超參數優化有助于理解這些算法是如何工作的,以及如何在現實數據科學問題中使用它們。最后一章總結了超參數優化在自動機器學習中的作用,并以一個創建自己的自動腳本的教程結束。

超參數優化是一項冗長乏味的任務,所以請坐下來,讓這些算法來完成您的工作。你將學到什么

  • 了解超參數中的更改如何影響模型的性能。
  • 對數據科學問題應用不同的超參數調優算法
  • 使用貝葉斯優化方法來創建高效的機器學習和深度學習模型
  • 使用計算機集群分發超參數優化
  • 利用超參數優化方法實現機器自動學習

這本書是給誰的

  • 從事機器學習的專業人員和學生。

在構建機器學習模型時選擇正確的超參數是數據科學從業者面臨的最大問題之一。這本書是超參數優化(HPO)的指南。它從超參數的最基本定義開始,并帶您使用高級HPO技術構建您自己的AutoML腳本。這本書是打算為學生和數據科學專業人員。這本書由五章組成。

  • 第1章幫助您理解超參數是如何影響模型構建的整個過程的。它告訴我們HPO的重要性。
  • 第2章介紹了基本且易于實現的HPO方法。
  • 第3章介紹了解決時間和內存限制的各種技術。
  • 第4章和第5章討論了貝葉斯優化、相關庫和AutoML。

這本書的目的是讓讀者以一種直觀和實用的方式來理解HPO的概念,每個部分都提供了代碼實現。我希望你能喜歡。

付費5元查看完整內容

《操作反模式,DevOps解決方案》展示了如何在大多數開發人員工作的不完美環境中實現DevOps技術。部分技術教程、部分參考手冊和部分心理手冊,本實用指南向您展示了在您無法靈活地對組織結構進行全面更改時,將DevOps引入您的團隊的現實方法。

DevOps解決方案專注于從下至上的過程改進,包括操作反模式中的所有內容,它對您的團隊是可操作的——從構建流線化的工作流系統到開發儀表板和度量性能正確方面的操作指標。為了更好地理解個人和組織的行為,您還將學習為什么DevOps技術是有效的背后的心理原因。

//file.allitebooks.com/20201107/Operations%20Anti-Patterns,%20DevOps%20Solutions.pdf

付費5元查看完整內容

這本書是關于運用機器和深度學習來解決石油和天然氣行業的一些挑戰。這本書開篇簡要討論石油和天然氣勘探和生產生命周期中不同階段的數據流工業操作。這導致了對一些有趣問題的調查,這些問題很適合應用機器和深度學習方法。最初的章節提供了Python編程語言的基礎知識,該語言用于實現算法;接下來是監督和非監督機器學習概念的概述。作者提供了使用開源數據集的行業示例以及對算法的實際解釋,但沒有深入研究所使用算法的理論方面。石油和天然氣行業中的機器學習涵蓋了包括地球物理(地震解釋)、地質建模、油藏工程和生產工程在內的各種行業主題。

在本書中,重點在于提供一種實用的方法,提供用于實現機器的逐步解釋和代碼示例,以及用于解決油氣行業現實問題的深度學習算法。

你將學到什么

  • 了解石油和天然氣行業的端到端的行業生命周期和數據流
  • 了解計算機編程和機器的基本概念,以及實現所使用的算法所需的深度學習
  • 研究一些有趣的行業問題,這些問題很有可能被機器和深度學習解決
  • 發現在石油和天然氣行業中執行機器和深度學習項目的實際考慮和挑戰

這本書是給誰的

  • 石油和天然氣行業的專業人員,他們可以受益于對機器的實際理解和解決現實問題的深度學習方法。
付費5元查看完整內容

學習設計思維的基本原理,以及如何在定義軟件開發和人工智能解決方案時應用設計思維技術。設計思維是一種創新的方法,它能識別問題并產生解決方案,并能通過原型設計迅速得到驗證。

這本書提供了設計思維的簡史和過程的概述。然后深入探討在設計思維研討會中使用的方法和工具的更多細節,從而得出有用的原型。提供以下指引:

  • 為設計思考工作坊做準備
  • 發現可能被解決的潛在業務問題
  • 優先考慮可能的解決方案
  • 識別和描述利益相關者
  • 為開發選擇正確的原型
  • 限制了原型構建的范圍和最佳實踐

本書最后討論了成功原型的操作化的最佳實踐,并描述了對成功采用至關重要的變更管理技術。您可以使用從閱讀本書中獲得的知識,將設計思維技術融入到您的軟件開發和AI項目中,并確保及時和成功地交付解決方案。

你將學到什么

  • 獲得什么是設計思維以及何時應用該技術的基本知識
  • 發現在研討會中使用的準備和促進技巧
  • 了解想法是如何產生的,然后通過原型驗證
  • 了解實現最佳實踐,包括變更管理考慮事項

這本書是給誰的呢

  • 商業決策者和項目利益相關者,以及IT項目所有者,他們尋求一種方法,導致快速開發成功的軟件和AI原型,證明真正的商業價值。也為數據科學家,開發人員和系統集成商誰有興趣促進或利用設計思維研討會,以推動潛在的軟件開發和人工智能項目背后的勢頭。
付費5元查看完整內容

?介紹

這本書在保持非常務實的教導和結果導向付出很大的精力。構建聊天機器人不只是完成一個教程或遵循幾個步驟,它本身就是一種技能。這本書肯定不會用大量的文本和過程讓你感到無聊;相反,它采用的是邊做邊學的方法。到目前為止,在你的生活中,你肯定至少使用過一個聊天機器人。無論你是不是一個程序員,一旦你瀏覽這本書,你會發現構建模塊的聊天機器人,所有的奧秘將被揭開。建立聊天機器人可能看起來很困難,但這本書將讓你使它如此容易。我們的大腦不是用來直接處理復雜概念的;相反,我們一步一步地學習。當你讀這本書的時候,從第一章到最后一章,你會發現事情的進展是多么的清晰。雖然你可以直接翻到任何一章,但我強烈建議你從第一章開始,因為它肯定會支持你的想法。這本書就像一個網絡系列,你在讀完一章之后就無法抗拒下一章的誘惑。在閱讀完這本書后,你所接觸到的任何聊天機器人都會在你的腦海中形成一幅關于聊天機器人內部是如何設計和構建的畫面。

這本書適合誰?

這本書將作為學習與聊天機器人相關的概念和學習如何建立他們的一個完整的資源。那些將會發現這本書有用的包括: Python web開發人員希望擴大他們的知識或職業到聊天機器人開發。 學生和有抱負的程序員想獲得一種新的技能通過親身體驗展示的東西,自然語言愛好者希望從頭開始學習。 企業家如何構建一個聊天機器人的偉大的想法,但沒有足夠的技術關于如何制作聊天機器人的可行性信息。 產品/工程經理計劃與聊天機器人相關項目。

如何使用這本書?

請記住,這本書的寫作風格和其他書不一樣。讀這本書的時候要記住,一旦你完成了這本書,你就可以自己建造一個聊天機器人,或者教會別人如何建造一個聊天機器人。在像閱讀其他書籍一樣閱讀這本書之前,務必記住以下幾點:

  • 這本書涵蓋了構建聊天機器人所需的幾乎所有內容,而不是現有內容。
  • 這本書是關于花更多的時間在你的系統上做事情的,這本書就在你身邊。確保您執行每個代碼片段并嘗試編寫代碼;不要復制粘貼。
  • 一定要按照書中的步驟去做;如果你不理解一些事情,不要擔心。你將在本章的后面部分了解到。
  • 可以使用本書所提供的源代碼及Jupyter NoteBook作為參考。

內容概要

  • Chapter 1: 在本章中,你將從商業和開發人員的角度了解與聊天機器人相關的事情。這一章為我們熟悉chatbots概念并將其轉換為代碼奠定了基礎。希望在本章結束時,你會明白為什么你一定要為自己或你的公司創建一個聊天機器人。
  • Chapter 2: 在本章中會涉及聊天機器人的自然語言處理,你將學習到聊天機器人需要NLP時應該使用哪些工具和方法。這一章不僅教你在NLP的方法,而且還采取實際的例子和演示與編碼的例子。本章還討論了為什么使用特定的NLP方法可能需要在聊天機器人。注意,NLP本身就是一種技能。
  • Chapter 3: 在本章中,你將學習如何使用像Dialogflow這樣的工具以一種友好而簡單的方式構建聊天機器人。如果你不是程序員,你肯定會喜歡它,因為它幾乎不需要編程技能。
  • Chapter 4:在本章中,你將學習如何以人們想要的方式構建聊天機器人。標題說的很艱難,但一旦你完成了前一章,你會想要更多,因為這一章將教如何建立內部聊天機器人從零開始,以及如何使用機器學習算法訓練聊天機器人。
  • Chapter 5:在本章中,部署你的聊天機器人純粹是設計給你的聊天機器人應用一個最后的推動。當你經歷了創建聊天機器人的簡單和艱難的過程后,你肯定不想把它留給自己。你將學習如何展示你的聊天機器人到世界使用Facebook和Slack,最后,整合他們在你自己的網站。
付費5元查看完整內容

找到有合適技能的人。本書闡明了創建高效能數據集成團隊的最佳實踐,使您能夠理解計劃、設計和監視一次性遷移和日常集成系統的技能和需求、文檔和解決方案。

數據的增長是爆炸式的。隨著跨企業系統的多個信息源的不斷到達,將這些系統組合成一個單一的、內聚的、可記錄的單元變得比以往任何時候都更加重要。但是,與其他軟件規程相比,集成的方法有很大的不同,它要求能夠編寫代碼、協作并將復雜的業務規則分解為可伸縮的模型。

數據遷移和集成可能很復雜。在許多情況下,項目團隊將實際的遷移保留到項目的最后一個周末,任何問題都可能導致錯過最后期限,或者在最壞的情況下導致需要在部署后進行協調的數據損壞。本書詳細介紹了如何進行戰略規劃以避免這些最后時刻的風險,以及如何為未來的集成項目構建正確的解決方案。

你會學到什么

  • 理解集成的“語言”,以及它們在優先級和所有權方面的關系
  • 創建有價值的文檔,帶領您的團隊從發現到部署
  • 研究當今市場上最重要的集成工具
  • 監視您的錯誤日志,并查看輸出如何增加持續改進的周期
  • 為整個企業提供有價值的集成解決方案

這本書是給誰看的

構建相應實踐的執行和集成團隊領導。它也適用于需要額外熟悉ETL工具、集成過程和相關項目可交付成果的集成架構師、開發人員和業務分析人員

付費5元查看完整內容

這本書在對算法工作原理的高層次理解和對優化模型的具體細節的了解之間找到一個平衡點。這本書將給你的信心和技能時,開發所有主要的機器學習模型。在這本Pro機器學習算法中,您將首先在Excel中開發算法,以便在用Python/R實現模型之前,實際了解可以在模型中調優的所有細節。

你將涵蓋所有主要的算法:監督和非監督學習,其中包括線性/邏輯回歸;k - means聚類;主成分分析;推薦系統;決策樹;隨機森林;“GBM”;和神經網絡。您還將通過CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度學習。你不僅要學習算法,還要學習特征工程的概念來最大化模型的性能。您將看到該理論與案例研究,如情緒分類,欺詐檢測,推薦系統,和圖像識別,以便您得到最佳的理論和實踐為工業中使用的絕大多數機器學習算法。在學習算法的同時,您還將接觸到在所有主要云服務提供商上運行的機器學習模型。

你會學到什么?

  • 深入了解所有主要的機器學習和深度學習算法
  • 充分理解在構建模型時要避免的陷阱
  • 在云中實現機器學習算法
  • 通過對每種算法的案例研究,采用動手實踐的方法
  • 學習集成學習的技巧,建立更精確的模型
  • 了解R/Python編程的基礎知識和Keras深度學習框架

這本書是給誰看的

希望轉換到數據科學角色的業務分析師/ IT專業人員。想要鞏固機器學習知識的數據科學家。

付費5元查看完整內容

【導讀】機器學習系統:這個規模的設計是一個示例豐富的指南,教你如何在你的機器學習系統中實現反應式設計解決方案,使它們像一個構建良好的web應用一樣可靠。

本文首先介紹了反應性機器學習基礎,然后介紹如何建立一個反應式機器學習系統(收集數據、生成特征、學習模型、評估模型、發布模型),最后介紹如何操作一個機器學習系統。

  1. 作者介紹 Jeff Smith使用Scala和Spark構建大規模的機器學習系統。在過去的十年中,他一直在紐約,舊金山和香港的多家初創公司從事數據科學應用的研究。他在博客中談到了構建現實世界機器學習系統的各個方面。

  2. 內容大綱 Part 1. 反應性機器學習基礎

  • 第一章. 反應性機器學習
  • 第二章. 使用反應性工具

Part 2. 建立一個反應式機器學習系統(Building a reactive machine learning system)

  • 第三章. 收集數據(Collecting data)
  • 第四章. 生成特征(Generating features)
  • 第五章. 學習模型(Learning models)
  • 第六章. 評估模型( Evaluating models)
  • 第七章. 發布模型(Publishing models)
  • 第八章. 作答(Responding)

Part 3. 操作一個機器學習系統(Operating a machine learning system)

  • 第三章. 陳述(Delivering)
  • 第四章. 發展智力(Evolving intelligence)
付費5元查看完整內容
北京阿比特科技有限公司