由Marc Peter Deisenroth,A Aldo Faisal和Cheng Soon Ong撰寫的《機器學習數學基礎》“Mathematics for Machine Learning” 最新版417頁pdf版本已經放出,作者表示撰寫這本書旨在激勵人們學習數學概念。這本書并不打算涵蓋前沿的機器學習技術,因為已經有很多書這樣做了。相反,作者的目標是通過該書提供閱讀其他書籍所需的數學基礎。這本書分為兩部分:數學基礎知識和使用數學基礎知識進行機器學習算法示例。值得初學者收藏和學習!
題目
《A Concise Introduction to Machine Learning》by A.C. Faul (CRC 2019)
關鍵字
機器學習簡介
簡介
本書對當下機器學習的發展以及技術進行了簡介,循序漸進,深入淺出,適合新手入門。
目錄
【導讀】UC.Berkeley CS189 《Introduction to Machine Learning》是面向初學者的機器學習課程在本指南中,我們創建了一個全面的課程指南,以便與學生和公眾分享我們的知識,并希望吸引其他大學的學生對伯克利的機器學習課程感興趣。
講義目錄:
Note 1: Introduction
Note 2: Linear Regression
Note 3: Features, Hyperparameters, Validation
Note 4: MLE and MAP for Regression (Part I)
Note 5: Bias-Variance Tradeoff
Note 6: Multivariate Gaussians
Note 7: MLE and MAP for Regression (Part II)
Note 8: Kernels, Kernel Ridge Regression
Note 9: Total Least Squares
Note 10: Principal Component Analysis (PCA)
Note 11: Canonical Correlation Analysis (CCA)
Note 12: Nonlinear Least Squares, Optimization
Note 13: Gradient Descent Extensions
Note 14: Neural Networks
Note 15: Training Neural Networks
Note 16: Discriminative vs. Generative Classification, LS-SVM
Note 17: Logistic Regression
Note 18: Gaussian Discriminant Analysis
Note 19: Expectation-Maximization (EM) Algorithm, k-means Clustering
Note 20: Support Vector Machines (SVM)
Note 21: Generalization and Stability
Note 22: Duality
Note 23: Nearest Neighbor Classification
Note 24: Sparsity
Note 25: Decision Trees and Random Forests
Note 26: Boosting
Note 27: Convolutional Neural Networks (CNN)
討論目錄:
Discussion 0: Vector Calculus, Linear Algebra (solution)
Discussion 1: Optimization, Least Squares, and Convexity (solution)
Discussion 2: Ridge Regression and Multivariate Gaussians (solution)
Discussion 3: Multivariate Gaussians and Kernels (solution)
Discussion 4: Principal Component Analysis (solution)
Discussion 5: Least Squares and Kernels (solution)
Discussion 6: Optimization and Reviewing Linear Methods (solution)
Discussion 7: Backpropagation and Computation Graphs (solution)
Discussion 8: QDA and Logistic Regression (solution)
Discussion 9: EM (solution)
Discussion 10: SVMs and KNN (solution)
Discussion 11: Decision Trees (solution)
Discussion 12: LASSO, Sparsity, Feature Selection, Auto-ML (solution)
講義下載鏈接://pan.baidu.com/s/19Zmws53BUzjSvaDMEiUhqQ 密碼:u2xs
題目: Machine Learning in Action
摘要: 這本書向人們介紹了重要的機器學習算法,介紹了使用這些算法的工具和應用程序,讓讀者了解它們在今天的實踐中是如何使用的。大部分的機器學習書籍都是討論數學,但很少討論如何編程算法。這本書旨在成為從矩陣中提出的算法到實際運行程序之間的橋梁。有鑒于此,請注意這本書重代碼輕數學。
代碼下載鏈接: //pan.baidu.com/s/1--8P9Hlp7vzJdvhnnhsDvw 提取碼:vqhg
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
書籍介紹: 機器學習是一門人工智能的科學,該領域的主要研究對象是人工智能,特別是如何在經驗學習中改善具體算法的性能。機器學習是人工智能及模式識別領域的共同研究熱點,其理論和方法已被廣泛應用于解決工程應用和科學領域的復雜問題。本書從機器學習的基礎入手,分別講述了分類、排序、降維、回歸等機器學習任務,是入門機器學習的一本好書。
作者: Mehryar Mohri,是紐約大學庫蘭特數學科學研究所的計算機科學教授,也是Google Research的研究顧問。
大綱介紹:
作者主頁://cs.nyu.edu/~mohri/