亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

深度半監督學習是一個快速發展的領域,具有一系列的實際應用。

本文從模型設計和無監督損失函數的角度對深度半監督學習方法的基本原理和最新進展進行了全面的綜述。

我們首先提出了一種深度半監督學習分類法,該分類法對現有方法進行分類,包括深度生成方法、一致性正則化方法、基于圖的方法、偽標記方法和混合方法。然后,我們根據損失類型、貢獻和架構差異對這些方法進行了詳細的比較。

在總結近年來研究進展的基礎上,進一步探討了現有方法的不足之處,并提出了一些探索性的解決方案。

//arxiv.org/pdf/2103.00550.pdf

引言

深度學習一直是一個活躍的研究領域,在模式識別[1]、[2]、數據挖掘[3]、統計學習[4]、計算機視覺[5]、[6]、自然語言處理[7]、[8]等領域有著豐富的應用。它利用了大量高質量的標記數據,在[9]、[10]的理論和實踐中都取得了巨大的成功,特別是在監督學習場景中。然而,標簽樣品通常是困難的,昂貴的,或耗時獲得。標記過程通常需要專家的努力,這是訓練一個優秀的全監督深度神經網絡的主要限制之一。例如,在醫療任務中,測量是用昂貴的機器進行的,標簽是由多個人類專家耗時分析得出的。如果只有少數標記的樣本可用,建立一個成功的學習系統是具有挑戰性的。相比之下,未標記的數據通常是豐富的,可以很容易地或廉價地獲得。因此,它是可取的利用大量的未標記的數據,以改善學習性能給定的少量標記樣本。因此,半監督學習(semi-supervised learning, SSL)一直是近十年來機器學習領域的研究熱點。

SSL是一種學習范式,它與構建使用標記數據和未標記數據的模型有關。與只使用標記數據的監督學習算法相比,SSL方法可以通過使用額外的未標記實例來提高學習性能。通過對監督學習算法和非監督學習算法的擴展,可以很容易地獲得SSL算法。SSL算法提供了一種從未標記的示例中探索潛在模式的方法,減輕了對大量標記[13]的需求。根據系統的關鍵目標函數,可以有半監督分類、半監督聚類或半監督回歸。我們提供的定義如下:

  • 半監督分類。給定一個包含有標記的實例和無標記的實例的訓練數據集,半監督分類的目標是同時從有標記的和無標記的數據訓練分類器,這樣它比只在有標記的數據上訓練的有監督分類器更好。

  • 半監督聚類。假設訓練數據集由未標記的實例和一些關于聚類的監督信息組成,半監督聚類的目標是獲得比單獨從無標記數據聚類更好的聚類。半監督聚類也稱為約束聚類。

  • 半監督回歸。給定一個包含有標記的實例和沒有標記的實例的訓練數據集,半監督回歸的目標是從一個單獨帶有標記數據的回歸算法改進回歸算法的性能,該回歸算法預測一個實值輸出,而不是一個類標簽。

為了更清楚、更具體地解釋SSL,我們重點研究了圖像分類問題。本調查中描述的思想可以毫無困難地適應其他情況,如對象檢測,語義分割,聚類,或回歸。因此,在本研究中,我們主要回顧了利用未標記數據進行圖像分類的方法。

SSL方法有很多種,包括生成模型[14],[15],半監督支持向量機[16],[17],基于圖的方法[18],[19],[20],[21]和聯合訓練[22]。我們向感興趣的讀者推薦[12]、[23],它們提供了傳統SSL方法的全面概述。目前,深度神經網絡已經在許多研究領域占據主導地位。重要的是要采用經典的SSL框架,并為深度學習設置開發新的SSL方法,這將導致深度半監督學習(DSSL)。DSSL研究了如何通過深度神經網絡有效地利用標記數據和未標記數據。已經提出了相當多的DSSL方法。根據半監督損失函數和模型設計最顯著的特征,我們將DSSL分為五類,即生成法、一致性正則化法、基于圖的方法、偽標記方法和混合方法。本文獻使用的總體分類法如圖1所示。

在[12],[23]中有很多具有代表性的作品,但是一些新興的技術并沒有被納入其中,尤其是在深度學習取得巨大成功之后。例如,深度半監督方法提出了新的技術,如使用對抗訓練生成新的訓練數據。另外,[13]側重于統一SSL的評價指標,[24]只回顧了SSL的一部分,沒有對SSL進行全面的概述。最近,Ouali等人的綜述[25]給出了與我們類似的DSSL概念。然而,它不能與現有的方法相比,基于它們的分類,并提供了未來的趨勢和存在的問題的觀點。在前人研究的基礎上,結合最新的研究,我們將對基礎理論進行綜述,并對深度半監督方法進行比較。總結一下,我們的貢獻如下:

我們對DSSL方法進行了詳細的回顧,并介紹了主要DSSL方法的分類、背景知識和變體模型。人們可以很快地掌握DSSL的前沿思想。

我們將DSSL方法分為生成方法、一致性正則化方法、基于圖形的方法、偽標記方法和混合方法,每一種方法都有特定的類型。我們回顧了每一類的變體,并給出了標準化的描述和統一的示意圖。

我們確定了該領域的幾個開放問題,并討論了DSSL的未來方向。

付費5元查看完整內容

相關內容

摘要

多任務學習(Multi-Task Learning, MTL)是機器學習中的一種學習范式,其目的是利用多個相關任務中包含的有用信息來幫助提高所有任務的泛化性能。

本文從算法建模、應用和理論分析三個方面對MTL進行了綜述。在算法建模方面,給出了MTL的定義,并將不同的MTL算法分為特征學習、低秩、任務聚類、任務關系學習和分解五類,并討論了每種方法的特點。

為了進一步提高學習任務的性能,MTL可以與半監督學習、主動學習、無監督學習、強化學習、多視圖學習和圖形模型等學習范式相結合。當任務數量較大或數據維數較高時,我們回顧了在線、并行和分布式的MTL模型,以及維數降維和特征哈希,揭示了它們在計算和存儲方面的優勢。

許多現實世界的應用程序使用MTL來提高它們的性能,我們在本文中回顧了代表性的工作。最后,我們對MTL進行了理論分析,并討論了MTL的未來發展方向。

引言

人類可以同時學習多個任務,在這個學習過程中,人類可以使用在一個任務中學習到的知識來幫助學習另一個任務。例如,根據我們學習打網球和壁球的經驗,我們發現打網球的技巧可以幫助學習打壁球,反之亦然。多任務學習(Multi-Task learning, MTL)[1]是機器學習的一種學習范式,受人類這種學習能力的啟發,它的目標是共同學習多個相關的任務,使一個任務中包含的知識能夠被其他任務利用,從而提高手頭所有任務的泛化性能。

在其早期階段,MTL的一個重要動機是緩解數據稀疏問題,即每個任務都有有限數量的標記數據。在數據稀疏性問題中,每個任務中標記數據的數量不足以訓練出一個準確的學習器,而MTL則以數據增強的方式將所有任務中的標記數據進行聚合,從而為每個任務獲得更準確的學習器。從這個角度來看,MTL可以幫助重用已有的知識,降低學習任務的手工標注成本。當“大數據”時代在計算機視覺和自然語言處理(NLP)等領域到來時,人們發現,深度MTL模型比單任務模型具有更好的性能。MTL有效的一個原因是與單任務學習相比,它利用了更多來自不同學習任務的數據。有了更多的數據,MTL可以為多個任務學習到更健壯、更通用的表示形式和更強大的模型,從而更好地實現任務間的知識共享,提高每個任務的性能,降低每個任務的過擬合風險。

MTL與機器學習中的其他學習范式有關,包括遷移學習[2]、多標簽學習[3]和多輸出回歸。MTL的設置與遷移學習相似,但存在顯著差異。在MTL中,不同任務之間沒有區別,目標是提高所有任務的性能。而遷移學習是借助源任務來提高目標任務的性能,因此目標任務比源任務起著更重要的作用。總之,MTL對所有的任務一視同仁,但在遷移學習中目標任務最受關注。從知識流的角度來看,遷移學習中的知識轉移流是從源任務到目標任務,而在多任務學習中,任何一對任務之間都存在知識共享流,如圖1(a)所示。持續學習[4]是一個一個地學習任務,任務是有順序的,而MTL是將多個任務一起學習。在多標簽學習和多輸出回歸中,每個數據點都與多個標簽相關聯,這些標簽可以是分類的或數字的。如果我們把所有可能的標簽都當作一個任務,那么多標簽學習和多輸出回歸在某種意義上可以看作是多任務學習的一種特殊情況,不同的任務在訓練和測試階段總是共享相同的數據。一方面,這種多標簽學習和多輸出回歸的特點導致了與MTL不同的研究問題。例如,排名損失使得與數據點相關的標簽的分數(例如分類概率)大于沒有標簽的分數,可以用于多標簽學習,但它不適合MTL,因為不同的任務擁有不同的數據。另一方面,這種在多標簽學習和多輸出回歸中的特性在MTL問題中是無效的。例如,在2.7節中討論的一個MTL問題中,每個任務都是根據19個生物醫學特征預測患者帕金森病的癥狀評分,不同的患者/任務不應該共享生物醫學數據。總之,多標簽學習和多輸出回歸與圖1(b)所示的多任務學習是不同的,因此我們不會對多標簽學習和多輸出回歸的文獻進行綜述。此外,多視圖學習是機器學習的另一種學習范式,每個數據點與多個視圖相關聯,每個視圖由一組特征組成。雖然不同的視圖有不同的特征集,但是所有的視圖是一起學習同一個任務的,因此多視圖學習屬于具有多組特征的單任務學習,這與圖1(c)所示的MTL是不同的。

在過去的幾十年里,MTL在人工智能和機器學習領域引起了廣泛的關注。許多MTL模型已經被設計出來,并在其他領域得到了廣泛的應用。此外,對MTL的理論問題也進行了大量的分析。本文從算法建模、應用和理論分析三個方面對MTL進行了綜述。在算法建模方面,首先給出了MTL的定義,然后將不同的MTL算法分為5類: 特征學習方法,又可分為特征轉換與特征選擇方法、低秩方法、任務聚類方法、任務關系學習方法和分解方法。然后,我們討論了MTL與其他學習范式的結合,包括半監督學習、主動學習、無監督學習、強化學習、多視圖學習和圖形模型。為了處理大量的任務,我們回顧了在線、并行和分布式的MTL模型。對于高維空間中的數據,引入特征選擇、降維和特征哈希作為處理這些數據的重要工具。MTL作為一種很有前途的學習范式,在計算機視覺、生物信息學、健康信息學、語音、自然語言處理、web等領域有著廣泛的應用。從理論分析的角度,對MTL的相關工作進行回顧。最后,討論了MTL的未來發展方向。

付費5元查看完整內容

Adaptive Consistency Regularization for Semi-Supervised Transfer Learning Abulikemu Abuduweili1,2*, Xingjian Li1,3? , Humphrey Shi2? , Cheng-Zhong Xu3 , Dejing Dou1?

雖然最近關于半監督學習的研究在利用標記和未標記數據方面取得了顯著進展,但大多數研究都假定模型的基本設置是隨機初始化的。在這項工作中,我們將半監督學習和遷移學習結合起來,從而形成一個更實用和更具競爭力的范式,該范式可以利用來自源領域的強大的預訓練模型以及目標領域的標記/未標記數據。更好地利用pre-trained權重和標記的價值目標的例子,我們引入自適應一致性互補正規化,由兩部分組成:自適應知識一致性(AKC)在源和目標之間的示例模型和自適應表示一致性(AKC)標記和未標記示例之間的目標模型。一致性正則化所涉及的實例是根據它們對目標任務的潛在貢獻自適應選擇的。通過微調ImageNet預先訓練的ResNet-50模型,我們對流行基準進行了廣泛的實驗,包括CIFAR-10、CUB-200、Indoor67和MURA。結果表明,我們提出的自適應一致性正則化優于最先進的半監督學習技術,如偽標簽、Mean Teacher和MixMatch。此外,我們的算法與現有的方法是正交的,因此能夠在MixMatch和FixMatch之上獲得額外的改進。我們的代碼可以在//github.com/SHI-Labs/SemiSupervised-Transfer-Learning上找到。

付費5元查看完整內容

深度學習在大量領域取得優異成果,但仍然存在著魯棒性和泛化性較差、難以學習和適應未觀測任務、極其依賴大規模數據等問題.近兩年元學習在深度學習上的發展,為解決上述問題提供了新的視野.元學習是一種模仿生物利用先前已有的知識,從而快速學習新的未見事物能力的一種學習定式.元學習的目標是利用已學習的信息,快速適應未學習的新任務.這與實現通用人工智能的目標相契合,對元學習問題的研究也是提高模型的魯棒性和泛化性的關鍵.近年來隨著深度學習的發展,元學習再度成為熱點,目前元學習的研究百家爭鳴、百花齊放. 本文從元學習的起源出發,系統地介紹元學習的發展歷史,包括元學習的由來和原始定義,然后給出當前元學習的通用定義,同時總結當前元學習一些不同方向的研究成果,包括基于度量的元學習方法、基于強泛化新的初始化參數的元學習方法、基于梯度優化器的元學習方法、基于外部記憶單元的元學方法、基于數據增強的元學方法等. 總結其共有的思想和存在的問題,對元學習的研究思想進行分類,并敘述不同方法和其相應的算法.最后論述了元學習研究中常用數據集和評判標準,并從元學習的自適應性、進化性、可解釋性、連續性、可擴展性展望其未來發展趨勢.

引言

隨著計算設備并行計算性能的大幅度 進步,以及近些年深度神經網絡在各個領域 不斷取得重大突破,由深度神經網絡模型衍 生而來的多個機器學習新領域也逐漸成型, 如強化學習、深度強化學習[1] [2] 、深度監督 學習等。在大量訓練數據的加持下,深度神 經網絡技術已經在機器翻譯、機器人控制、 大數據分析、智能推送、模式識別等方面取 得巨大成果[3] [4] [5] 。

實際上在機器學習與其他行業結合的 過程中,并不是所有領域都擁有足夠可以讓 深度神經網絡微調參數至收斂的海量數據, 相當多領域要求快速反應、快速學習,如新 興領域之一的仿人機器人領域,其面臨的現 實環境往往極為復雜且難以預測,若按照傳 統機器學習方法進行訓練則需要模擬所有 可能遇到的環境,工作量極大同時訓練成本 極高,嚴重制約了機器學習在其他領域的擴 展,因此在深度學習取得大量成果后,具有 自我學習能力與強泛化性能的元學習便成 為通用人工智能的關鍵。

元學習(Meta-learning)提出的目的是 針對傳統神經網絡模型泛化性能不足、對新 種類任務適應性較差的特點。在元學習介紹 中往往將元學習的訓練和測試過程類比為 人類在掌握一些基礎技能后可以快速學習并適應新任務,如兒童階段的人類也可以快 速通過一張某動物照片學會認出該動物,即 機 器 學 習 中 的 小 樣 本 學 習 ( Few-shot Learning)[6] [7] ,甚至不需要圖像,僅憑描 述就可學會認識新種類,對應機器學習領域 中的(Zero-shot Learning)[8] ,而不需要大 量該動物的不同照片。人類在幼兒階段掌握 的對世界的大量基礎知識和對行為模式的 認知基礎便對應元學習中的“元”概念,即一 個泛化性能強的初始網絡加上對新任務的 快速適應學習能力,元學習的遠期目標為通 過類似人類的學習能力實現強人工智能,當 前階段體現在對新數據集的快速適應帶來 較好的準確度,因此目前元學習主要表現為 提高泛化性能、獲取好的初始參數、通過少 量計算和新訓練數據即可在模型上實現和 海量訓練數據一樣的識別準確度,近些年基 于元學習,在小樣本學習領域做出了大量研 究[9] [10] [11] [12] [13] [14] [15] [16] [17] ,同時為模擬 人類認知,在 Zero-shot Learning 方向也進行 了大量探索[18] [19] [20] [21] [22] 。

在機器學習盛行之前,就已產生了元學習的相關概念。當時的元學習還停留在認知 教育科學相關領域,用于探討更加合理的教 學方法。Gene V. Glass 在 1976 年首次提出 了“元分析”這一概念[23] ,對大量的分析結 果進行統計分析,這是一種二次分析辦法。G Powell 使用“元分析”的方法對詞匯記憶 進行了研究[24] ,指出“強制”和“誘導”意象有 助于詞匯記憶。Donald B.Maudsley 在 1979 年首次提出了“元學習”這一概念,將其描述 為“學習者意識到并越來越多地控制他們已 經內化的感知、探究、學習和成長習慣的過 程”,Maudsley 將元學習做為在假設、結構、 變化、過程和發展這 5 個方面下的綜合,并 闡述了相關基本原則[25] 。BIGGS J.B 將元學 習描述為“意識到并控制自己的學習的狀 態” [26] ,即學習者對學習環境的感知。P Adey 將元學習的策略用在物理教學上[27] , Vanlehn K 探討了輔導教學中的元學習方法 [28] 。從元分析到元學習,研究人員主要關 注人是如何意識和控制自己學習的。一個具 有高度元學習觀念的學生,能夠從自己采用 的學習方法所產生的結果中獲得反饋信息,進一步評價自己的學習方法,更好地達到學 習目標[29] 。隨后元學習這一概念慢慢滲透 到機器學習領域。P.Chan 提出的元學習是一 種整合多種學習過程的技術,利用元學習的 策略組合多個不同算法設計的分類器,其整 體的準確度優于任何個別的學習算法[30] [31] [32] 。HilanBensusan 提出了基于元學習的決 策樹框架[33] 。Vilalta R 則認為元學習是通 過積累元知識動態地通過經驗來改善偏倚 的一種學習算法[34] 。

Meta-Learning 目前還沒有確切的定義, 一般認為一個元學習系統需結合三個要求:系統必須包含一個學習子系統;利用以前學 習中提取的元知識來獲得經驗,這些元知識 來自單個數據集或不同領域;動態選擇學習偏差。

元學習的目的就是為了設計一種機器學習模型,這種模型有類似上面提到的人的 學習特性,即使用少量樣本數據,快速學習 新的概念或技能。經過不同任務的訓練后, 元學習模型能很好的適應和泛化到一個新任務,也就學會了“Learning to learn”。

付費5元查看完整內容

自監督學習由于能夠避免標注大規模數據集的成本而受到歡迎。它能夠采用自定義的偽標簽作為監督,并將學習到的表示用于幾個下游任務。具體來說,對比學習最近已成為計算機視覺、自然語言處理(NLP)等領域的自主監督學習方法的主要組成部分。它的目的是將同一個樣本的增廣版本嵌入到一起,同時試圖將不同樣本中的嵌入推開。這篇論文提供了一個廣泛的自我監督的方法綜述,遵循對比的方法。本研究解釋了在對比學習設置中常用的借口任務,以及到目前為止提出的不同架構。接下來,我們將對圖像分類、目標檢測和動作識別等多個下游任務的不同方法進行性能比較。最后,我們總結了目前方法的局限性和需要進一步的技術和未來方向取得實質性進展。

//arxiv.org/abs/2011.00362

概述:

隨著深度學習技術的發展,它已成為目前大多數智能系統的核心組件之一。深度神經網絡(DNNs)能夠從現有的大量數據中學習豐富的模式,這使得它在大多數計算機視覺(CV)任務(如圖像分類、目標檢測、圖像分割、動作識別)以及自然語言處理(NLP)任務(如句子分類、語言模型、機器翻譯等)中成為一種引人注目的方法。然而,由于手工標注數百萬個數據樣本的工作量很大,從標記數據中學習特征的監督方法已經幾乎達到了飽和。這是因為大多數現代計算機視覺系統(受監督的)都試圖通過查找大型數據集中數據點及其各自注釋之間的模式來學習某種形式的圖像表示。像GRAD-CAM[1]這樣的工作提出了一種技術,可以為模型所做的決策提供可視化的解釋,從而使決策更加透明和可解釋。

傳統的監督學習方法很大程度上依賴于可用的帶注釋的訓練數據的數量。盡管有大量的可用數據,但缺乏注解促使研究人員尋找替代方法來利用它們。這就是自監督方法在推動深度學習的進程中發揮重要作用的地方,它不需要昂貴的標注,也不需要學習數據本身提供監督的特征表示。

監督學習不僅依賴昂貴的注釋,而且還會遇到泛化錯誤、虛假的相關性和對抗攻擊[2]等問題。最近,自監督學習方法集成了生成和對比方法,這些方法能夠利用未標記的數據來學習潛在的表示。一種流行的方法是提出各種各樣的代理任務,利用偽標簽來幫助學習特征。諸如圖像inpainting、灰度圖像著色、拼圖游戲、超分辨率、視頻幀預測、視聽對應等任務已被證明是學習良好表示的有效方法。

生成式模型在2014年引入生成對抗網絡(GANs)[3]后得到普及。這項工作后來成為許多成功架構的基礎,如CycleGAN[4]、StyleGAN[5]、PixelRNN[6]、Text2Image[7]、DiscoGAN [8]等。這些方法激發了更多的研究人員轉向使用無標簽數據在自監督的設置下訓練深度學習模型。盡管取得了成功,研究人員開始意識到基于GAN的方法的一些并發癥。它們很難訓練,主要有兩個原因: (a)不收斂——模型參數發散很多,很少收斂; (b)鑒別器太過成功,導致生成網絡無法產生類似真實的假信號,導致學習無法繼續。此外,生成器和判別器之間需要適當的同步,以防止判別器收斂和生成器發散。

付費5元查看完整內容

深度學習算法已經在圖像分類方面取得了最先進的性能,甚至被用于安全關鍵應用,如生物識別系統和自動駕駛汽車。最近的研究表明,這些算法甚至可以超越人類的能力,很容易受到對抗性例子的攻擊。在計算機視覺中,與之相對的例子是惡意優化算法為欺騙分類器而產生的含有細微擾動的圖像。為了緩解這些漏洞,文獻中不斷提出了許多對策。然而,設計一種有效的防御機制已被證明是一項困難的任務,因為許多方法已經證明對自適應攻擊者無效。因此,這篇自包含的論文旨在為所有的讀者提供一篇關于圖像分類中對抗性機器學習的最新研究進展的綜述。本文介紹了新的對抗性攻擊和防御的分類方法,并討論了對抗性實例的存在性。此外,與現有的調查相比,它還提供了相關的指導,研究人員在設計和評估防御時應該考慮到這些指導。最后,在文獻綜述的基礎上,對未來的研究方向進行了展望。

//www.zhuanzhi.ai/paper/396e587564dc2922d222cd3ac7b84288

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。

//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c

概述:

隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。

盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。

除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。

在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。

付費5元查看完整內容

主動學習試圖在具有盡可能少標注樣本的同時最大化模型的性能增益。深度學習(Deep learning, DL)需要大量標注數據,如果模型要學習如何提取高質量的特征,就需要大量的數據供應來優化大量的參數。近年來,由于互聯網技術的飛速發展,我們進入了一個以海量可用數據為特征的信息豐富性時代。因此,DL得到了研究者的極大關注,并得到了迅速的發展。但與DL相比,研究者對AL的興趣相對較低,這主要是因為在DL興起之前,傳統機器學習需要的標記樣本相對較少,這意味著早期的AL很少被賦予應有的價值。雖然DL在各個領域都取得了突破,但大部分的成功都要歸功于大量公開的帶標注的數據集。然而,獲取大量高質量的帶注釋數據集需要耗費大量人力,在需要較高專業知識水平的領域(如語音識別、信息提取、醫學圖像等)是不可行的,因此AL逐漸得到了它應該得到的重視。

因此,研究是否可以使用AL來降低數據標注的成本,同時保留DL強大的學習能力是很自然的。由于這些調研的結果,深度主動學習(DAL)出現了。雖然對這一課題的研究相當豐富,但至今還沒有對相關著作進行全面的調研; 因此,本文旨在填補這一空白。我們為現有的工作提供了一個正式的分類方法,以及一個全面和系統的概述。此外,我們還從應用的角度對DAL的發展進行了分析和總結。最后,我們討論了與DAL相關的問題,并提出了一些可能的發展方向。

概述:

深度學習(DL)和主動學習(AL)在機器學習領域都有重要的應用。由于其優良的特性,近年來引起了廣泛的研究興趣。更具體地說,DL在各種具有挑戰性的任務上取得了前所未有的突破;然而,這很大程度上是由于大量標簽數據集的發表[16,87]。因此,在一些需要豐富知識的專業領域,樣品標注成本高限制了DL的發展。相比之下,一種有效的AL算法在理論上可以實現標注效率的指數加速。這將極大地節省數據標注成本。然而,經典的AL算法也難以處理高維數據[160]。因此,DL和AL的結合被稱為DAL,有望取得更好的效果。DAL被廣泛應用于多個領域,包括圖像識別[35,47,53,68],文本分類[145,180,185],視覺答題[98],目標檢測[3,39,121]等。雖然已經發表了豐富的相關工作,DAL仍然缺乏一個統一的分類框架。為了填補這一空白,在本文中,我們將全面概述現有的DAL相關工作,以及一種正式的分類方法。下面我們將簡要回顧DL和AL在各自領域的發展現狀。隨后,在第二節中,進一步闡述了DL與AL結合的必要性和挑戰。

圖1所示。DL、AL和DAL的典型體系結構比較。(a)一種常見的DL模型:卷積神經網絡。(b) 基于池化的AL框架: 使用查詢策略查詢未標記的樣本池U和將其交給oracle進行標注,然后將查詢樣本添加到標記的訓練數據集L,然后使用新學到的知識查詢的下一輪。重復此過程,直到標簽預算耗盡或達到預定義的終止條件。(c) DAL的一個典型例子:在標簽訓練集L0上初始化或預訓練DL模型的參數的常變量,利用未標記池U的樣本通過DL模型提取特征。然后根據相應的查詢策略選擇樣本,在查詢時對標簽進行查詢,形成新的標簽訓練集L,然后在L上訓練DL模型,同時更新U。重復此過程,直到標簽預算耗盡或達到預定義的終止條件。

DAL結合了DL和AL的共同優勢:它不僅繼承了DL處理高維圖像數據和自動提取特征的能力,也繼承了AL有效降低標注成本的潛力。因此,DAL具有令人著迷的潛力,特別是在標簽需要高水平的專業知識和難以獲得的領域。

付費5元查看完整內容

當對大量的標記數據集合(如ImageNet)進行訓練時,深度神經網絡展示了它們在特殊監督學習任務(如圖像分類)上的卓越表現。然而,創建這樣的大型數據集需要大量的資源、時間和精力。這些資源在很多實際案例中可能無法獲得,限制了許多深度學習方法的采用和應用。為了尋找數據效率更高的深度學習方法,以克服對大型標注數據集的需求,近年來,我們對半監督學習應用于深度神經網絡的研究興趣日益濃厚,通過開發新的方法和采用現有的半監督學習框架進行深度學習設置。在本文中,我們從介紹半監督學習開始,對深度半監督學習進行了全面的概述。然后總結了在深度學習中占主導地位的半監督方法。

付費5元查看完整內容

?【導讀】圖像分類是計算機視覺中的基本任務之一,深度學習的出現是的圖像分類技術趨于完善。最近,自監督學習與預訓練技術的發展使得圖像分類技術出現新的變化,這篇論文概述了最新在實際情況中少標簽小樣本等情況下,關于自監督學習、半監督、無監督方法的綜述,值得看!

地址:

//www.zhuanzhi.ai/paper/6d160a5f8634d25a2feda7a30e1e5132

摘要

雖然深度學習策略在計算機視覺任務中取得了突出的成績,但仍存在一個問題。目前的策略嚴重依賴于大量的標記數據。在許多實際問題中,創建這么多標記的訓練數據是不可行的。因此,研究人員試圖將未標記的數據納入到培訓過程中,以獲得與較少標記相同的結果。由于有許多同時進行的研究,很難掌握最近的發展情況。在這項調查中,我們提供了一個概述,常用的技術和方法,在圖像分類與較少的標簽。我們比較了21種方法。在我們的分析中,我們確定了三個主要趨勢。1. 基于它們的準確性,現有技術的方法可擴展到實際應用中。2. 為了達到與所有標簽的使用相同的結果所需要的監督程度正在降低。3.所有方法都共享公共技術,只有少數方法結合這些技術以獲得更好的性能。基于這三個趨勢,我們發現了未來的研究機會。

1. 概述

深度學習策略在計算機視覺任務中取得了顯著的成功。它們在圖像分類、目標檢測或語義分割等各種任務中表現最佳。

圖1: 這張圖說明并簡化了在深度學習訓練中使用未標記數據的好處。紅色和深藍色的圓圈表示不同類的標記數據點。淺灰色的圓圈表示未標記的數據點。如果我們只有少量的標記數據可用,我們只能對潛在的真實分布(黑線)做出假設(虛線)。只有同時考慮未標記的數據點并明確決策邊界,才能確定這種真實分布。

深度神經網絡的質量受到標記/監督圖像數量的強烈影響。ImageNet[26]是一個巨大的標記數據集,它允許訓練具有令人印象深刻的性能的網絡。最近的研究表明,即使比ImageNet更大的數據集也可以改善這些結果。但是,在許多實際的應用程序中,不可能創建包含數百萬張圖像的標記數據集。處理這個問題的一個常見策略是遷移學習。這種策略甚至可以在小型和專門的數據集(如醫學成像[40])上改進結果。雖然這對于某些應用程序來說可能是一個實際的解決方案,但基本問題仍然存在: 與人類不同,監督學習需要大量的標記數據。

對于給定的問題,我們通常可以訪問大量未標記的數據集。Xie等人是最早研究無監督深度學習策略來利用這些數據[45]的人之一。從那時起,未標記數據的使用被以多種方式研究,并創造了研究領域,如半監督、自我監督、弱監督或度量學習[23]。統一這些方法的想法是,在訓練過程中使用未標記的數據是有益的(參見圖1中的說明)。它要么使很少有標簽的訓練更加健壯,要么在某些不常見的情況下甚至超過了監督情況下的性能[21]。

由于這一優勢,許多研究人員和公司在半監督、自我監督和非監督學習領域工作。其主要目標是縮小半監督學習和監督學習之間的差距,甚至超越這些結果。考慮到現有的方法如[49,46],我們認為研究處于實現這一目標的轉折點。因此,在這個領域有很多正在進行的研究。這項綜述提供了一個概述,以跟蹤最新的在半監督,自監督和非監督學習的方法。

大多數綜述的研究主題在目標、應用上下文和實現細節方面存在差異,但它們共享各種相同的思想。這項調查對這一廣泛的研究課題進行了概述。這次調查的重點是描述這兩種方法的異同。此外,我們還將研究不同技術的組合。

2. 圖像分類技術

在這一節中,我們總結了關于半監督、自監督和非監督學習的一般概念。我們通過自己對某些術語的定義和解釋來擴展這一總結。重點在于區分可能的學習策略和最常見的實現策略的方法。在整個綜述中,我們使用術語學習策略,技術和方法在一個特定的意義。學習策略是算法的一般類型/方法。我們把論文方法中提出的每個算法都稱為獨立算法。方法可以分為學習策略和技術。技術是組成方法/算法的部分或思想。

2.1 分類方法

監督、半監督和自我監督等術語在文獻中經常使用。很少有人給出明確的定義來區分這兩個術語。在大多數情況下,一個粗略的普遍共識的意義是充分的,但我們注意到,在邊界情況下的定義是多種多樣的。為了比較不同的方法,我們需要一個精確的定義來區分它們。我們將總結關于學習策略的共識,并定義我們如何看待某些邊緣案例。一般來說,我們根據使用的標記數據的數量和訓練過程監督的哪個階段來區分方法。綜上所述,我們把半監督策略、自我學習策略和無監督學習策略稱為reduced減約監督學習策略。圖2展示了四種深度學習策略。

圖2: 插圖的四個深學習策略——紅色和深藍色的圓圈表示標記數據點不同的類。淺灰色的圓圈表示未標記的數據點。黑線定義了類之間的基本決策邊界。帶條紋的圓圈表示在訓練過程的不同階段忽略和使用標簽信息的數據點。

監督學習 Supervised Learning

監督學習是深度神經網絡圖像分類中最常用的方法。我們有一組圖像X和對應的標簽或類z。設C為類別數,f(X)為X∈X的某個神經網絡的輸出,目標是使輸出與標簽之間的損失函數最小化。測量f(x)和相應的z之間的差的一個常用的損失函數是交叉熵。

遷移學習

監督學習的一個限制因素是標簽的可用性。創建這些標簽可能很昂貴,因此限制了它們的數量。克服這一局限的一個方法是使用遷移學習。

遷移學習描述了訓練神經網絡的兩個階段的過程。第一個階段是在大型通用數據集(如ImageNet[26])上進行有無監督的訓練。第二步是使用經過訓練的權重并對目標數據集進行微調。大量的文獻表明,即使在小的領域特定數據集[40]上,遷移學習也能改善和穩定訓練。

半監督學習

半監督學習是無監督學習和監督學習的混合.

Self-supervised 自監督學習

自監督使用一個借托pretext任務來學習未標記數據的表示。借托pretext任務是無監督的,但學習表征往往不能直接用于圖像分類,必須進行微調。因此,自監督學習可以被解釋為一種無監督的、半監督的或其自身的一種策略。我們將自我監督學習視為一種特殊的學習策略。在下面,我們將解釋我們是如何得出這個結論的。如果在微調期間需要使用任何標簽,則不能將該策略稱為無監督的。這與半監督方法也有明顯的區別。標簽不能與未標記的數據同時使用,因為借托pretext任務是無監督的,只有微調才使用標簽。對我們來說,將標記數據的使用分離成兩個不同的子任務本身就是一種策略的特征。

2.2 分類技術集合

在減少監督的情況下,可以使用不同的技術來訓練模型。在本節中,我們將介紹一些在文獻中多種方法中使用的技術。

一致性正則化 Consistency regularization

一個主要的研究方向是一致性正則化。在半監督學習過程中,這些正則化被用作數據非監督部分的監督損失的附加損失。這種約束導致了改進的結果,因為在定義決策邊界時可以考慮未標記的數據[42,28,49]。一些自監督或無監督的方法甚至更進一步,在訓練中只使用這種一致性正則化[21,2]。

虛擬對抗性訓練(VAT)

VAT[34]試圖通過最小化圖像與轉換后的圖像之間的距離,使預測不受小轉換的影響。

互信息(MI)

MI定義為聯合分布和邊緣分布[8]之間的Kullback Leiber (KL)散度。

熵最小化(EntMin)

Grandvalet和Bengio提出通過最小化熵[15]來提高半監督學習的輸出預測。

Overclustering

過度聚類在減少監督的情況下是有益的,因為神經網絡可以自行決定如何分割數據。這種分離在有噪聲的數據中或在中間類被隨機分為相鄰類的情況下是有用的。

Pseudo-Labels

一種估計未知數據標簽的簡單方法是偽標簽

3. 圖像分類模型

3.1 半監督學習

 四種選擇的半監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的藍色方框中給出。在右側提供了該方法的說明。一般來說,這個過程是自上而下組織的。首先,輸入圖像經過無或兩個不同的隨機變換預處理。自動增廣[9]是一種特殊的增廣技術。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的,但是共享公共部分。所有的方法都使用了標記和預測分布之間的交叉熵(CE)。所有的方法還使用了不同預測輸出分布(Pf(x), Pf(y))之間的一致性正則化。

3.2 自監督學習

四種選擇的自我監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的紅色方框中給出。在右側提供了該方法的說明。微調部分不包括在內。一般來說,這個過程是自上而下組織的。首先,對輸入圖像進行一兩次隨機變換預處理或分割。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的。AMDIM和CPC使用網絡的內部元素來計算損失。DeepCluster和IIC使用預測的輸出分布(Pf(x)、Pf(y))來計算損耗

3.3 21種圖像分類方法比較

21種圖像分類方法及其使用技術的概述——在左側,第3節中回顧的方法按學習策略排序。第一行列出了在2.2小節中討論過的可能的技術。根據是否可以使用帶標簽的數據,將這些技術分為無監督技術和有監督技術。技術的縮寫也在第2.2小節中給出。交叉熵(Cross-entropy, CE)將CE的使用描述為訓練損失的一部分。微調(FT)描述了交叉熵在初始訓練后(例如在一個借口任務中)對新標簽的使用。(X)指該技術不是直接使用,而是間接使用。個別的解釋由所指示的數字給出。1 - MixMatch通過銳化預測[3],隱式地實現了熵最小化。2 - UDA預測用于過濾無監督數據的偽標簽。3 -盡量減少相互信息的目的作為借口任務,例如視圖之間的[2]或層之間的[17]。4 -信息的丟失使相互信息間接[43]最大化。5 - Deep Cluster使用K-Means計算偽標簽,以優化分配為借口任務。6 - DAC使用元素之間的余弦距離來估計相似和不相似的項。可以說DAC為相似性問題創建了偽標簽。

4. 實驗比較結果

報告準確度的概述——第一列說明使用的方法。對于監督基線,我們使用了最好的報告結果,作為其他方法的基線。原始論文在準確度后的括號內。第二列給出了體系結構及其參考。第三列是預印本的出版年份或發行年份。最后四列報告了各自數據集的最高準確度分數%。

5 結論

在本文中,我們概述了半監督、自監督和非監督技術。我們用21種不同的方法分析了它們的異同和組合。這項分析確定了幾個趨勢和可能的研究領域。

我們分析了不同學習策略(半監督學習策略、自監督學習策略和無監督學習策略)的定義,以及這些學習策略中的常用技術。我們展示了這些方法一般是如何工作的,它們使用哪些技術,以及它們可以被歸類為哪種策略。盡管由于不同的體系結構和實現而難以比較這些方法的性能,但我們確定了三個主要趨勢。

ILSVRC-2012的前5名正確率超過90%,只有10%的標簽表明半監督方法適用于現實問題。然而,像類別不平衡這樣的問題并沒有被考慮。未來的研究必須解決這些問題。

監督和半監督或自監督方法之間的性能差距正在縮小。有一個數據集甚至超過了30%。獲得可與全監督學習相比的結果的標簽數量正在減少。未來的研究可以進一步減少所需標簽的數量。我們注意到,隨著時間的推移,非監督方法的使用越來越少。這兩個結論使我們認為,無監督方法在未來的現實世界中對圖像分類將失去意義。

我們的結論是,半監督和自監督學習策略主要使用一套不同的技術。通常,這兩種策略都使用不同技術的組合,但是這些技術中很少有重疊。S4L是目前提出的唯一一種消除這種分離的方法。我們確定了不同技術的組合有利于整體性能的趨勢。結合技術之間的微小重疊,我們確定了未來可能的研究機會。

參考文獻:

[1] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many consistent explanations of unlabeled data: Why you should average. In International Conference on Learning Representations, 2019.

[2] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual information across views. In Advances in Neural Information Processing Systems, pages 15509–15519, 2019.

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Information Processing Systems, pages 5050–5060, 2019.

[4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.

[5] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering. 2017 IEEE International Conference on Computer Vision (ICCV), pages 5880–5888, 2017.

付費5元查看完整內容
北京阿比特科技有限公司