亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目

《A Concise Introduction to Machine Learning》by A.C. Faul (CRC 2019)

關鍵字

機器學習簡介

簡介

本書對當下機器學習的發展以及技術進行了簡介,循序漸進,深入淺出,適合新手入門。

目錄

  • Introduction
  • Probability Theory
  • Sampling
  • Linear Classification
  • Non-Linear Classification
  • Clustering
  • Dimensionality Reduction
  • Regression
  • Feature Learning
  • Appendix A: Matrix Formulae
付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。

使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。

第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。

第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。

第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。

實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!

你將學習:

  • 執行端到端機器學習項目和系統
  • 使用行業標準、開放源碼、健壯的機器學習工具和框架實現實踐示例
  • 回顧描述機器學習和深度學習在不同領域和行業中的應用的案例研究
  • 廣泛應用機器學習模型,包括回歸、分類和聚類。
  • 理解和應用深度學習的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生

目錄:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

付費5元查看完整內容

題目: Machine Learning in Action

摘要: 這本書向人們介紹了重要的機器學習算法,介紹了使用這些算法的工具和應用程序,讓讀者了解它們在今天的實踐中是如何使用的。大部分的機器學習書籍都是討論數學,但很少討論如何編程算法。這本書旨在成為從矩陣中提出的算法到實際運行程序之間的橋梁。有鑒于此,請注意這本書重代碼輕數學。

代碼下載鏈接: //pan.baidu.com/s/1--8P9Hlp7vzJdvhnnhsDvw 提取碼:vqhg

付費5元查看完整內容

書籍介紹: 機器學習是一門人工智能的科學,該領域的主要研究對象是人工智能,特別是如何在經驗學習中改善具體算法的性能。機器學習是人工智能及模式識別領域的共同研究熱點,其理論和方法已被廣泛應用于解決工程應用和科學領域的復雜問題。本書從機器學習的基礎入手,分別講述了分類、排序、降維、回歸等機器學習任務,是入門機器學習的一本好書。

作者: Mehryar Mohri,是紐約大學庫蘭特數學科學研究所的計算機科學教授,也是Google Research的研究顧問。

大綱介紹:

  • 介紹
  • PAC學習框架
  • rademacher復雜度和VC維度
  • 支持向量機
  • 核方法
  • Boosting
  • 線上學習
  • 多類別分類
  • 排序
  • 回歸
  • 算法穩定性
  • 降維
  • 強化學習

作者主頁//cs.nyu.edu/~mohri/

付費5元查看完整內容

《Machine Learning Yearning》是吳恩達歷時兩年,根據自己多年實踐經驗整理出來的一本機器學習、深度學習實踐經驗寶典。 作為一本AI實戰圣經,本書主要會你如何在實踐中使機器學習算法的實戰經驗。

github鏈接:
//github.com/yanshengjia/ml-road/blob/master/resources/機器學習訓練秘籍.pdf

付費5元查看完整內容

由Marc Peter Deisenroth,A Aldo Faisal和Cheng Soon Ong撰寫的《機器學習數學基礎》“Mathematics for Machine Learning” 最新版417頁pdf版本已經放出,作者表示撰寫這本書旨在激勵人們學習數學概念。這本書并不打算涵蓋前沿的機器學習技術,因為已經有很多書這樣做了。相反,作者的目標是通過該書提供閱讀其他書籍所需的數學基礎。這本書分為兩部分:數學基礎知識和使用數學基礎知識進行機器學習算法示例。值得初學者收藏和學習!

目錄

Part I: 數據基礎

  • Introduction and Motivation
  • Linear Algebra
  • Analytic Geometry
  • Matrix Decompositions
  • Vector Calculus
  • Probability and Distribution
  • Continuous Optimization

Part II: 機器學習問題

  • When Models Meet Data
  • Linear Regression
  • Dimensionality Reduction with Principal Component Analysis
  • Density Estimation with Gaussian Mixture Models
  • Classification with Support Vector Machines
付費5元查看完整內容

Meta learning is a promising solution to few-shot learning problems. However, existing meta learning methods are restricted to the scenarios where training and application tasks share the same out-put structure. To obtain a meta model applicable to the tasks with new structures, it is required to collect new training data and repeat the time-consuming meta training procedure. This makes them inefficient or even inapplicable in learning to solve heterogeneous few-shot learning tasks. We thus develop a novel and principled HierarchicalMeta Learning (HML) method. Different from existing methods that only focus on optimizing the adaptability of a meta model to similar tasks, HML also explicitly optimizes its generalizability across heterogeneous tasks. To this end, HML first factorizes a set of similar training tasks into heterogeneous ones and trains the meta model over them at two levels to maximize adaptation and generalization performance respectively. The resultant model can then directly generalize to new tasks. Extensive experiments on few-shot classification and regression problems clearly demonstrate the superiority of HML over fine-tuning and state-of-the-art meta learning approaches in terms of generalization across heterogeneous tasks.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

北京阿比特科技有限公司