歸一化方法可以提高深度神經網絡(DNN)的訓練穩定性、優化效率和泛化能力,已成為目前最先進的DNN體系結構的基本組成部分。它們還成功地擴散到深度學習的各個領域,包括但不限于計算機視覺、自然語言處理和語音識別。然而,盡管歸一化技術發揮了豐富和越來越重要的作用,我們注意到沒有一個統一的視角來描述、比較和分析它們。此外,我們對這些方法成功的理論基礎仍然難以理解。
本教程涵蓋了標準化方法、分析和應用程序,并將解決以下問題: (1) DNN中不同規范化方法背后的主要動機是什么?我們如何提出一種分類法來理解各種方法之間的異同? (2) 如何縮小標準化技術的經驗成功與我們對它們的理論理解之間的差距? (3) 針對不同任務設計/裁剪標準化技術的最新進展是什么?它們背后的主要見解是什么?
細粒度視覺分析(FGVA)是計算機視覺和模式識別中一個長期存在的基本問題,它支撐著一系列真實世界的應用,如生物多樣性自動監測、氣候變化評估、智能零售、智能交通、在節約資源、促進經濟增長、提高社會運行效率等方面已取得了積極的社會經濟效果。FGVA任務的目標是分析從屬類別的視覺對象,例如鳥類的種類、汽車的模型、產品的庫存單位或體操的動作。由于其非常細粒度的特性,類間小而類內大變化使其成為一個具有挑戰性的問題。借助深度學習的蓬勃發展,近年來使用深度學習技術的FGVA取得了顯著進展。
本教程旨在促進研究基于細粒度可視化分析方法的研究人員之間的討論,并將尖端細粒度可視化技術部署到實際應用程序中。具體來說,我們將促進討論各種基于深度學習的細粒度視覺分析主題的最新進展、正在進行的發展和新應用,例如細粒度圖像檢索、細粒度圖像識別、長尾視覺識別、細粒度視頻理解等。
摘要 隨著深度學習算法在圖像分割領域的成功應用,在圖像實例分割方向上涌現出一大批優秀的算法架構.這些架構在分割效果、運行速度等方面都超越了傳統方法.本文圍繞圖像實例分割技術的最新研究進展,對現階段經典網絡架構和前沿網絡架構進行梳理總結,結合常用數據集和權威評價指標對各個架構的分割效果進行比較和分析.最后,對目前圖像實例分割技術面臨的挑戰以及可能的發展趨勢進行了展望.
生成對抗網絡(GANs)在過去的幾年里得到了廣泛的研究。可以說,它們最重要的影響是在計算機視覺領域,在這一領域中,圖像生成、圖像-圖像轉換、面部屬性處理和類似領域的挑戰取得了巨大進展。盡管迄今為止已經取得了重大的成功,但將GAN應用于現實世界的問題仍然面臨著重大的挑戰,我們在這里重點關注其中的三個。這是: (1)生成高質量的圖像; (2) 圖像生成的多樣性; (3) 穩定的訓練。我們將重點關注目前流行的GAN技術在應對這些挑戰方面取得的進展程度,并對已發表文獻中GAN相關研究的現狀進行了詳細回顧。我們進一步通過一個分類結構,我們已經采用了基于GAN體系架構和損失函數的變化。雖然到目前為止已經提交了幾篇關于GANs的綜述,但沒有一篇是基于它們在解決與計算機視覺相關的實際挑戰方面的進展來考慮這一領域的現狀。因此,為了應對這些挑戰,我們回顧并批判性地討論了最流行的架構變體和損失變體GANs。我們的目標是在重要的計算機視覺應用需求的相關進展方面,對GAN的研究現狀進行概述和批判性分析。在此過程中,我們還將討論GANs在計算機視覺方面最引人注目的應用,并對未來的研究方向提出一些建議。本研究中所研究的GAN變體相關代碼在
//github.com/sheqi/GAN_Review上進行了總結。
地址:
生成對抗網絡(GANs)在深度學習社區[1]-[6]吸引了越來越多的興趣。GANs已應用于計算機視覺[7]-[14]、自然語言處理[15]-[18]、時間序列合成[19]-[23]、語義分割[24]-[28]等多個領域。GANs屬于機器學習中的生成模型家族。與其他生成模型(如變分自編碼器)相比,GANs提供了一些優勢,如能夠處理清晰的估計密度函數,有效地生成所需樣本,消除確定性偏差,并與內部神經結構[29]具有良好的兼容性。這些特性使GANs獲得了巨大的成功,特別是在計算機視覺領域,如可信圖像生成[30]-[34],圖像到圖像轉換[2],[35]-[41],圖像超分辨率[26],[42]-[45]和圖像補全[46]-[50]。
然而,GANs并非沒有問題。最重要的兩點是,它們很難訓練,也很難評估。由于訓練難度大,在訓練過程中判別器和生成器很難達到納什均衡,生成器不能很好地學習數據集的完整分布是常見的問題。這就是眾所周知的模式崩潰問題。在[51]-[54]這一領域進行了大量的研究工作。在評估方面,首要問題是如何最好地衡量目標pr的真實分布與生成的分布pg之間的差異。不幸的是,不可能準確地估算pr。因此,對pr和pg之間的對應關系進行良好的估計是很有挑戰性的。以往的研究提出了各種對GANs[55] -的評價指標[63]。第一個方面直接關系到GANs的性能,如圖像質量、圖像多樣性和穩定訓練。在這項工作中,我們將研究計算機視覺領域中處理這方面的現有GAN變體,而對第二方面感興趣的讀者可以參考[55][63]。
目前許多GAN研究可以從以下兩個目標來考慮:(1)改進訓練,(2)將GAN應用于現實應用。前者尋求提高GANs性能,因此是后者(即應用)的基礎。考慮到許多已發表的關于GAN訓練改進的結果,我們在本文中對這方面最重要的GAN變體進行了簡要的回顧。GAN訓練過程的改進提供了好處表現如下: (1)改進生成的圖像的多樣性(也稱為模式多樣性) ,(2)增加生成的圖像質量,和 (3) 包含更多 :(1) 介紹相關GAN綜述工作和說明的區別這些評論和這項工作; (2)簡要介紹GANs;(3)回顧文獻中關于“GAN”的架構變體;(4)我們回顧文獻中損失變體的GAN;(5)介紹了GAN在計算機視覺領域的一些應用; (6)引入了GAN的評價指標,并利用部分指標(Inception Score和Frechet Inception Distance, FID)對本文討論的GAN變量進行了比較;(7)我們總結了本研究中的GANs變體,說明了它們的差異和關系,并討論了關于GANs未來研究的幾種途徑。(8)我們總結了這篇綜述,并展望了GANs領域可能的未來研究工作。
文獻中提出了許多GAN變體來提高性能。這些可以分為兩種類型:(1)架構變體。第一個提出的GAN使用完全連接的神經網絡[1],因此特定類型的架構可能有利于特定的應用,例如,用于圖像的卷積神經網絡(CNNs)和用于時間序列數據的循環神經網絡(RNNs);和(2)Loss-variants。這里探討了損失函數(1)的不同變化,以使G的學習更加穩定。
圖2說明了我們對2014年至2020年文獻中具有代表性GANs提出的分類法。我們將目前的GAN分為兩種主要變體,即架構變體和損失變體。在體系架構變體中,我們分別總結了網絡體系結構、潛在空間和應用三大類。網絡架構范疇是指對GAN架構的整體改進或修改,例如PROGAN中部署的漸進機制。潛在空間類別表示基于潛在空間的不同表示方式對架構進行修改,例如CGAN涉及到編碼到生成器和識別器的標簽信息。最后一類,應用,指的是根據不同的應用所做的修改,例如,CycleGAN有特定的架構來處理圖像風格的轉換。根據損失的變化,我們將其分為兩類:損失類型和正則化。損失類型是指GANs需要優化的不同損失函數,正則化是指對損失函數設計的額外懲罰或對網絡進行任何類型的歸一化操作。具體來說,我們將損失函數分為基于積分概率度量和非積分概率度量。在基于IPM的GAN中,鑒別器被限制為一類特定的函數[64],例如,WGAN中的鑒別器被限制為1-Lipschitz。基于非IPM的GAN中的鑒別器沒有這樣的約束。
能夠解釋機器學習模型的預測在醫療診斷或自主系統等關鍵應用中是很重要的。深度非線性ML模型的興起,在預測方面取得了巨大的進展。然而,我們不希望如此高的準確性以犧牲可解釋性為代價。結果,可解釋AI (XAI)領域出現了,并產生了一系列能夠解釋復雜和多樣化的ML模型的方法。
在本教程中,我們結構化地概述了在深度神經網絡(DNNs)的背景下為XAI提出的基本方法。特別地,我們提出了這些方法的動機,它們的優點/缺點和它們的理論基礎。我們還展示了如何擴展和應用它們,使它們在現實場景中發揮最大的作用。
本教程針對的是核心和應用的ML研究人員。核心機器學習研究人員可能會有興趣了解不同解釋方法之間的聯系,以及廣泛的開放問題集,特別是如何將XAI擴展到新的ML算法。應用ML研究人員可能會發現,理解標準驗證程序背后的強大假設是很有趣的,以及為什么可解釋性對進一步驗證他們的模型是有用的。他們可能還會發現新的工具來分析他們的數據并從中提取見解。參與者將受益于技術背景(計算機科學或工程)和基本的ML訓練。
目錄內容:
Part 1: Introduction to XAI (WS) 可解釋人工智能
Part 2: Methods for Explaining DNNs (GM) 可解釋深度神經網絡方法
Part 3: Implementation, Theory, Evaluation, Extensions (GM) 實現,理論、評價
Part 4: Applications (WS) 應用
神經網絡在諸多應用領域展現了巨大的潛力,成為當前最熱門的研究方向之一。神經網絡的訓練主要通過求解一個優化問題來完成,但這是一個困難的非線性優化問題,傳統的優化理論難以直接應用。在神經網絡和優化的交叉領域,長期以來研究人員積累了大量的理論研究知識,不過這些研究或過于理論而不被大部分實踐者所了解,或過于偏工程而不被理論學者所理解和欣賞。本文的目的是總結目前對于神經網絡優化基本理論和算法的現狀,架起理論和實踐、優化和機器學習界之間的橋梁。
對苦于調參常感到困惑的工程師而言,本文可以提供一些已有的理論理解以供參考,并提供一些思考的方式。對理論學者而言,本文力圖解釋其作為數學問題的困難之所在以及目前的理論進展,以期吸引更多研究者投身神經網絡優化理論和算法研究。
本文概述了神經網絡的算法和優化理論。首先,我們討論梯度爆炸/消失問題和更一般的譜控制問題,然后討論實際中常用的解決方案,包括初始化方法和歸一化方法。其次,我們回顧用于訓練神經網絡的一般優化方法,如SGD、自適應梯度方法和大規模分布式訓練方法,以及這些算法的現有理論結果。第三,我們回顧了最近關于神經網絡訓練的全局問題的研究,包括局部極值、模式連接、彩票假設和無限寬度分析等方面的結果。
目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。
目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。
自然語言處理(NLP)幫助智能機器更好地理解人類語言,實現基于語言的人機交流。計算能力的最新發展和大量語言數據的出現,增加了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域的應用取得了顯著的進步,數據驅動策略的應用已經非常普遍。本調查對得益于深度學習的NLP的不同方面和應用進行了分類和討論。它涵蓋了核心的NLP任務和應用,并描述了深度學習方法和模型如何推進這些領域。我們進一步分析和比較不同的方法和最先進的模型。