亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

自監督學習由于能夠避免標注大規模數據集的成本而受到歡迎。它能夠采用自定義的偽標簽作為監督,并將學習到的表示用于幾個下游任務。具體來說,對比學習最近已成為計算機視覺、自然語言處理(NLP)等領域的自主監督學習方法的主要組成部分。它的目的是將同一個樣本的增廣版本嵌入到一起,同時試圖將不同樣本中的嵌入推開。這篇論文提供了一個廣泛的自我監督的方法綜述,遵循對比的方法。本研究解釋了在對比學習設置中常用的借口任務,以及到目前為止提出的不同架構。接下來,我們將對圖像分類、目標檢測和動作識別等多個下游任務的不同方法進行性能比較。最后,我們總結了目前方法的局限性和需要進一步的技術和未來方向取得實質性進展。

//arxiv.org/abs/2011.00362

概述:

隨著深度學習技術的發展,它已成為目前大多數智能系統的核心組件之一。深度神經網絡(DNNs)能夠從現有的大量數據中學習豐富的模式,這使得它在大多數計算機視覺(CV)任務(如圖像分類、目標檢測、圖像分割、動作識別)以及自然語言處理(NLP)任務(如句子分類、語言模型、機器翻譯等)中成為一種引人注目的方法。然而,由于手工標注數百萬個數據樣本的工作量很大,從標記數據中學習特征的監督方法已經幾乎達到了飽和。這是因為大多數現代計算機視覺系統(受監督的)都試圖通過查找大型數據集中數據點及其各自注釋之間的模式來學習某種形式的圖像表示。像GRAD-CAM[1]這樣的工作提出了一種技術,可以為模型所做的決策提供可視化的解釋,從而使決策更加透明和可解釋。

傳統的監督學習方法很大程度上依賴于可用的帶注釋的訓練數據的數量。盡管有大量的可用數據,但缺乏注解促使研究人員尋找替代方法來利用它們。這就是自監督方法在推動深度學習的進程中發揮重要作用的地方,它不需要昂貴的標注,也不需要學習數據本身提供監督的特征表示。

監督學習不僅依賴昂貴的注釋,而且還會遇到泛化錯誤、虛假的相關性和對抗攻擊[2]等問題。最近,自監督學習方法集成了生成和對比方法,這些方法能夠利用未標記的數據來學習潛在的表示。一種流行的方法是提出各種各樣的代理任務,利用偽標簽來幫助學習特征。諸如圖像inpainting、灰度圖像著色、拼圖游戲、超分辨率、視頻幀預測、視聽對應等任務已被證明是學習良好表示的有效方法。

生成式模型在2014年引入生成對抗網絡(GANs)[3]后得到普及。這項工作后來成為許多成功架構的基礎,如CycleGAN[4]、StyleGAN[5]、PixelRNN[6]、Text2Image[7]、DiscoGAN [8]等。這些方法激發了更多的研究人員轉向使用無標簽數據在自監督的設置下訓練深度學習模型。盡管取得了成功,研究人員開始意識到基于GAN的方法的一些并發癥。它們很難訓練,主要有兩個原因: (a)不收斂——模型參數發散很多,很少收斂; (b)鑒別器太過成功,導致生成網絡無法產生類似真實的假信號,導致學習無法繼續。此外,生成器和判別器之間需要適當的同步,以防止判別器收斂和生成器發散。

付費5元查看完整內容

相關內容

通過潛在空間的對比損失最大限度地提高相同數據樣本的不同擴充視圖之間的一致性來學習表示。對比式自監督學習技術是一類很有前途的方法,它通過學習編碼來構建表征,編碼使兩個事物相似或不同

句法依存分析是自然語言處理中的一項重要任務。無監督依存解析旨在從沒有正確解析樹注釋的句子中學習依存解析器。盡管無監督解析很困難,但它是一個有趣的研究方向,因為它能夠利用幾乎無限的無注釋文本數據。它也為其他低資源解析的研究提供了基礎。在本文中,我們調查了現有的無監督依賴解析方法,確定了兩大類方法,并討論了最近的趨勢。我們希望我們的調查能夠為研究者提供一些啟示,并有助于今后對這一課題的研究。

付費5元查看完整內容

視頻中的異常檢測是一個研究了十多年的問題。這一領域因其廣泛的適用性而引起了研究者的興趣。正因為如此,多年來出現了一系列廣泛的方法,這些方法從基于統計的方法到基于機器學習的方法。在這一領域已經進行了大量的綜述,但本文著重介紹了使用深度學習進行異常檢測領域的最新進展。深度學習已成功應用于人工智能的許多領域,如計算機視覺、自然語言處理等。然而,這項調查關注的是深度學習是如何改進的,并為視頻異常檢測領域提供了更多的見解。本文針對不同的深度學習方法提供了一個分類。此外,還討論了常用的數據集以及常用的評價指標。然后,對最近的研究方法進行了綜合討論,以提供未來研究的方向和可能的領域。

//arxiv.org/abs/2009.14146

付費5元查看完整內容

摘要

本文綜述了遷移學習在強化學習問題設置中的應用。RL已經成為序列決策問題的關鍵的解決方案。隨著RL在各個領域的快速發展。包括機器人技術和游戲,遷移學習是通過利用和遷移外部專業知識來促進學習過程來幫助RL的一項重要技術。在這篇綜述中,我們回顧了在RL領域中遷移學習的中心問題,提供了一個最先進技術的系統分類。我們分析他們的目標,方法,應用,以及在RL框架下這些遷移學習技術將是可接近的。本文從RL的角度探討了遷移學習與其他相關話題的關系,并探討了RL遷移學習的潛在挑戰和未來發展方向。

關鍵詞:遷移學習,強化學習,綜述,機器學習

介紹

強化學習(RL)被認為是解決連續決策任務的一種有效方法,在這種方法中,學習主體通過與環境相互作用,通過[1]來提高其性能。源于控制論并在計算機科學領域蓬勃發展的RL已被廣泛應用于學術界和工業界,以解決以前難以解決的任務。此外,隨著深度學習的快速發展,應用深度學習服務于學習任務的集成框架在近年來得到了廣泛的研究和發展。DL和RL的組合結構稱為深度強化學習[2](Deep Reinforcement Learning, DRL)。

DRL在機器人控制[3]、[4]、玩[5]游戲等領域取得了巨大的成功。在醫療保健系統[6]、電網[7]、智能交通系統[8]、[9]等領域也具有廣闊的應用前景。

在這些快速發展的同時,DRL也面臨著挑戰。在許多強化學習應用中,環境模型通常是未知的,只有收集到足夠的交互經驗,agent才能利用其對環境的知識來改進其性能。由于環境反饋的部分可觀察性、稀疏性或延遲性以及高維觀察和/或行動空間等問題,學習主體在沒有利用任何先驗知識的情況下尋找好的策略是非常耗時的。因此,遷移學習作為一種利用外部專業知識來加速學習過程的技術,在強化學習中成為一個重要的課題。

在監督學習(SL)領域[10]中,TL得到了廣泛的研究。與SL場景相比,由于MDP環境中涉及的組件更多,RL中的TL(尤其是DRL中的TL)通常更復雜。MDP的組件(知識來自何處)可能與知識轉移到何處不同。此外,專家知識也可以采取不同的形式,以不同的方式轉移,特別是在深度神經網絡的幫助下。隨著DRL的快速發展,以前總結用于RL的TL方法的努力沒有包括DRL的最新發展。注意到所有這些不同的角度和可能性,我們全面總結了在深度強化學習(TL in DRL)領域遷移學習的最新進展。我們將把它們分成不同的子主題,回顧每個主題的理論和應用,并找出它們之間的聯系。

本綜述的其余部分組織如下:在第2節中,我們介紹了強化學習的背景,關鍵的DRL算法,并帶來了這篇綜述中使用的重要術語。我們還簡要介紹了與TL不同但又緊密相關的相關研究領域(第2.3節)。

在第3節中,我們采用多種視角來評價TL方法,提供了對這些方法進行分類的不同方法(第3.1節),討論了遷移源和目標之間的潛在差異(第3.2節),并總結了評價TL有效性的常用指標(第3.3節)。

第4節詳細說明了DRL領域中最新的TL方法。特別是,所討論的內容主要是按照遷移知識的形式組織的,如成型的獎勵(4.1節)、先前的演示(4.2節)、專家策略(4.3節),或者按照轉移發生的方式組織的,如任務間映射(4.4節)、學習可轉移表示(4.5節和4.6節)等。我們在第5節討論了TL在DRL中的應用,并在第6節提供了一些值得研究的未來展望。

付費5元查看完整內容

隨著圖像處理,語音識別等人工智能技術的發展,很多學習方法尤其是采用深度學習框架的方法取得了優異的性能,在精度和速度方面有了很大的提升,但隨之帶來的問題也很明顯,這些學習方法如果要獲得穩定的學習效果,往往需要使用數量龐大的標注數據進行充分訓練,否則就會出現欠擬合的情況而導致學習性能的下降。因此,隨著任務復雜程度和數據規模的增加,對人工標注數據的數量和質量也提出了更高的要求,造成了標注成本和難度的增大。同時,單一任務的獨立學習往往忽略了來自其他任務的經驗信息,致使訓練冗余重復因而導致了學習資源的浪費,也限制了其性能的提升。為了緩解這些問題,屬于遷移學習范疇的多任務學習方法逐漸引起了研究者的重視。與單任務學習只使用單個任務的樣本信息不同,多任務學習假設不同任務數據分布之間存在一定的相似性,在此基礎上通過共同訓練和優化建立任務之間的聯系。這種訓練模式充分促進任務之間的信息交換并達到了相互學習的目的,尤其是在各自任務樣本容量有限的條件下,各個任務可以從其它任務獲得一定的啟發,借助于學習過程中的信息遷移能間接利用其它任務的數據,從而緩解了對大量標注數據的依賴,也達到了提升各自任務學習性能的目的。在此背景之下,本文首先介紹了相關任務的概念,并按照功能的不同對相關任務的類型進行劃分后再對它們的特點進行逐一描述。然后,本文按照數據處理模式和任務關系建模過程的不同將當前的主流算法劃分為兩大類:結構化多任務學習算法和深度多任務學習算法。其中,結構化多任務學習算法采用線性模型,可以直接針對數據進行結構假設并且使用原有標注特征表述任務關系,同時,又可根據學習對象的不同將其細分為基于任務層面和基于特征層面兩種不同結構,每種結構有判別式方法和生成式方法兩種實現手段。與結構化多任務學習算法的建模過程不同,深度多任務學習算法利用經過多層特征抽象后的深層次信息進行任務關系描述,通過處理特定網絡層中的參數達到信息共享的目的。緊接著,以兩大類算法作為主線,本文詳細分析了不同建模方法中對任務關系的結構假設、實現途徑、各自的優缺點以及方法之間的聯系。最后,本文總結了任務之間相似性及其緊密程度的判別依據,并且分析了多任務作用機制的有效性和內在成因,從歸納偏置和動態求解等角度闡述了多任務信息遷移的特點。 //gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=JSJX20190417000&dbcode=CJFD&dbname=CAPJ2019

付費5元查看完整內容

隨著web技術的發展,多模態或多視圖數據已經成為大數據的主要流,每個模態/視圖編碼數據對象的單個屬性。不同的模態往往是相輔相成的。這就引起了人們對融合多模態特征空間來綜合表征數據對象的研究。大多數現有的先進技術集中于如何融合來自多模態空間的能量或信息,以提供比單一模態的同行更優越的性能。最近,深度神經網絡展示了一種強大的架構,可以很好地捕捉高維多媒體數據的非線性分布,對多模態數據自然也是如此。大量的實證研究證明了深多模態方法的優勢,從本質上深化了多模態深特征空間的融合。在這篇文章中,我們提供了從淺到深空間的多模態數據分析領域的現有狀態的實質性概述。在整個調查過程中,我們進一步指出,該領域的關鍵要素是多模式空間的協作、對抗性競爭和融合。最后,我們就這一領域未來的一些方向分享我們的觀點。

付費5元查看完整內容

自動駕駛一直是人工智能應用中最活躍的領域。幾乎在同一時間,深度學習的幾位先驅取得了突破,其中三位(也被稱為深度學習之父)Hinton、Bengio和LeCun獲得了2019年ACM圖靈獎。這是一項關于采用深度學習方法的自動駕駛技術的綜述。我們研究了自動駕駛系統的主要領域,如感知、地圖和定位、預測、規劃和控制、仿真、V2X和安全等。由于篇幅有限,我們將重點分析幾個關鍵領域,即感知中的二維/三維物體檢測、攝像機深度估計、數據、特征和任務級的多傳感器融合、車輛行駛和行人軌跡的行為建模和預測。

//arxiv.org/abs/2006.06091

付費5元查看完整內容

當對大量的標記數據集合(如ImageNet)進行訓練時,深度神經網絡展示了它們在特殊監督學習任務(如圖像分類)上的卓越表現。然而,創建這樣的大型數據集需要大量的資源、時間和精力。這些資源在很多實際案例中可能無法獲得,限制了許多深度學習方法的采用和應用。為了尋找數據效率更高的深度學習方法,以克服對大型標注數據集的需求,近年來,我們對半監督學習應用于深度神經網絡的研究興趣日益濃厚,通過開發新的方法和采用現有的半監督學習框架進行深度學習設置。在本文中,我們從介紹半監督學習開始,對深度半監督學習進行了全面的概述。然后總結了在深度學習中占主導地位的半監督方法。

付費5元查看完整內容

?【導讀】圖像分類是計算機視覺中的基本任務之一,深度學習的出現是的圖像分類技術趨于完善。最近,自監督學習與預訓練技術的發展使得圖像分類技術出現新的變化,這篇論文概述了最新在實際情況中少標簽小樣本等情況下,關于自監督學習、半監督、無監督方法的綜述,值得看!

地址:

//www.zhuanzhi.ai/paper/6d160a5f8634d25a2feda7a30e1e5132

摘要

雖然深度學習策略在計算機視覺任務中取得了突出的成績,但仍存在一個問題。目前的策略嚴重依賴于大量的標記數據。在許多實際問題中,創建這么多標記的訓練數據是不可行的。因此,研究人員試圖將未標記的數據納入到培訓過程中,以獲得與較少標記相同的結果。由于有許多同時進行的研究,很難掌握最近的發展情況。在這項調查中,我們提供了一個概述,常用的技術和方法,在圖像分類與較少的標簽。我們比較了21種方法。在我們的分析中,我們確定了三個主要趨勢。1. 基于它們的準確性,現有技術的方法可擴展到實際應用中。2. 為了達到與所有標簽的使用相同的結果所需要的監督程度正在降低。3.所有方法都共享公共技術,只有少數方法結合這些技術以獲得更好的性能。基于這三個趨勢,我們發現了未來的研究機會。

1. 概述

深度學習策略在計算機視覺任務中取得了顯著的成功。它們在圖像分類、目標檢測或語義分割等各種任務中表現最佳。

圖1: 這張圖說明并簡化了在深度學習訓練中使用未標記數據的好處。紅色和深藍色的圓圈表示不同類的標記數據點。淺灰色的圓圈表示未標記的數據點。如果我們只有少量的標記數據可用,我們只能對潛在的真實分布(黑線)做出假設(虛線)。只有同時考慮未標記的數據點并明確決策邊界,才能確定這種真實分布。

深度神經網絡的質量受到標記/監督圖像數量的強烈影響。ImageNet[26]是一個巨大的標記數據集,它允許訓練具有令人印象深刻的性能的網絡。最近的研究表明,即使比ImageNet更大的數據集也可以改善這些結果。但是,在許多實際的應用程序中,不可能創建包含數百萬張圖像的標記數據集。處理這個問題的一個常見策略是遷移學習。這種策略甚至可以在小型和專門的數據集(如醫學成像[40])上改進結果。雖然這對于某些應用程序來說可能是一個實際的解決方案,但基本問題仍然存在: 與人類不同,監督學習需要大量的標記數據。

對于給定的問題,我們通常可以訪問大量未標記的數據集。Xie等人是最早研究無監督深度學習策略來利用這些數據[45]的人之一。從那時起,未標記數據的使用被以多種方式研究,并創造了研究領域,如半監督、自我監督、弱監督或度量學習[23]。統一這些方法的想法是,在訓練過程中使用未標記的數據是有益的(參見圖1中的說明)。它要么使很少有標簽的訓練更加健壯,要么在某些不常見的情況下甚至超過了監督情況下的性能[21]。

由于這一優勢,許多研究人員和公司在半監督、自我監督和非監督學習領域工作。其主要目標是縮小半監督學習和監督學習之間的差距,甚至超越這些結果。考慮到現有的方法如[49,46],我們認為研究處于實現這一目標的轉折點。因此,在這個領域有很多正在進行的研究。這項綜述提供了一個概述,以跟蹤最新的在半監督,自監督和非監督學習的方法。

大多數綜述的研究主題在目標、應用上下文和實現細節方面存在差異,但它們共享各種相同的思想。這項調查對這一廣泛的研究課題進行了概述。這次調查的重點是描述這兩種方法的異同。此外,我們還將研究不同技術的組合。

2. 圖像分類技術

在這一節中,我們總結了關于半監督、自監督和非監督學習的一般概念。我們通過自己對某些術語的定義和解釋來擴展這一總結。重點在于區分可能的學習策略和最常見的實現策略的方法。在整個綜述中,我們使用術語學習策略,技術和方法在一個特定的意義。學習策略是算法的一般類型/方法。我們把論文方法中提出的每個算法都稱為獨立算法。方法可以分為學習策略和技術。技術是組成方法/算法的部分或思想。

2.1 分類方法

監督、半監督和自我監督等術語在文獻中經常使用。很少有人給出明確的定義來區分這兩個術語。在大多數情況下,一個粗略的普遍共識的意義是充分的,但我們注意到,在邊界情況下的定義是多種多樣的。為了比較不同的方法,我們需要一個精確的定義來區分它們。我們將總結關于學習策略的共識,并定義我們如何看待某些邊緣案例。一般來說,我們根據使用的標記數據的數量和訓練過程監督的哪個階段來區分方法。綜上所述,我們把半監督策略、自我學習策略和無監督學習策略稱為reduced減約監督學習策略。圖2展示了四種深度學習策略。

圖2: 插圖的四個深學習策略——紅色和深藍色的圓圈表示標記數據點不同的類。淺灰色的圓圈表示未標記的數據點。黑線定義了類之間的基本決策邊界。帶條紋的圓圈表示在訓練過程的不同階段忽略和使用標簽信息的數據點。

監督學習 Supervised Learning

監督學習是深度神經網絡圖像分類中最常用的方法。我們有一組圖像X和對應的標簽或類z。設C為類別數,f(X)為X∈X的某個神經網絡的輸出,目標是使輸出與標簽之間的損失函數最小化。測量f(x)和相應的z之間的差的一個常用的損失函數是交叉熵。

遷移學習

監督學習的一個限制因素是標簽的可用性。創建這些標簽可能很昂貴,因此限制了它們的數量。克服這一局限的一個方法是使用遷移學習。

遷移學習描述了訓練神經網絡的兩個階段的過程。第一個階段是在大型通用數據集(如ImageNet[26])上進行有無監督的訓練。第二步是使用經過訓練的權重并對目標數據集進行微調。大量的文獻表明,即使在小的領域特定數據集[40]上,遷移學習也能改善和穩定訓練。

半監督學習

半監督學習是無監督學習和監督學習的混合.

Self-supervised 自監督學習

自監督使用一個借托pretext任務來學習未標記數據的表示。借托pretext任務是無監督的,但學習表征往往不能直接用于圖像分類,必須進行微調。因此,自監督學習可以被解釋為一種無監督的、半監督的或其自身的一種策略。我們將自我監督學習視為一種特殊的學習策略。在下面,我們將解釋我們是如何得出這個結論的。如果在微調期間需要使用任何標簽,則不能將該策略稱為無監督的。這與半監督方法也有明顯的區別。標簽不能與未標記的數據同時使用,因為借托pretext任務是無監督的,只有微調才使用標簽。對我們來說,將標記數據的使用分離成兩個不同的子任務本身就是一種策略的特征。

2.2 分類技術集合

在減少監督的情況下,可以使用不同的技術來訓練模型。在本節中,我們將介紹一些在文獻中多種方法中使用的技術。

一致性正則化 Consistency regularization

一個主要的研究方向是一致性正則化。在半監督學習過程中,這些正則化被用作數據非監督部分的監督損失的附加損失。這種約束導致了改進的結果,因為在定義決策邊界時可以考慮未標記的數據[42,28,49]。一些自監督或無監督的方法甚至更進一步,在訓練中只使用這種一致性正則化[21,2]。

虛擬對抗性訓練(VAT)

VAT[34]試圖通過最小化圖像與轉換后的圖像之間的距離,使預測不受小轉換的影響。

互信息(MI)

MI定義為聯合分布和邊緣分布[8]之間的Kullback Leiber (KL)散度。

熵最小化(EntMin)

Grandvalet和Bengio提出通過最小化熵[15]來提高半監督學習的輸出預測。

Overclustering

過度聚類在減少監督的情況下是有益的,因為神經網絡可以自行決定如何分割數據。這種分離在有噪聲的數據中或在中間類被隨機分為相鄰類的情況下是有用的。

Pseudo-Labels

一種估計未知數據標簽的簡單方法是偽標簽

3. 圖像分類模型

3.1 半監督學習

 四種選擇的半監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的藍色方框中給出。在右側提供了該方法的說明。一般來說,這個過程是自上而下組織的。首先,輸入圖像經過無或兩個不同的隨機變換預處理。自動增廣[9]是一種特殊的增廣技術。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的,但是共享公共部分。所有的方法都使用了標記和預測分布之間的交叉熵(CE)。所有的方法還使用了不同預測輸出分布(Pf(x), Pf(y))之間的一致性正則化。

3.2 自監督學習

四種選擇的自我監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的紅色方框中給出。在右側提供了該方法的說明。微調部分不包括在內。一般來說,這個過程是自上而下組織的。首先,對輸入圖像進行一兩次隨機變換預處理或分割。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的。AMDIM和CPC使用網絡的內部元素來計算損失。DeepCluster和IIC使用預測的輸出分布(Pf(x)、Pf(y))來計算損耗

3.3 21種圖像分類方法比較

21種圖像分類方法及其使用技術的概述——在左側,第3節中回顧的方法按學習策略排序。第一行列出了在2.2小節中討論過的可能的技術。根據是否可以使用帶標簽的數據,將這些技術分為無監督技術和有監督技術。技術的縮寫也在第2.2小節中給出。交叉熵(Cross-entropy, CE)將CE的使用描述為訓練損失的一部分。微調(FT)描述了交叉熵在初始訓練后(例如在一個借口任務中)對新標簽的使用。(X)指該技術不是直接使用,而是間接使用。個別的解釋由所指示的數字給出。1 - MixMatch通過銳化預測[3],隱式地實現了熵最小化。2 - UDA預測用于過濾無監督數據的偽標簽。3 -盡量減少相互信息的目的作為借口任務,例如視圖之間的[2]或層之間的[17]。4 -信息的丟失使相互信息間接[43]最大化。5 - Deep Cluster使用K-Means計算偽標簽,以優化分配為借口任務。6 - DAC使用元素之間的余弦距離來估計相似和不相似的項。可以說DAC為相似性問題創建了偽標簽。

4. 實驗比較結果

報告準確度的概述——第一列說明使用的方法。對于監督基線,我們使用了最好的報告結果,作為其他方法的基線。原始論文在準確度后的括號內。第二列給出了體系結構及其參考。第三列是預印本的出版年份或發行年份。最后四列報告了各自數據集的最高準確度分數%。

5 結論

在本文中,我們概述了半監督、自監督和非監督技術。我們用21種不同的方法分析了它們的異同和組合。這項分析確定了幾個趨勢和可能的研究領域。

我們分析了不同學習策略(半監督學習策略、自監督學習策略和無監督學習策略)的定義,以及這些學習策略中的常用技術。我們展示了這些方法一般是如何工作的,它們使用哪些技術,以及它們可以被歸類為哪種策略。盡管由于不同的體系結構和實現而難以比較這些方法的性能,但我們確定了三個主要趨勢。

ILSVRC-2012的前5名正確率超過90%,只有10%的標簽表明半監督方法適用于現實問題。然而,像類別不平衡這樣的問題并沒有被考慮。未來的研究必須解決這些問題。

監督和半監督或自監督方法之間的性能差距正在縮小。有一個數據集甚至超過了30%。獲得可與全監督學習相比的結果的標簽數量正在減少。未來的研究可以進一步減少所需標簽的數量。我們注意到,隨著時間的推移,非監督方法的使用越來越少。這兩個結論使我們認為,無監督方法在未來的現實世界中對圖像分類將失去意義。

我們的結論是,半監督和自監督學習策略主要使用一套不同的技術。通常,這兩種策略都使用不同技術的組合,但是這些技術中很少有重疊。S4L是目前提出的唯一一種消除這種分離的方法。我們確定了不同技術的組合有利于整體性能的趨勢。結合技術之間的微小重疊,我們確定了未來可能的研究機會。

參考文獻:

[1] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many consistent explanations of unlabeled data: Why you should average. In International Conference on Learning Representations, 2019.

[2] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual information across views. In Advances in Neural Information Processing Systems, pages 15509–15519, 2019.

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Information Processing Systems, pages 5050–5060, 2019.

[4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.

[5] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering. 2017 IEEE International Conference on Computer Vision (ICCV), pages 5880–5888, 2017.

付費5元查看完整內容
北京阿比特科技有限公司