亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

深度神經網絡在擁有大量數據集和足夠的計算資源的情況下能夠取得巨大的成功。然而,他們快速學習新概念的能力相當有限。元學習是解決這一問題的一種方法,通過使網絡學會如何學習。令人興奮的深度元學習領域正在高速發展,但缺乏對當前技術的統一、深刻的概述。這項工作就是這樣。在為讀者提供理論基礎之后,我們研究和總結了主要的方法,這些方法被分為i)度量;ii)模型;和iii)基于優化的技術。此外,我們確定了主要的開放挑戰,如在異構基準上的性能評估,以及元學習計算成本的降低。

摘要:

近年來,深度學習技術在各種任務上取得了顯著的成功,包括游戲(Mnih et al., 2013; Silver et al., 2016),圖像識別(Krizhevsky et al., 2012; He et al., 2015)和機器翻譯(Wu et al., 2016)。盡管取得了這些進展,但仍有大量的挑戰有待解決,例如實現良好性能所需的大量數據和訓練。這些要求嚴重限制了深度神經網絡快速學習新概念的能力,這是人類智能的定義方面之一(Jankowski等人,2011;(Lake等,2017)。

元學習被認為是克服這一挑戰的一種策略(Naik and Mammone, 1992; Schmidhuber, 1987; Thrun, 1998)。其關鍵思想是元學習主體隨著時間的推移提高自己的學習能力,或者等價地說,學會學習。學習過程主要與任務(一組觀察)有關,并且發生在兩個不同的層次上:內部和外部。在內部層,一個新的任務被提出,代理試圖快速地從訓練觀察中學習相關的概念。這種快速的適應是通過在外部層次的早期任務中積累的知識來促進的。因此,內部層關注的是單個任務,而外部層關注的是多個任務。

從歷史上看,元學習這個術語的使用范圍很廣。從最廣泛的意義上說,它概括了所有利用之前的學習經驗以更快地學習新任務的系統(Vanschoren, 2018)。這個廣泛的概念包括更傳統的機器學習算法選擇和hyperparameter優化技術(Brazdil et al ., 2008)。然而,在這項工作中,我們專注于元學習領域的一個子集,該領域開發元學習程序來學習(深度)神經網絡的良好誘導偏差。1從今以后,我們使用術語深元學習指元學習的領域。

深度元學習領域正在快速發展,但它缺乏一個連貫、統一的概述,無法提供對關鍵技術的詳細洞察。Vanschoren(2018)對元學習技術進行了調查,其中元學習被廣泛使用,限制了對深度元學習技術的描述。此外,在調查發表后,深度元學習領域也出現了許多令人興奮的發展。Hospedales等人(2020)最近的一項調查采用了與我們相同的深度元學習概念,但目標是一個廣泛的概述,而忽略了各種技術的技術細節。

我們試圖通過提供當代深度元學習技術的詳細解釋來填補這一空白,使用統一的符號。此外,我們確定了當前的挑戰和未來工作的方向。更具體地說,我們覆蓋了監督和強化學習領域的現代技術,已經實現了最先進的性能,在該領域獲得了普及,并提出了新的想法。由于MAML (Finn et al., 2017)和相關技術對該領域的影響,我們給予了格外的關注。本研究可作為深度元學習領域的系統性介紹,并可作為該領域資深研究人員的參考資料。在整個過程中,我們將采用Vinyals(2017)所使用的分類法,該分類法確定了三種深度元學習方法:i)度量、ii)模型和iii)基于優化的元學習技術。

付費5元查看完整內容

相關內容

Meta Learning,元學習,也叫 Learning to Learn(學會學習)。是繼Reinforcement Learning(增強學習)之后又一個重要的研究分支。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在連續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。****

付費5元查看完整內容

題目: A Survey on Transfer Learning in Natural Language Processing

摘要:

深度學習模型通常需要大量數據。 但是,這些大型數據集并非總是可以實現的。這在許多具有挑戰性的NLP任務中很常見。例如,考慮使用神經機器翻譯,在這種情況下,特別對于低資源語言而言,可能無法整理如此大的數據集。深度學習模型的另一個局限性是對巨大計算資源的需求。這些障礙促使研究人員質疑使用大型訓練模型進行知識遷移的可能性。隨著許多大型模型的出現,對遷移學習的需求正在增加。在此調查中,我們介紹了NLP領域中最新的遷移學習進展。我們還提供了分類法,用于分類文獻中的不同遷移學習方法。

付費5元查看完整內容

本文綜述了元學習在圖像分類、自然語言處理和機器人技術等領域的應用。與深度學習不同,元學習使用較少的樣本數據集,并考慮進一步改進模型泛化以獲得更高的預測精度。我們將元學習模型歸納為三類: 黑箱適應模型、基于相似度的方法模型和元學習過程模型。最近的應用集中在將元學習與貝葉斯深度學習和強化學習相結合,以提供可行的集成問題解決方案。介紹了元學習方法的性能比較,并討論了今后的研究方向。

付費5元查看完整內容

【導讀】元學習旨在學會學習,是當下研究熱點之一。最近來自愛丁堡大學的學者發布了關于元學習最新綜述論文《Meta-Learning in Neural Networks: A Survey》,值得關注,詳述了元學習體系,包括定義、方法、應用、挑戰,成為不可缺少的文獻。

近年來,元學習領域,或者說“學會學習的學習”,引起了人們極大的興趣。與傳統的人工智能方法(使用固定的學習算法從頭開始解決給定的任務)不同,元學習的目的是改進學習算法本身,考慮到多次學習的經驗。這個范例提供了一個機會來解決深度學習的許多傳統挑戰,包括數據和計算瓶頸,以及泛化的基本問題。在這項綜述中,我們描述了當代元學習的景觀。我們首先討論元學習的定義,并將其定位于相關領域,如遷移學習、多任務學習和超參數優化。然后,我們提出了一個新的分類法,對元學習方法的空間進行了更全面的細分。我們綜述了元學習的一些有前途的應用和成功案例,包括小樣本學習、強化學習和體系架構搜索。最后,我們討論了突出的挑戰和未來研究的有希望的領域。

//arxiv.org/abs/2004.05439

概述

現代機器學習模型通常是使用手工設計的固定學習算法,針對特定任務從零開始進行訓練。基于深度學習的方法在許多領域都取得了巨大的成功[1,2,3]。但是有明顯的局限性[4]。例如,成功主要是在可以收集或模擬大量數據的領域,以及在可以使用大量計算資源的領域。這排除了許多數據本質上是稀有或昂貴的[5],或者計算資源不可用的應用程序[6,7]。

元學習提供了另一種范式,機器學習模型可以在多個學習階段獲得經驗——通常覆蓋相關任務的分布——并使用這些經驗來改進未來的學習性能。這種“學會學習”[8]可以帶來各種好處,如數據和計算效率,它更適合人類和動物的學習[9],其中學習策略在一生和進化時間尺度上都得到改善[10,9,11]。機器學習在歷史上是建立在手工設計的特征上的模型,而特征的選擇往往是最終模型性能的決定因素[12,13,14]。深度學習實現了聯合特征和模型學習的承諾[15,16],為許多任務提供了巨大的性能改進[1,3]。神經網絡中的元學習可以看作是集成聯合特征、模型和算法學習的下一步。神經網絡元學習有著悠久的歷史[17,18,8]。然而,它作為推動當代深度學習行業前沿的潛力,導致了最近研究的爆炸性增長。特別是,元學習有可能緩解當代深度學習[4]的許多主要批評,例如,通過提供更好的數據效率,利用先驗知識轉移,以及支持無監督和自主學習。成功的應用領域包括:小樣本圖像識別[19,20]、無監督學習[21]、數據高效[22,23]、自導向[24]強化學習(RL)、超參數優化[25]和神經結構搜索(NAS)[26, 27, 28]。

在文獻中可以找到許多關于元學習的不同觀點。特別是由于不同的社區對這個術語的使用略有不同,所以很難定義它。與我們[29]相關的觀點認為,元學習是管理“沒有免費午餐”定理[30]的工具,并通過搜索最適合給定問題或問題族的算法(歸納偏差)來改進泛化。然而,從廣義上來說,這個定義可以包括遷移、多任務、特征選擇和模型集成學習,這些在今天通常不被認為是元學習。另一個關于元學習[31]的觀點廣泛地涵蓋了基于數據集特性的算法選擇和配置技術,并且很難與自動機器學習(AutoML)[32]區分開來。在這篇論文中,我們關注當代的神經網絡元學習。我們將其理解為算法或歸納偏差搜索,但重點是通過端到端學習明確定義的目標函數(如交叉熵損失、準確性或速度)來實現的。

因此,本文提供了一個獨特的,及時的,最新的調查神經網絡元學習領域的快速增長。相比之下,在這個快速發展的領域,以往的研究已經相當過時,或者關注于數據挖掘[29、33、34、35、36、37、31]、自動[32]的算法選擇,或者元學習的特定應用,如小樣本學習[38]或神經架構搜索[39]。

我們討論元學習方法和應用。特別是,我們首先提供了一個高層次的問題形式化,它可以用來理解和定位最近的工作。然后,我們在元表示、元目標和元優化器方面提供了一種新的方法分類。我們調查了幾個流行和新興的應用領域,包括少鏡頭、強化學習和架構搜索;并對相關的話題如遷移學習、多任務學習和自動學習進行元學習定位。最后,我們討論了尚未解決的挑戰和未來研究的領域。

未來挑戰:

-元泛化 元學習在不同任務之間面臨著泛化的挑戰,這與傳統機器學習中在不同實例之間進行泛化的挑戰類似。

  • 任務分布的多模態特性
  • 任務族
  • 計算代價
  • 跨模態遷移和異構任務

總結

元學習領域最近出現了快速增長的興趣。這帶來了一定程度的混亂,比如它如何與鄰近的字段相關聯,它可以應用到什么地方,以及如何對它進行基準測試。在這次綜述中,我們試圖通過從方法學的角度對這一領域進行徹底的調查來澄清這些問題——我們將其分為元表示、元優化器和元目標的分類;從應用的角度來看。我們希望這項調查將有助于新人和實踐者在這個不斷增長的領域中定位自己,并強調未來研究的機會。

付費5元查看完整內容

題目: Meta-Learning in Neural Networks: A Survey

簡介: 近年來,元學習領域的興趣急劇上升。與使用固定學習算法從頭解決給定任務的傳統AI方法相反,元學習旨在根據多次學習事件的經驗來改善學習算法本身。這種范例為解決深度學習的許多傳統挑戰提供了機會,包括數據和計算瓶頸以及泛化的基本問題。在本次調查中,我們描述了當代的元學習環境。我們首先討論元學習的定義,并將其相對于相關領域(例如轉移學習,多任務學習和超參數優化)進行定位。然后,我們提出了一種新的分類法,該分類法為當今的元學習方法提供了更為全面的細分。我們調查了元學習的有希望的應用程序和成功案例,包括,強化學習和架構搜索。最后,我們討論了未來研究的突出挑戰和有希望的領域。

付費5元查看完整內容

題目: Survey of Personalization Techniques for Federated Learning

簡介:

聯邦學習使機器學習模型可以從分散的數據中學習,而不會損害隱私。 聯邦學習的標準制定為所有客戶提供了一種共享模型。 由于跨設備的非IID數據分布造成的統計異質性通常導致以下情況:對于某些客戶,僅對自己的私有數據進行訓練的局部模型的性能要優于全局共享模型,從而喪失了參與該過程的動力。 已經提出了幾種技術來個性化全局模型,以更好地為單個客戶服務。 本文強調了個性化的必要性,并對有關該主題的最新研究進行了調查。

目錄:

付費5元查看完整內容

題目: Natural Language Processing Advancements By Deep Learning: A Survey

摘要: 自然語言處理(NLP)幫助智能機器更好地理解人類語言,實現基于語言的人機交流。算力的最新發展和語言大數據的出現,增加了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域的應用取得了顯著的進步,數據驅動策略的應用已經非常普遍。本綜述對得益于深度學習的NLP的不同方面和應用進行了分類和討論。它涵蓋了核心的NLP任務和應用,并描述了深度學習方法和模型如何推進這些領域。我們并進一步分析和比較不同的方法和最先進的模型。

付費5元查看完整內容

論文主題: Recent Advances in Deep Learning for Object Detection

論文摘要: 目標檢測是計算機視覺中的基本視覺識別問題,并且在過去的幾十年中已得到廣泛研究。目標檢測指的是在給定圖像中找到具有精確定位的特定目標,并為每個目標分配一個對應的類標簽。由于基于深度學習的圖像分類取得了巨大的成功,因此近年來已經積極研究了使用深度學習的對象檢測技術。在本文中,我們對深度學習中視覺對象檢測的最新進展進行了全面的調查。通過復習文獻中最近的大量相關工作,我們系統地分析了現有的目標檢測框架并將調查分為三個主要部分:(i)檢測組件,(ii)學習策略(iii)應用程序和基準。在調查中,我們詳細介紹了影響檢測性能的各種因素,例如檢測器體系結構,功能學習,建議生成,采樣策略等。最后,我們討論了一些未來的方向,以促進和刺激未來的視覺對象檢測研究。與深度學習。

付費5元查看完整內容

題目: A Survey and Critique of Multiagent Deep Reinforcement Learning

簡介: 近年來,深度強化學習(RL)取得了出色的成績。這使得應用程序和方法的數量急劇增加。最近的工作探索了單智能體深度強化之外的學習,并考慮了多智能體深度強化學習的場景。初步結果顯示在復雜的多智能體領域中的成功,盡管有許多挑戰需要解決。本文的主要目的是提供有關當前多智能體深度強化學習(MDRL)文獻的概述。此外,我們通過更廣泛的分析對概述進行補充:(i)我們回顧了以前RL中介紹的基礎內容,并強調了它們如何適應多智能深度強化學習設置。 (ii)我們為該領域的新開業者提供一般指導:描述從MDRL工作中汲取的經驗教訓,指出最新的基準并概述研究途徑。 (iii)我們提出了MDRL的實際挑戰(例如,實施和計算需求)。

作者介紹: Pablo Hernandez-Leal,Borealis AI的研究員,在此之前,曾與Michael Kaisers一起參與過阿姆斯特丹CWI的智能和自治系統。研究方向:單智能體環境開發的算法以及多智能體。計劃開發一種算法,該算法使用博弈論,貝葉斯推理和強化學習中的模型和概念在戰略交互中得到使用。

付費5元查看完整內容
北京阿比特科技有限公司