亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這個備受期待的第二版包含新的章節和新內容,225個新參考文獻以及全面的R軟件。與上一版保持一致,這本書涉及數據分析和預測建模相關的知識,需要選擇和使用多種工具。本書沒有介紹孤立的技術,而是強調解決問題的策略,這些策略解決了使用實際數據而不是標準教科書示例開發多變量模型時出現的許多問題。它包括用于有效處理缺失數據的插補方法,用于擬合非線性關系并使轉換估計成為建模過程正式形式的方法,用于處理“要分析的變量太多而觀察不到的方法” 以及基于引導程序的強大模型驗證技術。讀者將對預測的準確性以及對連續的預測因素或結果進行分類的危害有敏銳的理解。本書實際處理模型不確定性及其對推理的影響,以實現“安全數據挖掘”。它還提供了許多圖形方法,用于將復雜的回歸模型傳達給非統計人員。

 ![](//cdn.zhuanzhi.ai/vfiles/44b832ebf4caf72fb9d4d8f60dff6f01)

回歸建模策略提供了非平凡數據集的全面案例研究,而不是每種方法的過度簡化說明。這些案例研究使用免費提供的R函數,這些函數使書中所述的多重插補,模型構建,驗證和解釋任務相對容易實現。本書中的大多數方法都適用于所有回歸模型,但是要特別強調使用廣義最小二乘用于縱向數據,二進制邏輯模型,序數響應模型,參數生存回歸模型和Cox半參數生存模型的多元回歸。。新的重點是使用序數回歸對連續因變量進行穩健分析。



如在第一版中,該文本適用于碩士或博士學位。擁有一般概論和統計課程的高水平研究生,并且精通普通的多元回歸和中級代數。該書還將包含有關現代統計建模技術的最新調查和參考書目,可供數據分析人員和統計方法學家參考。本書中使用的示例主要來自生物醫學研究,但是該方法適用于任何有用的預測模型(“分析”),包括經濟學,流行病學,社會學,心理學,工程學和市場營銷。
付費5元查看完整內容

相關內容

//www.math.arizona.edu/~hzhang/math574.html

隨著信息技術的飛速發展,在各個領域產生了大量的科學和商業數據。例如,人類基因組數據庫項目已經收集了千兆字節的人類遺傳密碼數據。萬維網提供了另一個例子,它擁有由數百萬人使用的文本和多媒體信息組成的數十億Web頁面。

本課程涵蓋了現代數據科學技術,包括基本的統計學習理論及其應用。將介紹各種數據挖掘方法、算法和軟件工具,重點在概念和計算方面。將涵蓋生物信息學、基因組學、文本挖掘、社交網絡等方面的應用。

本課程著重于現代機器學習的統計分析、方法論和理論。它是為學生誰想要實踐先進的機器學習工具和算法,也了解理論原理和統計性質的算法。主題包括回歸、分類、聚類、降維和高維分析。

付費5元查看完整內容

這本書的第五版繼續講述如何運用概率論來深入了解真實日常的統計問題。這本書是為工程、計算機科學、數學、統計和自然科學的學生編寫的統計學、概率論和統計的入門課程。因此,它假定有基本的微積分知識。

第一章介紹了統計學的簡要介紹,介紹了它的兩個分支:描述統計學和推理統計學,以及這門學科的簡短歷史和一些人,他們的早期工作為今天的工作提供了基礎。

第二章將討論描述性統計的主題。本章展示了描述數據集的圖表和表格,以及用于總結數據集某些關鍵屬性的數量。

為了能夠從數據中得出結論,有必要了解數據的來源。例如,人們常常假定這些數據是來自某個總體的“隨機樣本”。為了確切地理解這意味著什么,以及它的結果對于將樣本數據的性質與整個總體的性質聯系起來有什么意義,有必要對概率有一些了解,這就是第三章的主題。本章介紹了概率實驗的思想,解釋了事件概率的概念,并給出了概率的公理。

我們在第四章繼續研究概率,它處理隨機變量和期望的重要概念,在第五章,考慮一些在應用中經常發生的特殊類型的隨機變量。給出了二項式、泊松、超幾何、正規、均勻、伽瑪、卡方、t和F等隨機變量。

付費5元查看完整內容

題目

Fundamentals of Graphics Using

簡介

本書介紹了2D和3D圖形的基本概念和原理,是為學習圖形和/或多媒體相關主題的本科生和研究生編寫的。 關于圖形的大多數書籍都使用C編程環境來說明實際的實現。 本書偏離了這種常規做法,并說明了為此目的使用MATLAB?的情況。 MathWorks,Inc.的MATLAB是一種數據分析和可視化工具,適用于算法開發和仿真應用。 MATLAB的優點之一是它包含內置函數的大型庫,與其他當代編程環境相比,該庫可用于減少程序開發時間。 假定該學生具有MATLAB的基本知識,尤其是各種矩陣運算和繪圖功能。 提供了MATLAB代碼,作為對特定示例的解答,讀者可以簡單地復制并粘貼代碼來執行它們。 通常,代碼顯示預期結果的答案,例如曲線方程,混合函數和變換矩陣,并繪制最終結果以提供解決方案的直觀表示。 本書的目的是,首先,演示如何使用MATLAB解決圖形問題,其次,通過可視化表示和實際示例,幫助學生獲得有關主題的深入知識。

本書大致分為兩個部分:2D圖形和3D圖形,盡管在某些地方這兩個概念重疊在一起主要是為了突出它們之間的差異,或者是為了使用較簡單的概念使讀者為更復雜的概念做準備。

本書的第一部分主要討論與2D圖形有關的概念和問題,涵蓋了五章:(1)內插樣條線,(2)混合函數和混合樣條線,(3)近似樣條線,(4)2D變換, (5)樣條曲線屬性。

第1章介紹了各種類型的插值樣條及其使用多項式的表示。 詳細討論了樣條方程的推導原理以及所涉及的矩陣代數的理論概念,然后通過數值示例和MATLAB代碼來說明過程。 在大多數示例后均附有圖形化圖表,以使讀者能夠直觀地看到方程式如何根據給定的起點,終點和其他相關參數轉換為相應的曲線。 本章還重點介紹了使用線性,二次方和三次方變體的樣條方程的標準或空間形式以及參數形式的這些過程的差異。

付費5元查看完整內容

本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。

付費5元查看完整內容

本書介紹了自由軟件Python及其在統計數據分析中的應用。它涵蓋了連續、離散和分類數據的常見統計測試,以及線性回歸分析和生存分析和貝葉斯統計的主題。每個測試的Python解決方案的工作代碼和數據,以及易于遵循的Python示例,可以被讀者復制,并加強他們對主題的直接理解。隨著Python生態系統的最新進展,Python已經成為科學計算的一種流行語言,為統計數據分析提供了一個強大的環境,并且是R的一個有趣的替代選擇。本書面向碩士和博士學生,主要來自生命和醫學科學,具有統計學的基本知識。由于該書還提供了一些統計方面的背景知識,因此任何想要執行統計數據分析的人都可以使用這本書。

付費5元查看完整內容

高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。

這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。

付費5元查看完整內容

貝葉斯數據分析第三版,這本經典的書被廣泛認為是關于貝葉斯方法的主要著作,用實用的方法來分析數據和解決研究問題。貝葉斯數據分析,第三版繼續采取一種實用的方法來分析使用最新的貝葉斯方法。作者——統計界權威——在介紹高級方法之前,先從數據分析的角度介紹基本概念。在整個文本中,大量的工作示例來自實際應用和研究,強調在實踐中使用貝葉斯推理。

第三版新增

  • 非參數建模的四個新章節
  • 覆蓋信息不足的先驗和邊界回避的先驗
  • 關于交叉驗證和預測信息標準的最新討論
  • 改進的收斂性監測和有效的樣本容量計算迭代模擬
  • 介紹了哈密頓的蒙特卡羅、變分貝葉斯和期望傳播
  • 新的和修改的軟件代碼

這本書有三種不同的用法。對于本科生,它介紹了從第一原則開始的貝葉斯推理。針對研究生,本文提出了有效的方法,目前貝葉斯建模和計算的統計和相關領域。對于研究人員來說,它提供了應用統計學中的各種貝葉斯方法。其他的資料,包括例子中使用的數據集,所選練習的解決方案,以及軟件說明,都可以在本書的網頁上找到。

貝葉斯數據分析課程

//avehtari.github.io/BDA_course_Aalto/index.html

付費5元查看完整內容

在Python中獲得操作、處理、清理和處理數據集的完整說明。本實用指南的第二版針對Python 3.6進行了更新,其中包含了大量的實際案例研究,向您展示了如何有效地解決廣泛的數據分析問題。在這個過程中,您將學習最新版本的panda、NumPy、IPython和Jupyter。

本書由Python panda項目的創建者Wes McKinney編寫,是對Python中的數據科學工具的實用的、現代的介紹。對于剛接觸Python的分析人員和剛接觸數據科學和科學計算的Python程序員來說,它是理想的。數據文件和相關材料可以在GitHub上找到。

  • 使用IPython外殼和Jupyter筆記本進行探索性計算
  • 學習NumPy (Numerical Python)中的基本和高級特性
  • 開始使用pandas庫的數據分析工具
  • 使用靈活的工具來加載、清理、轉換、合并和重塑數據
  • 使用matplotlib創建信息可視化
  • 應用panda groupby工具對數據集進行切片、切割和匯總
  • 分析和處理有規律和不規則的時間序列數據
  • 學習如何解決現實世界的數據分析問題與徹底的,詳細的例子
付費5元查看完整內容
北京阿比特科技有限公司