亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: Cross-Modality Attention with Semantic Graph Embedding for Multi-Label Classification

簡介:

多標簽圖像和視頻分類是計算機視覺中最基本也是最具挑戰性的任務。主要的挑戰在于捕獲標簽之間的空間或時間依賴關系,以及發現每個類的區別特征的位置。為了克服這些挑戰,我們提出將語義圖嵌入的跨模態注意用于多標簽分類。基于所構造的標簽圖,我們提出了一種基于鄰接的相似圖嵌入方法來學習語義標簽嵌入,該方法顯式地利用了標簽之間的關系。在學習標簽嵌入的指導下,生成了新的跨模態注意圖。在兩個多標簽圖像分類數據集(MS-COCO和NUS-WIDE)上的實驗表明,我們的方法優于其他現有的方法。此外,我們在一個大的多標簽視頻分類數據集上驗證了我們的方法,評估結果證明了我們的方法的泛化能力。

付費5元查看完整內容

相關內容

題目: Adaptive Graph Encoder for Attributed Graph Embedding

簡介: 從圖拓撲和節點特征中學習向量表示的屬性圖嵌入是圖分析的一項艱巨任務。近年來,基于圖卷積網絡(GCN)的方法在此任務上取得了很大的進步。但是,現有的基于GCN的方法具有三個主要缺點。首先,我們的實驗表明圖卷積濾波器和權重矩陣的糾纏將損害性能和魯棒性。其次,我們證明了這些方法中的圖卷積濾波器是廣義拉普拉斯平滑濾波器的特例,但它們并未保留最佳的低通特性。最后,現有算法的訓練目標通常是恢復與現實應用并不總是一致的鄰接矩陣或特征矩陣,為了解決這些問題,我們提出了一種新型的屬性圖嵌入框架Adaptive Graph Encoder(AGE)。 AGE由兩個模塊組成:(1)為了更好地減輕節點特征中的高頻噪聲,AGE首先應用了精心設計的拉普拉斯平滑濾波器。 (2)AGE采用了自適應編碼器,該編碼器迭代地增強了濾波后的特征,以實現更好的節點嵌入。我們使用四個公共基準數據集進行實驗,以驗證AGE在節點群集和鏈接預測任務上的作用。實驗結果表明,AGE在這些任務上始終優于最新的圖形嵌入方法。

付費5元查看完整內容

題目: Learning Representations For Images With Hierarchical Labels

摘要:

圖像分類已經得到了廣泛的研究,但是除了傳統的圖像標簽對之外,在使用非常規的外部指導來訓練這些模型方面的工作還很有限。在本文中,我們提出了一組利用類標簽引起的語義層次信息的方法。在論文的第一部分,我們將標簽層次知識注入到任意的分類器中,并通過實驗證明,將這些外部語義信息與圖像的視覺語義相結合,可以提高整體性能。在這個方向上更進一步,我們使用自然語言中流行的基于保留順序的嵌入模型來更明確地建模標簽-標簽和標簽-圖像的交互,并將它們裁剪到計算機視覺領域來執行圖像分類。盡管在本質上與之相反,在新提出的、真實世界的ETH昆蟲學收集圖像數據集上,注入層次信息的CNN分類器和基于嵌入的模型都優于不可知層次的模型。

付費5元查看完整內容

在多標簽文本分類(MLTC)中,一個樣本可以屬于多個類。可以看出,在大多數MLTC任務中,標簽之間存在依賴關系或相互關系。現有的方法往往忽略了標簽之間的關系。本文提出了一種基于圖的注意力網絡模型來捕獲標簽間的注意依賴結構。圖注意力網絡使用一個特征矩陣和一個相關矩陣來捕獲和探索標簽之間的關鍵依賴關系,并為任務生成分類器。將生成的分類器應用于文本特征提取網絡(BiLSTM)獲得的句子特征向量,實現端到端訓練。注意力允許系統為每個標簽分配不同的權值給相鄰節點,從而允許系統隱式地學習標簽之間的依賴關系。在5個實際的MLTC數據集上驗證了模型的結果。與以往的先進模型相比,該模型具有相似或更好的性能。

付費5元查看完整內容

題目: Tensor Graph Convolutional Networks for Text Classification

摘要: 文本分類是自然語言處理中一個重要而經典的問題。已有許多研究將卷積神經網絡(如規則網格上的卷積,序列)應用于分類。然而,只有有限數量的研究已經探索了更靈活的圖卷積神經網絡(卷積在非網格上,例如,任意圖)的任務。在這項工作中,我們建議使用圖卷積網絡進行文本分類。基于詞的共現關系和文檔詞之間的關系,我們為一個語料庫建立一個文本圖,然后學習一個文本圖卷積網絡(text GCN)。我們的文本GCN使用word和document的一個熱表示進行初始化,然后在已知文檔類標簽的監督下,共同學習word和document的嵌入。我們在多個基準數據集上的實驗結果表明,沒有任何外部單詞嵌入或知識的普通文本GCN優于最新的文本分類方法。另一方面,文本GCN還學習預測詞和文檔嵌入。此外,實驗結果表明,隨著訓練數據百分比的降低,文本GCN相對于現有比較方法的改進變得更加突出,這表明文本GCN對文本分類中較少的訓練數據具有魯棒性。

付費5元查看完整內容

人工智能領域的頂會AAAI 2020將在2020年2月7日-12日在美國紐約舉行。據官方統計消息,AAAI 2020今年共收到的有效論文投稿超過 8800 篇,其中 7737 篇論文進入評審環節,最終收錄數量為 1591 篇,接收率 20.6%。開會在即,專知小編提前整理了AAAI 2020圖神經網絡(GNN)相關的接收論文,讓大家先睹為快——跨模態、部分標簽學習、交通流預測、少樣本學習、貝葉斯圖神經網絡。

  1. Cross-Modality Attention with Semantic Graph Embedding for Multi-Label Classification

作者:Renchun You, Zhiyao Guo, Lei Cui, Xiang Long, Yingze Bao, Shilei Wen

摘要:多標簽圖像和視頻分類是計算機視覺中最基本也是最具挑戰性的任務。主要的挑戰在于捕獲標簽之間的空間或時間依賴關系,以及發現每個類的區別性特征的位置。為了克服這些挑戰,我們提出將語義圖嵌入的跨模態注意力機制用于多標簽分類。基于所構造的標簽圖,我們提出了一種基于鄰接關系的相似圖嵌入方法來學習語義標簽嵌入,該方法顯式地利用了標簽之間的關系。在學習標簽嵌入的指導下,生成我們新穎的跨模態注意力圖。在兩個多標簽圖像分類數據集(MS-COCO和NUS-WIDE)上的實驗表明,我們的方法優于其他現有的方法。此外,我們在一個大的多標簽視頻分類數據集(YouTube-8M Segments)上驗證了我們的方法,評估結果證明了我們的方法的泛化能力。

網址: //arxiv.org/abs/1912.07872

  1. General Partial Label Learning via Dual Bipartite Graph Autoencoder

作者:Brian Chen, Bo Wu, Alireza Zareian, Hanwang Zhang, Shih-Fu Chang

摘要:我們提出了一個實際但有挑戰性的問題: 通用部分標簽學習(General Partial Label Learning,GPLL)。相比傳統的部分標簽學習(Partial Label Learning,PLL)問題, GPLL將監督假設從從實例級別(標簽集部分標記一個實例)放到了組級別: 1)標簽集部分標簽了一組實例, 其中組內 instance-label link annotations 丟失, 2)組間的link是允許的——組中的實例可以部分鏈接到另一個組中的標簽集。這種模糊的組級監督在實際場景中更實用,因為不再需要實例級的附加標注,例如,在視頻中組由一個幀中的人臉組成,并在相應的標題中使用名稱集進行標記,因此不再需要對實例級進行命名。本文提出了一種新的圖卷積網絡(GCN)——Dual Bipartite Graph Autoencoder (DB-GAE)來解決GPLL的標簽模糊問題。首先,我們利用組間的相互關系將實例組表示為dual bipartite圖:組內圖和組間圖,它們相互補充以解決鏈接的歧義。其次,我們設計了一個GCN自動編碼器來對它們進行編碼和解碼,其中的解碼被認為是經過改進的結果。值得注意的是DB-GAE是自監督和轉導的,因為它只使用組級的監督,而沒有單獨的offline訓練階段。對兩個真實數據集的大量實驗表明,DB-GAEG跟最佳baseline相比有著絕對的提升,0.159 的F1 score和24.8%的accuracy。我們還進一步分析了標簽歧義的各個層次。

網址:

  1. GMAN: A Graph Multi-Attention Network for Traffic Prediction

作者:Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, Jianzhong Qi

摘要:由于交通系統的復雜性和影響因素的不斷變化,長期的交通預測具有很大的挑戰性。在本文中,我們以時空因素為研究對象,提出了一種多注意力圖網絡(graph multi-attention network ,GMAN)來預測道路網絡圖中不同位置的時間步長的交通狀況。GMAN采用了一種encoder-decoder結構,其中編碼器和解碼器都由多個時空注意力塊組成,以模擬時空因素對交通條件的影響。編碼器對輸入流量特征進行編碼,解碼器對輸出序列進行預測。在編碼器和解碼器之間,應用轉換注意力層來轉換已編碼的流量特征,以生成未來時間步長的序列表示作為解碼器的輸入。轉換注意力機制模擬了歷史時間步長與未來時間步長之間的直接關系,有助于緩解預測時間步長之間的誤差傳播問題。在兩個現實世界中的交通預測任務(即交通量預測和交通速度預測)上的實驗結果證明了GMAN的優越性。特別地,在提前1個小時的預測中,GMAN的MAE指標提高了4%,優于最新技術。源代碼可在

網址:

  1. Graph Few-shot Learning via Knowledge Transfer

作者:Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, SuhangWang, Junzhou Huang, Nitesh V. Chawla, Zhenhui Li

摘要:對于具有挑戰性的半監督節點分類問題,已經進行了廣泛的研究。圖神經網絡(GNNs)作為一個前沿領域,近年來引起了人們極大的興趣。然而,大多數GNN具有較淺的層,接收域有限,并且可能無法獲得令人滿意的性能,特別是在標記節點數量很少的情況下。為了解決這一問題,我們創新性地提出了一種基于輔助圖的先驗知識的graph few-shot learning (GFL)算法,以提高目標圖的分類精度。具體來說,輔助圖與目標之間共享一個可遷移的度量空間,該空間以節點嵌入和特定于圖的原型嵌入函數為特征,便于結構知識的傳遞。對四個真實世界圖數據集的大量實驗和消融研究證明了我們提出的模型的有效性以及每個組件的貢獻。

網址:

  1. Learning Cross-Modal Context Graph for Visual Grounding

作者:Yongfei Liu, Bo Wan, Xiaodan Zhu, Xuming He

摘要:Visual grounding是許多視覺語言任務中普遍存在的一個基本單元,但由于grounding實體的視覺和語言特征的巨大差異、強大的語境效應以及由此產生的語義歧義,visual grounding仍然具有挑戰性。以前的研究主要集中在學習單個短語在有限的語境信息下的表達。針對其局限性,本文提出了一種languageguided graph representation表示方法來捕獲grounding實體的全局上下文及其關系,并針對多短語visual grounding任務開發了一種跨模態圖匹配策略。特別地,我們引入一個模塊化圖神經網絡,通過消息傳播分別計算短語和目標建議的上下文感知表示,然后引入一個基于圖的匹配模塊來生成全局一致的基礎短語定位。我們在兩階段策略中聯合訓練整個圖神經網絡,并在Flickr30K Entities基準上對其進行評估。大量的實驗表明,我們的方法比之前的技術有相當大的優勢,證明了我們的基礎框架的有效性。代碼可以在 找到。

網址:

  1. Learning from the Past: Continual Meta-Learning with Bayesian Graph Neural Networks

作者:Yadan Luo, Zi Huang, Zheng Zhang, Ziwei Wang, Mahsa Baktashmotlagh, Yang Yang

摘要:元學習(Meta-learning)用于few-shot learning,允許機器利用以前獲得的知識作為優先級,從而在只有少量數據的情況下提高新任務的性能。然而,大多數主流模型都存在災難性遺忘和魯棒性不足的問題,因此不能充分保留或利用長期知識,同時容易導致嚴重的錯誤累積。本文提出了一種新的基于貝葉斯圖神經網絡(CML-BGNN)的連續元學習方法。通過將每個任務形成一個圖,可以通過消息傳遞和歷史遷移很好地保存任務內部和任務間的相關性。為了解決圖初始化過程中的拓撲不確定性問題,我們使用了Bayes by Backprop算法,該算法利用amortized推理網絡逼近任務參數的后驗分布,并將其無縫地集成到端到端邊緣學習中。在miniImageNet和tieredImageNet數據集上進行的大量實驗證明了該方法的有效性和效率,與最先進的miniImageNet 5-way 1-shot分類任務相比,性能提高了42:8%。

網址:

  1. Neural Graph Embedding for Neural Architecture Search

作者:Wei Li, Shaogang Gong, Xiatian Zhu

摘要:現有的神經體系結構搜索((NAS))方法往往直接在離散空間或連續空間中進行搜索,忽略了神經網絡的圖形拓撲知識。考慮到神經網絡本質上是有向無環圖(DAG),這會導致搜索性能和效率欠佳。在這項工作中,我們通過引入一種新的神經圖嵌入(NGE)思想來解決這個限制。具體來說,我們用神經DAG表示神經網絡的構建塊(即cell),并利用圖卷積網絡來傳播和建模網絡結構的固有拓撲信息。這導致可與現有的不同NAS框架集成的通用神經網絡表示。大量實驗表明,在圖像分類和語義分割方面,NGE優于最新方法。

網址:

  1. RoadTagger: Robust Road Attribute Inference with Graph Neural Networks

作者:Songtao He, Favyen Bastani, Satvat Jagwani, Edward Park, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay Chawla, Samuel Madden, Mohammad Amin Sadeghi

摘要:從衛星圖像中推斷道路屬性(例如車道數和道路類型)是一項挑戰。通常,由于衛星圖像的遮擋和道路屬性的空間相關性,僅當考慮道路的較遠路段時,道路上某個位置的道路屬性才可能是顯而易見的。因此,為了魯棒地推斷道路屬性,模型必須整合分散的信息,并捕捉道路沿線特征的空間相關性。現有的解決方案依賴于圖像分類器,無法捕獲這種相關性,導致準確性較差。我們發現這種失敗是由于一個基本的限制–圖像分類器的有效接受范圍有限。

為了克服這一局限性,我們提出了一種結合卷積神經網絡(CNNs)和圖神經網絡(GNNs)來推斷道路屬性的端到端體系結構RoadTagger。使用GNN允許信息在路網圖上傳播,消除了圖像分類器的接收域限制。我們在一個覆蓋美國20個城市688平方公里面積的大型真實數據集和一個綜合數據集上對RoadTagger進行了評估。在評估中,與基于CNN圖像分類器的方法相比,RoadTagger提高了推理的準確性。此外,RoadTagger對衛星圖像的中斷具有較強的魯棒性,能夠學習復雜的inductive rule來聚合道路網絡上分散的信息。

網址:

付費5元查看完整內容

摘要: 我們提出了EMU,一個從語義上增強多語言句子嵌入系統。我們的框架使用兩個主要組件(語義分類器和語言鑒別器)對預先訓練好的多語言句子嵌入進行了微調。語義分類器提高了相關句子的語義相似度,而語言鑒別器通過多語言對抗訓練增強了嵌入語的多語言性。我們的實驗結果基于幾個語言對表明,我們的專門嵌入優于最先進的多語言句子嵌入模型的任務,跨語言意圖分類僅使用單語標記的數據。

付費5元查看完整內容
北京阿比特科技有限公司