戰場指揮在未來將走向何方?這個問題是軍事當前一代人改革的核心。在尋找答案時,軍事域將目光投向烏克蘭戰場。那里的戰事揭示了兩大真相:第一,"分布式指揮"(美軍稱為任務式指揮并宣稱其為準則)將繼續作為優勢存在;第二,未來指揮官將借助人工智能決策所有事務——行軍路線、攻擊目標與救援對象。美國陸軍近期宣布的改革計劃表明,其意圖同步推進這兩大方向。
但由此衍生出新的困境:軍隊如何在維系分布式指揮文化的同時,將人工智能融入每項任務?換言之,若各層級指揮官依賴人工智能輔助決策,是否可能催生另一種形式的"集中化"——權力并非集中于高層,而是受限于不完美的算法模型?要理解并最終解決這一困境,不妨再次聚焦烏克蘭地圖,不過這次需回溯兩個世紀——從克里米亞戰場那位名叫列夫·托爾斯泰的年輕炮兵身上汲取智慧。
成為文學巨匠之前,二十多歲的托爾斯泰是名炮兵軍官。1854年,他親歷了克里米亞戰爭的高潮——被困于遭英法聯軍猛烈炮擊的塞瓦斯托波爾港。在堅守城市險要"第四棱堡"炮陣的間隙,托爾斯泰為圣彼得堡的《現代人》雜志撰寫戰地通訊。這些以坦誠與文采風靡俄國文壇的報道使他聲名鵲起,后被輯錄為《塞瓦斯托波爾故事集》,被公認為現代戰地報道的開山之作。報道的成功讓托爾斯泰確信寫作是畢生使命,克里米亞戰爭結束后他便退役專職寫作。
成為平民的托爾斯泰并未遠離戰爭題材。他終其一生都在從軍旅經歷中汲取創作素材。在其代表作《戰爭與和平》對奧斯特里茨與博羅季諾戰役的經典敘述中,清晰可見他對軍事指揮的見解:托爾斯泰認為"指揮"概念本身近乎虛妄——指揮官構想的計劃、下達的指令與實際戰場態勢間的關聯脆弱不堪。在他筆下,最糟糕的軍官因狂妄臆測戰局而釀成大禍,實則對戰場態勢一無所知;最優秀的軍官則坦然接受認知局限,沉著自若地展示冷靜以激勵士兵。無論何種情形,多數軍官在硝煙彌漫與地形起伏的戰場中如同盲人行路,只能在戰事后編織解釋性的故事,而這些故事卻被他人誤作可信的戰場證言。
軍事研究者或疑托爾斯泰的見解是否超越了克勞塞維茨1832年《戰爭論》的論述。畢竟克氏早已闡明"意外事件"與"微小因素"如何塑造戰場結局,其"摩擦"理論至今仍在美軍廣泛沿用。但"摩擦"隱喻本身已暗示二人戰爭觀的本質差異:克勞塞維茨視戰爭為精密機器——摩擦僅是阻礙其順暢運轉的例外故障;而托爾斯泰眼中,這臺機器純屬高階指揮官臆想——無論他們如何努力,戰場實況終將粉碎其精心設計。
托爾斯泰的突破性觀點在于:指揮官不僅難以預見摩擦,更在制造集體幻覺。他們在無序戰場強尋規律,于巧合事件妄斷因果。《戰爭與和平》中:彼得·巴格拉季昂在奧斯特里茨敗局已定時仍請戰;1814年莫斯科大火因消防員潰逃而非庫圖佐夫命令;俄軍在塔魯季諾的完美側擊實為后勤事故而非預定計劃。然而歷史學者與當時將領竟將此類事件歸功于巴格拉季昂與庫圖佐夫的"天才指揮",更遑論被托氏塑造成"拉著車廂韁繩便自認馭者的孩童"般自欺的拿破侖。
為何指揮官與史家總將戰果歸因于不相關的計劃?托爾斯泰在《戰爭與和平》的哲學篇章中揭示:"人類心智無法窮盡事件全貌,但探尋因果的欲望深植靈魂。"人們渴求邏輯連貫卻無力洞察萬千微因,遂虛構出本不存在的宏大敘事與偉人。托氏核心論旨在于:事件并非無因,只是成因過于繁雜隱晦而超越人類認知。他將這些因素稱為"無窮小量",主張研究者應"撇開帝王將相",轉而考察"驅動民眾的細微元素"。
此即托爾斯泰的著名批判。他劍指當時盛行的"偉人史觀"——該理論認為歷史由天才意志推動。但此論亦可視為對任務式指揮的強力佐證:托氏戰爭敘事表明,分散指揮不僅是優選模式,更是唯一真實的指揮形態,余者皆為幻象。高階指揮官因遠離戰場(脫離士兵與炊事員的真實層面),其幻覺得以免受現實沖擊而持久存續。貼近地面的領導者最擅整合"無窮小量"以理解戰場。如以賽亞·伯林在托學名篇《刺猬與狐貍》所言,這種整合本質是"藝術-心理"層面的工作。而陸軍條令視為任務式指揮基石的"互信"與"共享理解",豈非正是精妙心理過程的產物?
或許無人需借托爾斯泰之見方能領悟任務式指揮的價值。當今美國觀察家在烏克蘭戰場隨處可見其智慧明證:烏軍憑借更動態分散的指揮控制抵消俄軍數量與裝備優勢,此舉被類比為美軍自身風格。另有觀點歸功于烏軍將人工智能應用于多元戰場職能——此領域烏軍已大幅領先美軍。將AI融入數據中心的指揮控制工具、參謀作業及作戰條令的呼聲高漲,但兩大要務——整合AI與維系任務式指揮——的辯證關系卻遭忽視。
初看之下,人工智能似為托爾斯泰詰難的完美解答。以賽亞·伯林在《刺猬與狐貍》中如此概括其核心:
吾輩無知非因根本原因不可觸及,實緣其數量龐雜、終極單元微小,加之人類無力盡察盡記盡錄盡協可用之材。全知于經驗性存在原則上可行,然實踐終不可及。
還有比這更精妙的人工智能宣言嗎?AI對指揮官的價值主張,不正在于整合所有托氏"無窮小量"(即"終極單元"),并將其投射至可穿戴設備,供受敵壓迫的動態軍官快速參考?換言之,偉大模型能否在戰場實現偉人未竟之功?
困境有三重:
集權悖論
盡管軍方開發多用途模型,但AI指揮系統大規模列裝將導致同質化模型在作戰部隊泛濫。若任務式指揮僅為通過復制高層思維加速決策,則AI將使其過時——但陸軍條令手冊ADP 6-0明示其核心在于"激發下屬創造力",此特質恰為集權所扼殺。最終或使全軍共享同一"教練"(若非同一指揮官),縱使其才智卓絕。
模型幻覺癥候
大型語言模型虛構內容并自信宣稱為真已非新聞,其本質是尋求模式并機械外推。計算機視覺同樣產生誤判。最新研究稱此"思維幻構"嚴重限制AI處理新問題與環境之能。托氏曾諷拿破侖在侵俄戰爭中"抱怨戰事違背所有規則——仿佛殺人存在規則",其博羅季諾慘敗正源于AI易犯之錯:機械套用過時規則。模型訓練的邏輯與《戰爭與和平》中拿破侖兵臨莫斯科前的妄想如出一轍——數據支撐的預期勝利終成泡影。
系統性過度自信
研究表明模型類同幼稚軍官:寧自信作答拒不認無知。可設想AI處理殘缺敵情報告時,強行擬合模式、填補數據缺口,最終自信預測與士官實況相悖的敵行動。同理可推指揮官受AI建議,在幻構地形設伏或虛構敵巡邏隊調度。宏觀層面,AI或憑訓練數據幻想整場戰役,實則戰場僅聞遠方載彈無人機微爆。
自動化偏信陷阱
軍方AI倡導者明言無意取代人類判斷,僅強調"輔助決策""賦能指揮"。且人類指揮官本就會犯同類錯誤——無需機器助長自欺。癥結在于:我們將AI視作超人,產生研究者所稱"自動化偏信"。今人視拿破侖為洞悉戰爭復雜性的天才固顯可笑,但當下眾多人士卻對AI"超智能"(OpenAI薩姆·奧爾特曼語)抱有同等迷信。"超智能"與"偉人"概念何其相似?我們正冒險將AI塑造成拿破侖未能成為的"終極偉人"——整合無窮小量的天才,托氏在《戰爭與和平》中徹底解構的歷史主角。若視AI為歷史偉人,年輕中尉豈敢違抗其建議?
人工智能以其多元形態必將深度融入軍事體系。陸軍在此戰略間歇期絕不能陷入盧德派式抗拒,必須將AI整合至作戰體系。任何嘗試預測旅級戰備狀態、營級燃料補給節點或士兵牙科診療需求者,皆深知狹義人工智能在高頻次、結構化、去情境化任務中的巨大增效潛力——"下一代指揮控制"等項目正著眼于此。但AI對任務式指揮的風險不容小覷,托爾斯泰的警示為陸軍認知與化解這些風險提供了關鍵鏡鑒。
降低AI對任務式指揮風險的首要是嚴格限定其應用場景于海量簡單任務。AI本質上不適應低頻次、高復雜、強情境依賴的人類深度決策領域(戰爭本質恰屬此類),故其在戰役設計、戰術規劃、敵情研判及士兵領導等環節的角色應受限制。AI在此類領域僅能加速人類決策所需的輔助計算。這種人機協同戰爭觀并非新見(阿曼達·科拉佐少校等學者已深入探討),但在技術狂熱中,陸軍需警惕并嚴格界定人機邊界——這不僅出于倫理考量,更因托爾斯泰雄辯揭示:戰場指揮終將挫敗任何算法心智(無論人類或機器)。用伯林的話說,指揮始終是"藝術-心理"工作,且至今仍是人類專屬。審慎態度不意味禁止AI用于模擬推演(那將自毀長城),但要求軍官抵制作戰方案外包誘惑——此原則當下顯見,未來或遭侵蝕。
其次需在軍官教育中植入對AI的健康懷疑精神。可采取類比炮兵訓練模式:迫擊炮手需同步掌握標圖板與彈道計算機兩種火控技能。軍官應先掌握無AI輔助的獨立規劃與指揮能力,再引入智能工具。此項能力應在職業全程定期復核。機器學習課程(強調模型對數據質量的依賴性)應與戰場情報準備課程同步開設。課程設計者或抱怨教學容量超載,但若AI指揮控制真如其鼓吹者所言具有革命性,則必須配以同等程度的教育變革。
第三條路徑是在訓練中強化AI懷疑論實踐。借鑒喬治·馬歇爾在戰間期步兵學校的創舉:他與約瑟夫·史迪威將學員趕出教室投入無預演演習,提供劣質地圖模擬戰場不確定性。循此傳統,陸軍應在野戰演習中刻意配備幻構AI模型。指揮官評估標準應包括:識別AI構建的虛擬戰場與實際戰場的差異能力。當訓練檢查清單要求"部隊需在動態降級環境下完成任務"時,"降級"條件必須涵蓋AI幻構/失效場景。
即便至此,陸軍指揮官永不可忘托爾斯泰之訓:指揮是充滿變數的人類事業。戰爭常以獨特形態打破既有模式。貼近戰場的年輕指揮官恰是寶貴資產——他們能洞察海量數據無法捕捉的"無窮小量"。任務式指揮哲學雖善變且時有挫敗,卻最善接納這些戰場微觀洞見。唯此,陸軍方能穿透硝煙辨識托氏筆下的戰爭本源,方得整合制勝要素之希冀。
參考來源:美國西點軍校
自2024年起,俄烏戰爭已成為現代無人機戰爭的試驗場,無人機(UAV)在軍事與民用領域均發揮關鍵作用。眾多觀察家將俄烏沖突稱為全球首場全面無人機戰爭——廉價無人機已從邊緣工具蛻變為戰場最重要且廣泛使用的武器。通過將傳統塹壕戰與"無人機驅動型技術創新"融合,無人機助力烏克蘭部分抵消俄軍在常規火力上的優勢。本深度報告回顧2024至2025年烏克蘭無人機領域關鍵進展,涵蓋戰場運用、本土創新、民用貢獻、外援支持及地緣政治影響,并援引專家與官員的直接論述。
無人航空器已遍布俄烏戰場。幾乎所有烏克蘭旅級部隊均配備專職無人機分隊執行偵察、炮校及攻擊任務。小型第一人稱視角(FPV)無人機(原為業余競速四旋翼)經改裝攜帶爆炸物后可直接撞擊目標。這些成本僅500美元的自殺式FPV無人機可摧毀或癱瘓價值百萬美元的坦克與火炮,生動詮釋無人機的非對稱價值。每日發布的作戰視頻顯示:500美元無人機可擊毀重型裝甲載具,"彰顯其在現代戰爭中的變革性作用"。前線士兵已畏懼頭頂持續的無人機嗡鳴聲——烏步兵報告稱當前空中無人機密度已至"難以往返塹壕而不被偵測或攻擊"的程度。
烏軍將無人機整合為分層防御戰略,常被稱作"無人機防御墻"。沿數百英里戰線,偵察無人機與巡飛彈構成縱深防御區,有效阻滯瓦解俄軍攻勢。該戰術在2024年初炮彈短缺時尤為重要:無人機作為廉價精準替代品填補火力空缺。盡管單架無人機戰斗部遠小于炮彈,但協同蜂群可高效打擊敵軍人員載具,使俄軍大規模進攻集群難以集結。據分析師估算,當前雙方戰場損失約70%歸因于無人機。國際戰略研究所(IISS)指出:俄軍2024年損失逾1400輛坦克及3700輛裝甲車,此等規模毀傷主要源于烏軍激進無人機戰術。
雙方競相調整戰法。面對烏軍無人機"防御墻",俄軍放棄重型裝甲縱隊,改用摩托車與沙灘車組成小型突擊單元規避無人機偵測。同時俄部署自研無人機展現致命效能:從引導炮火的"海鷹-10"偵察機,到獵殺烏軍榴彈炮的"柳葉刀"巡飛彈。自2022年末,俄軍使用的伊朗制"沙希德-136"自殺式無人機屢次襲擊烏城市與基礎設施,迫使烏方臨時研發反制措施。目前烏軍已列裝可追擊攔截"沙希德"的攔截無人機,電子戰部隊則嘗試干擾或誘偏其航向。烏克蘭上空由此爆發激烈對抗,電子戰與反無人機防御成為雙方日益關鍵的作戰要素。
在戰線后方,烏克蘭日益依賴無人機實施遠程打擊高價值俄軍目標。2023至2024年間,烏軍對距前線數百公里的俄軍基地、補給站、煉油廠等基礎設施發動數十次縱深打擊。僅2024年,烏武裝部隊即執行約130次遠程無人機行動,打擊俄境內377個關鍵目標,涵蓋空軍基地、彈藥庫、國防工廠及能源設施。這些突襲標志著烏軍運用無人系統將戰火引向敵后的大膽戰略。
該戰略在2025年6月1日"蛛網行動"中達到頂峰——這場大規模協同無人機攻擊被烏官員譽為"開戰以來射程最遠、最具雄心的打擊"。通過"策劃18個月的奇襲",烏安全局(SBU)滲透小組深入俄境,將117架小型FPV無人機藏匿于偽裝成普通貨柜的卡車中秘密運輸。早晨時分,特工遠程開啟車頂,從俄領土腹地直接釋放無人機蜂群。這些通過第一人稱視角操控(推測操作員位于境外)的無人機同時突襲多個空軍基地,令俄軍措手不及。據SBU局長瓦西爾·馬柳克透露,無人機在四座基地損毀41架軍機,含戰略轟炸機(圖-95、圖-160、圖-22M3)及A-50預警機。總統澤連斯基盛贊此次"卓越"行動動用117架無人機對應117名操作員,宣稱一夜重創俄軍約34%戰略轟炸機隊。獨立分析評估指出:烏軍"僅憑小型無人機即癱瘓至少十余架俄軍機——包括俄約10%轟炸機隊",此等戰果在缺乏大型導彈或有人空襲條件下曾不可想象。
烏軍遠程無人機攻擊顯著驗證低成本無人系統的戰略覆蓋力。自2023年起,烏制單向攻擊無人機(多為改裝蘇制機型或本土新設計)已打擊俄本土及克里米亞占領區縱深目標,最遠觸及距烏2500英里的西伯利亞機場。此類行動迫使俄調整防御部署甚至轉移資產。例如在海上無人機反復襲擊軍艦及克里米亞大橋后,俄黑海艦隊主力艦艇基本撤離塞瓦斯托波爾港。分析指出:"烏海上無人機迫使俄黑海艦隊棄守克里米亞占領區母港",攜帶炸藥的烏海軍無人機甚至成功破壞俄軍艦艇與岸基設施。在陸域戰場,烏軍部署小型地面機器人至前線——這些遙控無人地面載具可運送補給、后送傷員乃至攻擊敵戰壕,同時避免人員傷亡。烏方在多域產生威脅。
俄方亦不甘示弱,2024-2025年加強針對烏城市的無人機與導彈打擊,常以"沙希德"無人機群試圖飽和防空系統。這使烏克蘭自身成為反無人機技術試驗場。西方援烏防空系統(如"獵豹"高炮、"IRIS-T"及"NASAMS"導彈)經改裝用于攔截無人機,烏科技界則臨時開發防御手段——從反無人機干擾槍到聯動監控攝像頭與AI的來襲無人機識別軟件。空域對抗場景深刻印證無人系統在攻防兩端已成不可或缺要素。
面對持續的無人機軍備競賽,烏克蘭在2024至2025年間大力推進本土無人機產能擴張。戰爭初期該國僅有個位數無人機生產商;至2025年,運營制造商已近500家——涵蓋大型防務企業至小型初創公司。澤連斯基將無人機生產列為戰略優先事項,2025年初宣布烏克蘭年產能可達400萬架。產能躍升規模驚人:隨著新工廠與裝配線投產,簡易FPV無人機月產量從2024年約2萬架飆升至2025年20萬架。大西洋理事會報告稱:"今年烏克蘭計劃生產約400萬架各型無人機,超過去年總量兩倍",產品譜系從微型四旋翼、巡飛彈延伸至可打擊數百英里外目標的大型遠程無人機。
產業爆發式增長源于政策扶持與基層創新共筑的防務科技生態。2022年中啟動"無人機軍團"計劃為軍隊眾籌采購無人機,2023年設立Brave1科技孵化器支持本土開發者。至2025年,Brave1已向無人機及防務科技項目發放超470項資助,1500余家烏科技企業投身無人系統及相關技術研發。政府通過政策激勵零部件本土化——零部件本土化率超50%的企業可獲長期國家合同。烏克蘭企業由此加速機架、電子設備、發動機等核心部件國產化。2025年3月,Vyriy公司實現里程碑突破:量產千架全本土組件(飛控、無線電、攝像頭、發動機等)無人機,顯著降低對外依賴并增強供應鏈抗風險能力。
烏克蘭工程師在戰火中展現卓越敏捷性與創新力。借助3D打印與快速原型技術,新機型設計投產周期縮短至數周。創新成果包括抗干擾光纖制導無人機、應對俄電子戰優勢的AI自主制導實驗機型。觀察家指出:"依托戰場快速反饋與精簡采購流程,烏克蘭創新敏捷性遠超西方漫長研發周期",其無人機以極低成本實現媲美西方型號的作戰效能。官員表示若有額外100億歐元資金及更多組件供應,年產能可進一步擴至1000萬架。
迅猛發展伴隨挑戰:大量新廠商涌入導致質量控制與標準化問題,亟需嚴格規范確保本土無人機可靠性。成功背后存悖論:當前產能已超越軍隊部署能力,預示生產線或將超前于前線需求。盡管如此,烏克蘭崛起為無人機生產大國仍具標志性意義。這個曾依賴外國無人機的國家,正將無人載具列為國家長期科技經濟優先方向,"致力于打造國防科技硅谷"。
認識到無人機的決定性作用,烏克蘭的國際合作伙伴在2024年至2025年期間通過資金、捐贈和技術轉讓加大了支持力度。2023年年中,約20個盟國組成的“無人機聯盟”成立,由英國和拉脫維亞共同主持,旨在協調對烏克蘭無人機項目的援助。截至2025年,該聯盟已承諾投入約27.5億歐元,幫助烏克蘭在2025年前額外獲取100萬架無人機。其中大部分涉及為從烏克蘭制造商處采購提供資金(提振了當地產業)以及供應關鍵部件。進展比期望的要慢——聯盟成員最初依靠自身有限的生產能力——但新的機制正在加速援助。例如,丹麥推出了一種“丹麥模式”,捐贈者的資金(包括凍結俄羅斯資產的利息)被匯集起來,直接從烏克蘭公司采購無人機,繞過了繁瑣流程。預計僅2025年,這種簡化方法就將為烏克蘭無人機領域注入15億歐元。
盟國政府也從其庫存中捐贈了大量現貨無人機和巡飛彈藥。美國和波蘭提供了“彈簧刀”(Switchblade)和“戰友”(Warmate)自殺式無人機,英國為城市作戰派發了輕量級“黑黃蜂”(Black Hornet)偵察微型無人機,許多北約國家向前線運送了數百架商用無人機用于偵察。在戰爭早期成名的土耳其“巴伊拉克塔爾”(Bayraktar)TB2無人機持續少量交付(盡管其較大的尺寸使它們在面對2024年改進的俄羅斯防空系統時生存能力降低)。在海上,據報道美國和英國通過提供專業知識并可能包括關鍵部件,協助烏克蘭為其新興的海軍無人機艦隊開發無人水面艇。這種海軍無人機被用于2023年對塞瓦斯托波爾和新羅西斯克的俄軍艦艇進行的引人注目的攻擊,展示了西方技術支持在新領域中的價值。
值得注意的是,國際援助不僅基于硬件,還側重于培訓和知識共享。烏克蘭無人機操作員和工程師接受了有關北約先進無人機系統的培訓,而西方軍方則悄然研究烏克蘭的無人機戰術,以期為自身防務汲取經驗。聯合研發項目也相繼涌現——例如,烏克蘭與波蘭合作開展一個新的遠程無人機項目,美國科技公司則與烏克蘭初創企業合作研究用于無人機情報的人工智能驅動圖像分析。到2024年底,烏克蘭國防部與幾家西方制造商簽署協議,將在烏克蘭本土建立無人機生產或維修設施,從而鞏固了長期伙伴關系。
烏克蘭無人機領域最顯著的特點之一,是平民和志愿者深度參與無人機的開發與操作。從戰爭初期開始,烏克蘭精通技術的民間力量便積極響應軍隊無人機需求。著名案例是由平民IT專家組建的志愿者無人機部隊"空中偵察"(Aerorozvidka)。該組織2014年僅為小型興趣團體,到2022年已發展為烏軍內部高效的偵察攻擊小隊,不僅自制無人機還將民用無人機武器化。
各地志愿者籌集資金購買現貨無人機——從微型競速四旋翼到重型八旋翼——再進行戰斗改裝。消費級機型被重新涂裝,加裝簡易炸彈投放裝置或紅外攝像頭后送往前線。空中偵察團隊甚至自主設計制造了R-18八旋翼無人機。這款造價約2萬美元的八旋翼飛行器可投擲5公斤(11磅)炸彈并回收重用,已成功摧毀俄軍裝甲車,借助熱成像功能實現夜間40分鐘續航,印證了烏克蘭在壓力下的創新能力。截至2024-25年,數百個志愿團體和初創企業投身類似事業:從3D打印無人機零件到開辦"無人機學校"培訓普通民眾成為熟練的FPV無人機操作員。地方政府亦參與其中——如2024年初日托米爾市議會啟動項目,教導平民為軍隊需求制造操控FPV無人機。
眾籌在此領域至關重要。2022年中啟動的全球捐贈項目"無人機軍團"持續至2024年,籌集數千萬美元用于海外采購無人機及零部件。社交媒體活動常聚焦具體需求(如為某次攻勢眾籌1000架FPV神風無人機),獲得烏國民眾及僑胞的慷慨響應。科技企業家與愛好者俱樂部同樣通過整合資源制造實驗性原型機。這種自下而上的力量在2024年顯著壯大了烏克蘭無人機機隊,本質上動員民用科技圈成為輔助軍工產業。
無人機戰爭中軍民角色的模糊化帶來了機遇與挑戰。一方面,烏克蘭利用現成商用技術與基層人才,快速形成傳統軍隊官僚體系需多年才能發展的能力。但依賴國外商業平臺存在隱患:供應商曾因政治壓力斷供。這也意味著數千平民志愿者需在戰場速成軍事技能,甚至作為無受訓操作員出現傷亡。盡管如此,烏克蘭經驗展示了"大眾化"戰爭模式:普通無人機愛好者能為國防做出切實貢獻。正如專家觀察指出:"烏克蘭戰爭中無人機的廣泛應用提供了關鍵啟示——從平民日益深入的參與到過度依賴外國零部件的風險"。基輔正將部分志愿力量制度化:將優秀志愿者部隊編入正規軍,并制定新飛行員標準化培訓計劃。
2024-2025年烏克蘭無人機的大規模運用產生了深遠的地緣政治影響,引發全球軍事領域既敬畏又焦慮的復雜情緒。對烏克蘭及其支持者而言,無人機行動已成為戰爭中的潛在戰略點。通過平衡技術代差,無人機幫助烏克蘭抵御了數量占優的敵軍。烏方分析人士主張:若將無人機年產量提升至百萬量級,就能用廉價無人機群壓垮俄軍防御體系,其打擊速度將超越對手反應能力。這種思路已影響西方援助策略,盟國正考慮專項撥款以實現烏克蘭的"無人機蜂群"戰略。
國際層面,烏克蘭的無人機成就為未來戰爭形態敲響警鐘。2025年6月的"蛛網行動"尤其震撼北約軍事規劃者。"這次無人機伏擊應給美軍拉響警報",防務分析師斯泰西·佩蒂約翰與莫莉·坎貝爾在襲擊后撰文警告,指出美軍基地可能同樣脆弱。他們強調"烏克蘭僅用小型無人機就癱瘓了至少十余架俄軍戰機——包括俄轟炸機隊約10%的兵力",此舉暴露了傳統防御體系面對廉價無人機群的嚴重漏洞。據報道五角大樓高層以焦慮又艷羨的矛盾心態觀戰:既擔憂美軍資產遭遇類似威脅,又垂涎烏克蘭開創的創新戰術。教訓顯而易見:未來任何涉及先進軍隊的沖突都可能充斥無人機,缺乏強力反制手段者必將遭受重創。受烏克蘭戰局直接刺激,西方軍隊正大力投資反無人機系統——從干擾槍、激光武器到戰機加固掩體。
烏克蘭DIY無人機的成功案例鼓舞了一些國家甚至非國家行為體,他們從中發現了不對稱戰爭藍圖:憑借充足現貨技術與獨創性,弱勢方能對抗強敵。英國皇家國際事務研究所指出:"烏軍使用廉價無人機打擊俄腹地目標,為快速演變的現代戰爭提供了范本",呼吁各國政府據此重新思考防務理念。事實上,歐洲防務官員日益將烏克蘭無人機防御視為"抵御激進俄羅斯的歐洲第一道防線"。
專家們最后指出,烏克蘭戰爭催化了全球無人機擴散。作戰無人機曾專屬少數先進軍隊;如今受烏戰啟發,數十國正開發或獲取類似能力。烏克蘭自身也表示戰后要成為無人機技術出口大國,或將重塑國防工業格局。但若落入惡徒之手,同樣的廉價無人機戰術可能用于恐怖活動或制造動蕩(如非國家組織襲擊關鍵基礎設施)。此類憂慮重啟了關于無人機使用國際準則的討論。正如某歐洲分析師所言,烏克蘭局勢意味著"無人機精靈已經逃離瓶子"——當下要務是學會與之共存,并確保盟國在無人機創新與防御領域保持領先優勢。
2024至2025年,烏克蘭的生存之戰日益演變為無人機博弈,在此過程中革新了軍事思想。從戰壕四旋翼到遠程自主轟炸機,無人機滲透進沖突的每個環節。依托本土創造力、全民動員與外圍支持,烏克蘭對無人系統的聚焦不僅在戰場取得成果,更引發戰爭形態的深層變革。隨著該國持續精進無人機武庫與戰術,其經驗為世界提供了些許教益。
參考來源:Drone warfare analyses and expert commentary;news reports on Ukraine’s drone operations and industry;official statements and statistics from Ukrainian authorities and allied officials
在威脅飛速演變的時代,國防機構需要處理海量實時戰場數據,以做出更快、更明智的決策。對軍事和國防團隊而言,充分利用實時數據的能力可能意味著任務成功與失敗的區別。
數字孿生——現實世界資產的虛擬復制品——傳統上被用于協助開發復雜結構,例如噴氣發動機。如今,它們正成為一項關鍵的任務工具,用于追蹤戰場空間中的動態威脅、增強態勢感知以及優化國防后勤。
實時數字孿生是基于軟件、駐留在內存中的虛擬呈現,代表物理系統中的一項資產。它們結合實時數據、實況遙測數據和預測建模技術,為作戰行動提供可操作的情報。它們實時鏡像現實世界的實體,根據傳感器數據、歷史趨勢和預測建模算法(如機器學習)持續更新洞察力。它們還可以融入生成式人工智能(Gen AI)以增強其實時監控和數據可視化能力。
這項技術使軍事行動指揮官能夠在變化對關鍵國防行動產生不利影響之前,對其進行監控、分析和預判。數字孿生還能模擬復雜系統,例如機群、自主無人機和國防供應鏈,提供預測性見解,為戰略規劃和風險緩解提供依據。
傳統的離線或批處理數據分析技術可能導致分析延遲,而實時數字孿生則能持續追蹤、分析和預測運行系統中的變化。這使得軍事和國防人員能夠動態監控數千項戰場資產,檢測異常情況,并精準做出戰略決策。
通過獲取空中無人機或衛星監視數據,實時數字孿生能夠持續追蹤并可視化戰場上敵方軍事單位、飛機和火炮資產的動向,使指揮官能夠基于敵方運動的實時情報做出快速、數據驅動的決策。實時數字孿生還通過幫助識別預示未來潛在威脅的歷史移動模式,來支持戰術軍事規劃。它們也能通過檢測后勤漏洞,協助進入新地形的軍用車輛,使人員能夠規劃替代路線,從而降低作戰風險。
實時數字孿生能夠持續處理來自己方資產的實時遙測數據,以檢測部隊運動中的異常、動態供應鏈變化和網絡安全威脅。融入機器學習有助于它們在戰場數據中識別細微模式并對異常(如敵方的意外移動或潛在的系統故障)進行分類。機器學習算法分析傳入的海量遙測數據流,使數字孿生能夠從歷史交戰記錄中學習,幫助軍事指揮官領先于不斷演變的威脅。
在處理實況戰場數據的同時,數字孿生能夠監控機器學習算法的性能,并即時對其進行再訓練,從而提高它們在問題發生前檢測異常和預測問題的能力。這種持續學習能力增強了主動防御措施,使防御策略能夠實時適應新出現的威脅。
數字孿生還可以融入生成式人工智能(Gen AI),在提供持續監控以增強戰場指揮官態勢感知的同時,進一步提升異常檢測能力。生成式人工智能能夠持續攝取和評估經多個數字孿生分析匯總的數據,從而識別具有戰略意義的問題。它還能快速輕松地創建數據可視化圖表,精確定位需要人員實時分析的問題區域。
由于它們實時追蹤單個資產,數字孿生能夠在快速變化的情況下監控后勤需求,并在需要補給時立即向人員發出警報。例如,它們可以持續追蹤單個武器系統的彈藥儲備,防止交戰中發生短缺。實時數字孿生的優勢不僅限于戰場。國防機構可以利用數字孿生來追蹤和管理數千項關鍵任務資產,從戰斗機到火炮,再到自主監視無人機。每項資產都至關重要,意外故障可能危及任務準備狀態和安全。傳統的維護模式依賴于定期檢查或在問題發生后進行補救性維修,這可能導致更高的運維成本和任務延誤。
為避免這些問題,實時數字孿生還可以通過支持機器學習技術的實時監控,持續評估裝備狀態,識別磨損模式,并在設備故障發生前將其檢測出來。數字孿生不再是等待設備損壞,而是預測部件故障并實現預測性維護,從而減少代價高昂的停機時間并確保裝備保持戰備狀態。
美海軍正在利用數字孿生加強其艦隊的維護策略,實現主動維護服務并延長關鍵系統的使用壽命。預測性維護提高了后勤性能和效率,有助于確保更換部件、燃料和維修團隊能夠提前部署,而不是在緊急情況下才做出響應。通過實現這些能力,數字孿生幫助供應鏈最大程度地保障資產的準備狀態和整體彈性。
實時數字孿生正在徹底改變國防行動,它們為戰場上數千甚至數百萬資產提供實時情報、預測性分析以及增強的態勢感知。它們還能夠簡化后勤、模擬高風險交戰,并以前所未有的可視化和控制水平提升任務準備狀態。
通過機器學習和生成式人工智能(Gen AI)的增強,實時數字孿生使軍事領導者能夠進行持續監控,并可靠地檢測細微問題和新出現的威脅。它們利用實時數據自動再訓練機器學習算法的能力,使其能夠適應不斷變化的環境并提供最優洞察力。
隨著國家安全威脅日益復雜化,在一個日益動態變化的國防格局中,實時數字孿生能夠在加強軍事決策、優化部隊部署和確保作戰優勢方面發揮關鍵作用。
參考來源:federalnewsnetwork
當前正值顛覆性技術劇變時代,“人工智能”(AI)領域尤為如此。盡管由商業部門開發且為其服務,人工智能顯露的軍事應用潛力正推動全球武裝力量開始試驗雛形階段的“AI賦能防御系統”。對率先充分理解人工智能、進而改革現有人本中心兵力結構并接納“AI作戰模式”的國家而言,或將獲得顯著的“先發制人”優勢。
澳大利亞國防學院探索了適用于近中期“AI賦能戰爭”的海陸空作戰概念。鑒于大量底層“窄人工智能”技術已在商業領域成熟發展,此舉并非純理論推演。當代人工智能的“通用屬性”意味著其初期應用將嵌入現有作戰層級結構,而非構建全新體系。
本文聚焦空中領域。為集中論述,嚴格限定于“防空作戰”范疇,避免擴展至聯合與聯軍作戰層面。即便如此,仍可探索激發未來思考與備戰準備的作戰概念。關鍵需認知:人工智能是其他技術的“激活劑”。其并非獨立作用體,而是與眾多數字技術協同運作——為這些技術注入某種形式的“認知能力”。
近中期內,人工智能的核心吸引力在于其快速識別模式、探測海量數據中隱藏目標的能力。在為移動系統賦予新型自主性的同時,AI將徹底變革戰場全域的目標感知、定位與識別能力,“戰場隱蔽性”將日益困難。然而人工智能并非完美:其固有缺陷包括“易受欺騙性”“系統脆弱性”“跨任務知識遷移障礙”及“高度數據依賴性”。
因此人工智能的核心作戰效能可概括為“探測與反制”。依托機器學習,AI在“高雜波背景”中識別隱藏目標的能力遠超人類且速度驚人;但另一方面,人工智能也易受多種手段欺騙——其卓越的目標探測能力缺乏穩健性支撐。
“探測能力”構建的起點是在敵方力量可能活動的陸海空天網全域最優位置布設大量低成本“物聯網”(IoT)傳感器。這一理念已在“綜合防空系統”(IADS)中得到部分實踐——通過地面雷達站鏈與“空中預警機”協同探測高低空目標。空戰中“AI賦能防御概念”主張大規模增補現有高成本、數量受限的傳感器部署方式,轉而采用海量具備AI功能的小型低成本地面及機載傳感器。
擴展型物聯網傳感器網絡中的小型單元可利用“邊緣計算”技術,將預處理數據經云端傳輸至融合中心并匯入指揮控制系統。此類微型傳感器雖可搭載主動短程雷達發射器,但受制于“供電瓶頸”而應用受限。更可行的方案是采用被動式物聯網傳感器,探測涵蓋聲學、紫外、紅外、無線電及雷達頻段的電磁頻譜信號。單個傳感器性能或許有限,但當數百個節點數據整合時,便可實現三維空間內的空中目標追蹤與識別。
地面防空物聯網傳感器通常采用固定持久部署,而“無人機”(UAV)搭載的傳感器續航時間可達數小時至一晝夜。新興物聯網技術(如“高空氣球”“微衛星”及“偽衛星”)有望大幅提升續航能力,這些平臺均可集成AI功能。
建設采用被動探測模式的大型物聯網傳感器網絡后,滲透飛行器必須規避雷達、數據鏈及通信等輻射源以防暴露。盡管如此,常規飛機排放的噪音、熱輻射及可視特征仍可能泄露行蹤。因此構建“深層次物聯網傳感器網絡”至關重要:當飛行器接近已知傳感器時或通過機動降低輻射(尤指前向輻射),但深層網絡仍可從側翼及后方探測到規避中的目標——即使其未直接進入主探測區。
AI實現的超大規模物聯網傳感器網絡將部分處理數據經云端輸送至融合設施,由AI執行深度解析。此過程可套用“觀察-研判-決策-執行”(OODA)模型:“觀察”環節AI既作用于各物聯網節點邊緣計算,也參與融合中心數據處理;“研判”階段AI在“作戰管理系統”中發揮核心作用,不僅生成近實時全景空情圖,還能預判敵機行動軌跡;隨后的“決策”AI層基于防空單元可用狀態,向人類指揮官提交按威脅等級排序的攔截目標清單、推薦跨域攻擊最優方案、行動時間節點及防誤傷措施,此時人類通過“人在回路”或“人在環上”模式保持深度介入;經人工批準后,最終“執行”環節由AI主導——自動分配武器至各目標并傳遞制導數據、確保友軍誤傷規避、確認打擊完成狀態、必要時下達彈藥補給指令。
隨著多款高性能無人機投入應用,開發具備“視距內空戰”能力、利用“人工智能”進行戰術決策的無人機,似乎已成為一項明確的工程任務。美國空軍(USAF)計劃在2024年重啟2020年“AI駕駛戰機對抗人類飛行員”的試驗——此次將采用“實體戰術戰機”而非模擬系統。實戰化、經優化的“AI賦能近距格斗無人機”可實現比有人戰機更“小型化”“輕量化”與“低成本化”;若執行防御任務,甚至無需掛載武器即可瓦解敵方空襲。
該無人機可由“指揮控制系統”指派,對敵機實施“攔截”“逼近”并啟動“格斗”。敵有人戰機因此被迫分心應對,“攻擊路徑”遭到干擾,進而暴露于其他有人作戰系統的打擊范圍。若敵機進行規避機動,“燃油消耗率”將激增,可能需提前撤離以返回遙遠的基地。
另一方面,“AI武裝戰斗機”可根據實際戰況,采用“人在環內”或“人在環上”模式運作。但武器掛載會帶來“工程設計難題”:引發“通信穩定隱患”、觸發“武裝沖突法律風險”并衍生“戰術顧慮”。綜合考量下,采用“鎖定-全程伴飛”模式的無人機更具優勢——該型無人機“鎖定”敵機后持續伴飛,實時“廣播”其航跡與詳細參數。
“AI戰斗機”可執行“戰斗空中巡邏”(CAP)或“地面待命攔截”(GAI)任務。CAP任務需要較大機體以保證有效“滯空時間”(同尺寸無人機滯空能力遠超有人戰機),但機體增大將加劇“設計”與“操作”復雜度。執行GAI任務時,無人機可設計得更輕巧(更接近導彈構型),例如美空軍“XQ-58A女武神”驗證機:從固定發射架升空,傘降回收,并可部署于“可移動貨運集裝箱”中。若GAI型AI無人機無需機場,將簡化“多層防空體系”構建流程,更能催生“分布式防空”等創新理念——在物聯網傳感器網絡內分散部署GAI無人機,由指揮控制系統遠程調度實施“快速反應攔截”,與CAP有人戰機“協同作戰”。此類無人機同樣無需武器掛載即可發揮效用。
關鍵在于,此類“AI賦能的綜合防空系統”需明晰“人機任務分工”:人類承擔“高層級認知功能”的決策職責(制定“全局作戰策略”、篩選及“排序目標”、批準“交戰”),AI則執行“低層級認知功能”(如“飛行器機動控制”與“格斗戰術實施”)。
AI的“探測功能”需輔以“欺騙功能”形成作戰效能。攻擊方需充分掌握目標及防御信息以確保打擊成功率。“AI賦能欺騙系統”可在物理戰場與網絡空間全域部署,旨在通過構建誤導或混淆態勢破壞敵方“探測效能”。此類系統還可融入“精密欺騙行動”,發揮協同效應。
廣泛分散的移動式“邊緣計算系統”通過發射可變保真度信號群,可生成復雜電子誘餌。雖可借助道路網絡部署“無人地面載具”模擬機動防空系統等特定功能,但依托“無人機平臺”部署可實現最優機動性。其戰術目標是在短暫攻擊期間遮蔽戰場態勢。
成本更高的方案是采用“無人機電子復制技術”——模擬大量防御戰機在目標區域各CAP戰位升空,營造“防御力量遠超預期”的假象,誘使敵方攻擊編隊因預判高戰損而撤退。“欺騙功能”還可與“被動防御措施”及“作戰路徑選擇”深度集成。機場通常在戰前提前建設,可針對性設計抗打擊能力。但現代“精確制導武器”削弱了“加固工事”的防御效果,“分散部署”成為優選方案。AI技術將使這一分散部署策略的可行性達到數十年來新高。
永久性機場周邊可設若干“臨時起降場”。此類場站設計使用壽命為數周至數月(遠低于永久機場的幾十年)。沖突期間,戰機可在永久機場與臨時起降場持續輪轉。這種機動將與“AI賦能欺騙行動”深度融合,旨在迷惑敵方決策——使其無法確定打擊目標,最終徒勞攻擊無戰機駐扎區域。該戰術通過強化“戰爭迷霧”,操控敵認知模式,精準削弱敵作戰效能。
敵反航空作戰可投入的戰機、“防區外武器”及彈道導彈數量有限。攻擊無戰機駐扎的機場既使有人戰機蒙受不必要損耗,又造成珍貴彈藥儲備浪費(短期沖突中不可補充)。“AI欺騙系統”與“物理分散部署”相結合,既可降低敵空襲效能,又能誘使敵方消耗有生力量。此類分散部署的傳統痛點是:多臨時機場運作戰機需在各點位“復刻后勤支援體系”,導致人力和資源成本激增。AI賦能系統可破解此困局——永久機場可通過“智能物流通道”聯接其大型倉庫與臨時起降場的耗材補給點,當前已有成熟AI技術應用于倉儲端。
現代化倉庫已具備四大特征:“庫存實時監測”“AI機器學習云端大數據物聯網實時訂購”“機器人揀貨”“載具自動轉運”。部分倉庫引入“按需3D打印”技術,滿足老舊設備備件的一次性需求,避免大量占庫。新建的“物流控制中樞”集成多源數字信息,運用大數據分析技術實現供應鏈(含運輸環節)全景實時可視化。同類技術可應用于耗材儲備設施管理。
在補給運輸通道層面,“AI智能物流”可采用“機器人卡車編隊行駛”模式(亦稱“集群隨行技術”):頭車由人類駕駛領航,多輛無人載具緊密跟隨。研發“無人化機場物流卡車”比陸軍補給車技術門檻更低——前者主要在勘測過的鋪裝道路上運行,并可依托GPS導航。
臨時起降場端可全面部署AI賦能系統。通過整合“人工智能”“機器學習”“大數據”“云計算”“物聯網”“自主運行”及“機器人技術”,此類基地能以遠少于現役編制的人員規模高效生成作戰架次:包含“自主加油裝彈”的可服役戰機機器人化保障成為可能;“AI預測性維護”將大幅減少計劃外維修頻次。機場可呈現“無人值守”狀態,由永久基地或異地“工程物流中心”遠程管控,甚至采用“可再生能源+儲能電池”實現半自主供能。
臨時機場的啟用設備或已預置完畢,戰時激活即可。另一種方案是預設基礎設施網絡,待“即插即用”系統與載具通過首輪卡車編隊運抵后,迅速接入機場“體系中的體系”。正如本次聚焦防空的討論所揭示:AI正如同現代版的“機器之魂”,深度滲透多數軍事裝備,勢將開辟空戰新紀元。鑒于空軍轉型常需數十年沉淀,推動這場“未來空戰革新”已刻不容緩。
參考來源:
1 Peter Layton, “Fighting Artificial Intelligence Battles Operational Concepts for Future AI-Enabled Wars,” Joint Studies Paper, No. 4, 2021, //www.defence.gov.au/.
2 Peter Layton, “Algorithmic Warfare: Applying Artificial Intelligence to Warfighting,” Air Power Development Centre, 2018, .
3 Steve Ranger, “What Is the IoT? Everything You Need to Know about the Internet of Things Right Now,” ZDNet, 3 February 2020, .
4 Maj Peter W. Mattes, USAF, “What is a Modern Integrated Air Defense System,” Air Force Magazine, 1 October 2019, .
5 Duncan Stewart et al., “Bringing AI to the Device: Edge AI Chips Come into Their Own,” Deloitte, 9 December 2019, .
6 Michael Spencer, “Pseudosatellites: Disrupting Air Power Impermanence,” Air Power Development Centre, 2019, .
7 Sarah Lewis, “OODA Loop,” TechTarget, June 2019, .
8 Chris Westwood, “5th Generation Air Battle Management,” Air Power Development Centre, 2020, .
9 Joseph Trevithick, “Navy Establishes First Squadron to Operate Its Carrier-Based MQ-25 Stingray Tanker Drones,” The Drive, 1 October 2020, ; and Kyle Mizokami, “Russia’s ‘Hunter’ is Unlike Anything in America’s Arsenal,” Popular Mechanics, 10 August 2020, .
10 Patrick Tucker, “An AI Just Beat a Human F-16 Pilot in a Dogfight — Again,” Defense One, 20 August 2020, ; and Secretary of Defense Dr. Mark T. Esper, “Secretary of Defense Remarks for DoD Artificial Intelligence Symposium and Exposition,” US Department of Defense, 9 September 2020, .
11 “Combat Air Patrol,” Wikipedia, ; and Lt Col Ernani B. Jordao, “An Investigation of the Combat Air Patrol Stationing in an Integrated Air Defense Scenario,” (BS Thesis, Brazilian Air Force Academy, 1971), .
12 Joseph Trevithick, “This Containerized Launcher for the XQ-58A Valkyrie Combat Drone Could Be a Game Changer,” The Drive, 16 October 2019, .
13 Col Daniel Javorsek, USAF, “Air Combat Evolution (ACE),” DARPA, .
14 Miranda Priebe et al., “Distributed Operations in a Contested Environment: Implications for USAF Force Presentation,” RAND Corporation, 2019, .
15 Stefan Schrauf and Philipp Berttram, “Industry 4.0: How Digitization Makes the Supply Chain More Efficient, Agile, and Customer-Focused,” Strategy& and PWC, 7 September 2016, .
16 “Oshkosh Defense Delivers Autonomous Vehicles,” Nation Shield, Military and Strategic Journal, 2 February 2020, .
17 Peter Layton, “Surfing the Digital Wave: Engineers, Logisticians and the Future Automated Airbase,” Air Power Development Centre, 2020, .
人工智能(AI)已深度滲透社會認知,公眾對AI前沿突破與能力演進的關注度持續攀升。伴隨新模型與應用場景的迭代,AI采用率顯著增長——截至2025年初,約52%美國成年人使用過大語言模型(LLMs)與生成式AI技術。
然而潛藏在水面之下的,是鮮為人知卻更具戰略意義的領域:反AI技術。美中情局(CIA)數字化轉型過程中展示了反AI行動如何以超越國家防御體系適應速度重塑威脅格局。這場守護AI系統免受操縱的無聲競賽,可能是最具深遠影響的國家級AI競爭。
反人工智能(Counter-AI)?? 是指針對人工智能系統的攻防技術體系,其核心目標是抵御對AI模型的惡意操控、數據污染、算法欺騙等對抗性攻擊,確保AI系統在復雜環境中安全、可靠地運行。
對抗性機器學習(AML)正成為AI系統面臨的最復雜威脅。簡言之,AML是通過技術手段操控AI系統產生非預期行為的攻防科學。犯罪組織與敵對國家的想象力與技術能力,決定了AML攻擊可能造成的危害邊界。
此類攻擊絕非理論推演:隨著AI系統在關鍵基礎設施、軍事應用、情報行動乃至數十億人日常技術場景中的滲透,風險系數持續升高。本質上,受攻擊的AI系統可能引發從輕微故障到災難性安全漏洞的多級危機。
與傳統網絡安全威脅不同,反AI攻擊作用于多數人無法想象的抽象數學空間——這正是機器學習系統解析現實的維度。此類攻擊不僅突破數字防御,更扭曲AI對現實世界的認知邏輯。
設想某金融機構部署AI驅動的貸款審批系統(其訓練數據涵蓋數十年信貸記錄)。銀行未知悉的是:內部人員已對訓練數據植入難以觸發警報卻足以形成隱性偏差的惡意操作。系統運行數月后,開始系統化拒絕特定區域合格申請人,同時批準其他區域資質不足者。這正是數據投毒攻擊——AML的一種形式,其改變了AI風險評估機制。
再設想執行偵察任務的自主軍用無人機:其視覺系統經嚴格訓練可分辨敵我。但當敵方在載具表面涂覆特定圖案(即便是肉眼不可見的視覺信號),便會導致無人機持續將其誤判為民用設施。此類"規避攻擊"無需任何黑客技術,僅需利用AI解讀視覺信息的算法漏洞。
威脅更深層滲透。2020年某里程碑式研究論文中,專家展示攻擊者如何有效"竊取"商業人臉識別模型——通過"模型反演"技術對系統實施結構化查詢,竟能提取訓練時使用的真實人臉數據。實質上他們復原出特定個體的可識別圖像,揭露AI系統可能無意間記憶并泄露敏感訓練數據。
大語言模型(LLMs)的出現催生全新攻擊界面。雖然商業模型普遍設置應用護欄,但開源模型往往缺乏防護,為惡意操縱及生成有害(甚至違法)輸出敞開大門。看似無害的指令可能觸發系統生成危險內容(從惡意軟件代碼到犯罪活動指南),"提示注入攻擊"已被廣泛認定為LLM應用的首要風險。
這些絕非技術前沿的假設場景,而是被充分論證且正在被利用的漏洞。此類威脅最險惡之處在于:無需更改任何代碼即可攻陷系統。AI在多數場景下仍正常運行,使傳統網絡安全監測機制完全失效。
當威脅蔓延至國家安全領域,警報級別驟然提升。美國國家安全體系內,各機構正密集警示對抗性機器學習對軍事及情報行動的關鍵威脅。往昔國家安全機構僅需防范對手竊取敏感數據,如今更須警惕對手篡改機器解讀數據的邏輯機制。
試想對手對情報分析AI系統實施隱蔽操控:此類攻擊可使系統忽略關鍵情報特征或生成誤導性結論,政府高層決策將面臨難以察覺卻極具破壞力的威脅。這已非科幻情節——深諳AI漏洞與國家安全風險關聯的安全專家們,正持續升級應對方案。
隨著全球通用人工智能(AGI)研發競賽加速,上述威脅更具緊迫性。首個實現AGI的國家必將獲得前所未有的百年戰略機遇,但前提是該AGI能抵御精密對抗攻擊——存在致命漏洞的AGI系統,其危害性甚至遠大于尚未掌握AGI的狀態。
盡管威脅持續升級,但防御能力仍顯著不足。美國國家標準技術研究院(NIST)學者2024年尖銳指出:"現有防護措施無法提供全面消解風險的可靠保證。"這種安全鴻溝源于多重相互關聯的挑戰,致使對抗性威脅持續領先于防御體系。
該問題本質具有非對稱性:攻擊者僅需發現單一漏洞,防御方卻須防范所有潛在攻擊。更嚴峻的是,有效防御要求兼備網絡安全與機器學習的復合型人才——當前人力市場極度稀缺的資質組合。與此同時,組織結構將AI研發與安全團隊割裂,形成阻礙協同效能的非預期壁壘。
多數決策者尚未認知AI安全的獨特性,仍以傳統系統防護思維應對新型威脅,導致被動響應模式主導:聚焦已知攻擊路徑修補,而非前瞻性布防新興風險。
突破被動困局需構建涵蓋防御、攻防與戰略維度的全方位對抗性AI應對體系。首要原則是將安全機制深度植入AI系統底層架構(而非事后補救),這要求開展跨領域人才培訓——彌合AI與網絡安全的知識鴻溝已非增值選項,而是作戰剛需。
有效防御或需刻意在訓練階段注入對抗樣本、開發具備固有抗擾動能力的架構體系、部署持續監控異常行為的系統。然單一防守遠遠不夠,組織須同步發展攻防能力:組建專業紅隊,采用攻擊者同等級技術對AI系統實施壓力測試。
戰略層面需實現政府-產業-學界的前所未有協同:建立新興對抗技術威脅情報共享機制;制定確立通用安全框架的國際標準;推進貫通AI與網絡安全領域的人才培養計劃。有專家建議對尖端模型實施嚴苛的全生命周期安全測試,此提案雖涉及企業知識產權等政治法律難題,但某種形式的安全認證勢在必行。
挑戰艱巨而風險巨大。當AI系統日益支撐國家安全核心功能時,其安全性已與國家層面安全態勢深度綁定。核心問題非"對手是否將攻擊這些系統"(其必然發生),而在于"我們是否準備就緒"。
突破當前困境需超越技術方案本身,根本性轉變AI研發與安全的思維范式。反AI研究亟待投入充足資金支持(尤其用于開發能伴隨攻擊手段演化的自適應防御機制),但僅靠資金遠不足夠——必須打破隔絕開發者與安全專家的組織壁壘,構建安全責任共擔的協作生態。
主導美中情局大型技術團隊的經驗印證:消除部門隔閡不僅能提升產品效能,更能實質增強系統安全性。當下核心在于:掌握反AI技術的國家,將決定人工智能最終成為自由根基的守護者抑或掘墓人。這是技術發展的必然邏輯推演。
試想信息生態日益依賴AI媒介的世界:當系統持續暴露于精密對抗性操控時,掌控這些AI媒介操縱權者即實質掌控信息疆域。大規模認知操控、針對決策者的定向誘導、關鍵基礎設施的隱蔽破壞,無不構成對自由社會的嚴峻威脅。
精通反AI的國家不僅獲得技術優勢,更構筑起抵御數字操控的免疫屏障。這將捍衛其信息生態的完整性、關鍵基礎設施的可靠性,最終保障決策主權的獨立性。在此意義上,反制AI技術實為人工智能時代守護自由的終極護盾。
公眾關注的AI競賽不僅是技術能力的角逐,更是系統韌性的較量——關鍵在于打造遭逢對抗攻擊時仍恪守人類意志的穩健系統。這場隱形競賽遍布全球研究機構、機密設施與企業園區,其結果可能成為AI革命最具決定性的一環。
建設頂尖反AI能力是塑造未來數十年戰略平衡的關鍵。未來不屬于單純創造最強AI的開拓者,而屬于能守護系統免遭破壞的捍衛者。
當務之急是認清這場無形戰場的本質:它構成當今時代最重要的技術競爭。人工智能安全性必須從次要議題轉為國家核心議題——貫穿于我們構建、部署與管控這些日益強大的系統全過程。
參考來源: Jennifer Ewbank,美中情局負責數字創新的前副局長
在一次訓練演習中,一名美海軍陸戰隊軍官通過生成式AI工具獲取實時地形分析。該系統處理衛星影像的速度遠超人類團隊,可識別隱蔽路線與潛在威脅。這標志著一個轉折點——關鍵任務中機器推導的洞察力正與人類專業判斷形成互補。
國防行動日益依賴先進系統處理海量信息。美五角大樓已對“聯合全域指揮控制(JADC2)”等項目投入重資,該項目通過整合AI與機器學習實現戰場數據統一。這些工具可分析無人機、傳感器及歷史記錄中的模式,在數秒內生成可操作情報。近期技術突破已超越基礎自動化。例如,大型語言模型現可模擬復雜作戰場景,幫助戰略家在部署前測試戰果。蘭德公司研究證實,此類創新使模擬環境中的決策失誤率降低40%。然而人類控制仍是核心——指揮官保留最終決策權,將算法精度與倫理判斷深度融合。
某戰術AI近期通過熱成像模式識別出烏克蘭戰場上人工難以察覺的偽裝炮兵陣地——準確率達94%,而人工分析僅68%。這一突破印證“數據密集型系統”如何重塑現代沖突策略。
生成式工具在實時行動中每小時處理15,000幅衛星圖像——三倍于2022年系統容量。美軍測試的類ChatGPT接口通過分析社交媒體信息繪制阿富汗叛亂網絡,將分析周期從數周壓縮至數小時。“這些系統不替代分析師,”國防創新單元負責人邁克爾·布朗解釋,“但能凸顯人類易忽略的模式。”
傳統監視依賴靜態無人機畫面,如今神經網絡通過交叉分析氣象數據、補給路線與歷史場景預測敵軍動向。2023年聯合演習中,AI調遣部隊使模擬傷亡減少31%。
訓練項目現整合“合成戰場”,算法生成不可預測威脅。但過度依賴自動化決策存在風險——如“對抗性數據投毒”。五角大樓報告警示:“沒有任何系統能在動態壓力下完美運行。”
2023年,“梅文計劃”(Project Maven)神經網絡處理無人機畫面時,12秒內識別隱蔽導彈發射架——此前分析師需45分鐘。這一飛躍源于“多光譜傳感器”與“強化學習架構”的融合,系統算力達147萬億次浮點運算,依托分布式邊緣計算節點運行。
現代國防系統整合三大關鍵要素:“合成孔徑雷達”(94 GHz頻段)、“石墨烯基處理器”及“聯邦學習框架”。“梅文計劃”最新版本每日處理1.2拍字節數據,誤報率較2020年模型降低89%。蘭德公司分析師克里斯·莫頓指出:“這些工具實現‘決策周期壓縮’——將數周分析轉化為數小時可執行計劃。”
實地測試顯示顯著進步:計算機視覺模型現可在3.7公里距離以97%精度識別裝甲車輛(傳統系統為82%)。但自動化系統的倫理框架要求對所有“高置信度警報”進行人工核驗。安全工程師海蒂·克拉夫強調:“我們強制要求‘概率不確定性評分’——若系統無法量化自身誤差范圍,武器不得啟動。”
近期試驗關鍵指標:
太平洋演習的視覺資料揭示現代國防系統如何將原始信息轉化為戰術優勢。2024年對比分析顯示,AI增強工具識別高價值目標時,“地理空間數據處理速度”較傳統方法提升22%。
洛克希德·馬丁公司最新展示的技術示意圖闡明了“威脅評估”等任務在多層網絡中的處理流程。一張詳圖展示了無人機“傳感器-指令”路徑——數據從紅外攝像頭傳輸至邊緣處理器的耗時不足50毫秒。
菲律賓海演習的解密圖像顯示,四旋翼無人機在40節風速下執行精準物資投送。這些影像凸顯控制界面如何管理“載荷分配”“風切變補償”等復雜變量。另一組照片記錄30架無人機群在19分鐘內測繪12平方英里區域——覆蓋范圍三倍于2022年系統。操作員通過增強現實疊加界面實時監控單機能力,確保無縫協同。
喬治城大學2024年研究表明,AI驅動系統在對抗環境中使目標誤判率降低52%。這些工具通過分析傳感器數據、氣象模式與歷史交戰記錄推薦最優行動方案,從戰術與戰略層面重塑國防行動。
現代系統將數小時分析壓縮為可執行洞察。2023年聯合演習中,美軍運用預測算法為補給車隊規劃伏擊區繞行路線——響應時間縮短78%。喬治城大學研究揭示三大關鍵改進:
美國中央司令部近期在敘利亞部署神經網絡處理無人機畫面,達到其所謂“戰斗人員”與“平民”區分準確率97%。北約盟國現測試類似框架,愛沙尼亞KAPO機構運用AI繪制邊境滲透路線。全球防務預算印證此趨勢:澳大利亞“幽靈蝙蝠”項目利用自主系統識別18公里外海上目標(探測距離三倍于2020年系統);韓國AI火炮平臺在實彈演習中將反炮兵響應時間從5分鐘壓縮至22秒。
某海軍打擊群近期使用“自主武器系統”攔截敵對無人機,其目標優先級判定速度18倍于人工操作。指揮官在2.3秒內完成交戰批準,彰顯現代工具如何融合高速處理與關鍵人類控制。
防務承包商現設計需“雙重認證”才啟動致命打擊的模型。例如洛克希德·馬丁“雅典娜系統”標記高風險目標但鎖定武器權限,直至兩名軍官核驗威脅。該方法使2023年野戰測試中友軍誤傷事件減少63%。
網絡安全公司Trail of Bits安全工程總監海蒂·克拉夫強調:“我們設定不確定性閾值——系統必須量化懷疑等級方可行動。”其團隊框架要求人工復核所有置信度低于98%的AI建議。
美海軍“遠程反艦導彈(LRASM)”體現了這一平衡。該自主武器通過23種傳感器輸入識別目標,但需等待最終發射授權。2024年5月演習中,操作員因民用船只接近否決了12%的AI攻擊方案。
現行行業標準強制要求:
隨著系統能力提升,防務專家強調保留人類否決權的重要性。若采用“完全自主”模式,在算法缺乏情境感知的動態戰場中將引發災難性誤判。
美喬治城大學安全與新興技術中心預測,2026年前“抗量子系統”將主導防務升級。這些框架處理加密數據流的速度較現有架構快190倍,并能阻斷對抗性攻擊。洛克希德·馬丁“臭鼬工廠”近期測試的原型傳感器,識別高超聲速威脅的速度較傳統技術提前22秒。
下一代預測模型將融合實時衛星數據與社交媒體情緒分析。諾斯羅普·格魯曼2025年升級計劃包含可“任務中自適應電子戰戰術”的自校準雷達。早期試驗顯示,城市作戰模擬中決策周期縮短70%。
研究管線中的三大關鍵升級:
英國“暴風雨”戰斗機項目體現了通過“認知電子戰系統”超越對手的全球戰略。這些工具能在0.8秒內自動偵測并反制新型雷達頻率。日本2024年防衛白皮書則優先發展“AI驅動潛艇探測技術”,在爭議海域實現94%的準確率。
近期專利揭示了對抗性圖像識別訓練等反制措施。雷神公司原型“數字免疫系統”識別偽造傳感器數據的速度19倍于人工分析師。正如喬治城大學研究者指出:“下一場軍備競賽取決于處理時間——率先破譯模式者掌控戰局。”
五角大樓2024年審計顯示,自動化系統提出的無人機打擊建議中17%存在民用基礎設施誤分類問題,暴露出數據驗證的嚴重漏洞。這些發現引發關于“現代防務行動中如何平衡作戰速度與倫理問責”的全球辯論。 ?? 國際政策制定者面臨三大核心挑戰:
近期聯合國討論強調需建立跨境安全協定。在標準化監督體系成型前,技術發展速度或將超越人類負責任治理的能力邊界。
近期防務技術的進步標志著戰略行動的根本性變革。AI增強系統現處理戰場數據的速度較傳統工具快22倍,使決策在速度與倫理問責間取得平衡。三大優先事項亟待推進:完善“人機協同作戰”訓練體系、加速偏見檢測研究、建立聯盟級驗證標準。
參考來源:editverse
從精準網絡攻擊到自主化虛假信息攻勢,人工智能正在重塑軍事與恐怖主義行動模式——提升全球網絡沖突的規模、速度與復雜程度
人工智能(AI)通過簡化多項任務并加速在線操作自動化進程,正深刻改變人類生活方式。與此同時,其作為變革性力量介入現代網絡戰,徹底改變了國家與非國家行為體在網絡空間攻防行動的運作模式。
憑借智能威脅檢測、自動化網絡攻擊與自適應惡意軟件等能力,AI正在打破數字沖突的力量平衡。從關鍵基礎設施網絡攻擊、軍事網絡間諜活動與虛假信息攻勢,到恐怖分子招募與在線行動,AI以超乎傳統手段的規模、速度與復雜程度,強化全球網絡行動效能(無論其性質如何)。本文探討AI在網絡行動中的當前應用、變革潛力,以及AI對抗AI的網絡戰在不久未來的深遠影響。
情報、監視與偵察(ISR)
在基于人工智能的情報監視框架下,軍事ISR能力可通過分析無人機、衛星與傳感器等多源海量數據流得到增強。美國國防部"專家計劃"(Project Maven)即運用AI處理無人機圖像識別潛在威脅,加速決策進程。以色列軍隊正開發多軍種人工智能能力(涵蓋情報與網絡作戰領域)。將人工智能與量子技術整合至未來軍事戰略,致力于發展不同人機協同層級的算法戰與網絡中心戰能力。
進攻與虛假信息能力
人工智能使軍隊能夠針對持續演進的復雜系統發起更精準、自適應的網絡攻擊。機器學習算法可識別敵方網絡漏洞并自動部署攻擊程序。例如在烏克蘭沖突中,AI輔助工具被用于分析敵方網絡威脅并協調關鍵基礎設施攻擊響應。AI還能協助開發部署更復雜、可自適應目標(如關鍵軍民基礎設施)的惡意軟件,并有效規避敵方防御系統。
在虛假信息作戰中,AI推動大規模虛假信息制造與傳播。AI協助識別具有輿論影響力的媒體人士以引導公眾活動。利用AI實施大規模虛假信息行動,創建大量偽造網站與外文賬號發布觀點或偏頗文章。此外,使用深度偽造技術生產虛假信息操控輿論。
人工智能通過加速威脅檢測、分析與響應,可顯著提升軍事防御能力。AI系統可運用機器學習與深度學習算法實時識別異常網絡行為與潛在漏洞(包括偽裝合法活動的攻擊)。AI還能實現威脅情報自動化,助力預測并潛在遏制網絡攻擊(避免重大損害)。
AI可輔助海量數據管理、簡化漏洞識別,并持續適應新型網絡威脅。如今,欺騙戰術需同時誤導人類指揮鏈與AI系統。通過滲透敵方AI系統注入錯誤數據,軍隊可扭曲其決策(例如資源誤分配或目標誤識別)。此類雙重欺騙使戰爭復雜化(對手須防范人類與機械的雙重誤判)。
準軍事網絡團體與黑客活動分子
人工智能工具的廣泛普及催生了準軍事與黑客活動網絡團體。在烏克蘭,志愿網絡部隊"烏克蘭網絡軍"通過Telegram等平臺協調針對俄羅斯目標的網絡行動,展現了AI與數字通信工具如何動員非傳統行為體參與網絡沖突。此外,多個具有民族主義、政治或意識形態傾向的黑客團體(專攻DDoS攻擊)利用AI增強與優化網絡攻擊。
恐怖主義:招募與激進化
部分恐怖組織使用AI驅動聊天機器人在通信應用中與潛在招募對象互動。此類機器人可模擬人類對話(根據個體信仰與興趣定制信息),從而提升招募效率。此類技術使組織無需直接人際接觸即可更有效觸達與激進化個體。
生成式AI使恐怖團體得以持續實施虛假賬號社會工程學攻擊(速度與效率提升,可自動整合特定參數)。如虛假信息行動部分所述,AI還可能助力恐怖組織擴大激進化行動規模(通過創建大量網站與通信應用機器人傳播信息,擴大潛在招募人群覆蓋面)。
將AI能力整合至網絡戰深刻改變了全球網絡沖突格局。AI提升網絡攻擊的速度、規模與復雜程度,使國家與非國家行為體得以發動更具針對性、自主性與規避性的行動。AI技術的持續演進可能模糊戰爭與和平的界限(加劇歸因與追責難度),同時增加局勢升級與誤判風險。
對國際安全的威脅重大。AI驅動的網絡武器可能以前所未有的效能破壞關鍵基礎設施、擾亂經濟并動搖政治體系。若無強有力的國際規范、合作與監管,網絡戰中AI的無序使用或將開啟數字軍備競賽與全球不安全的新紀元。
應對這些挑戰需協同工作構建AI網絡行動治理框架,確保技術進步不超越人類負責任管理的能力邊界。
參考來源:israeldefense
美國國防部正通過"雷霆熔爐"(Thunderforge)項目推動技術創新,該計劃將整合先進AI加速關鍵作戰決策流程。
在五角大樓靜謐的指揮室內,一場技術革命正重塑美國軍事行動規劃模式。"雷霆熔爐"項目成為此次轉型的先鋒,將先進人工智能模型深度植入美軍決策核心。
美國防部已授予Scale AI公司價值數百萬美元的合同,旨在開發重新定義軍事規劃速度與精度的系統。在國防創新單元(DIU)監管下,"雷霆熔爐"試圖彌合軍事戰略家所稱的"根本性錯配"——現代戰爭所需速度與武裝力量現有響應能力之間的鴻溝。
該計劃本質上致力于打造新一代工具,使軍事指揮官能在日益復雜動態的戰場環境中"以機器速度運作"。初始部署將聚焦印太司令部與歐洲司令部這兩個華盛頓優先戰略區域。
該項目標志著硅谷創新力與美軍作戰需求的歷史性融合。專注數據標注與AI模型開發的Scale AI公司牽頭組建聯盟,成員包括微軟、Anduril等科技巨頭。
這種協作遠超越普通政府合同范疇:它象征著民用科技界與軍工復合體傳統壁壘的漸進消融。專為促進此類互動而設立的DIU,已成為連接這兩個歷史性隔絕領域的高效橋梁。
"雷霆熔爐"的技術武器庫包含尖端成果:
? 能處理整合海量信息的大型語言模型(LLM)
? 可生成多場景預案的生成式AI系統
? 具備漸進自主性的"AI智能體"
? 依托人工智能的模擬推演與兵棋推演系統
其目的不僅在于輔助指揮官,更旨在根本性重構軍事規劃流程,實現指數級提速與適應性提升。
"雷霆熔爐"的加速研發并非孤立事件。美國輿論持續將此計劃置于應對潛在對手技術崛起的戰略框架內。這催生了全球地緣競爭的新維度——聚焦算法與算力而非核彈頭的軍備競賽。
此競爭態勢催化風險資本持續涌入防務關聯企業,強化商業創新與軍事應用的融合趨勢。"雷霆熔爐"由此成為民用科技與國家安全交匯地帶重構趨勢的典型縮影。
參考來源:Marta Reyes
現代戰場要求快速、精準的決策以確保任務成功。傳統云計算系統雖功能強大,卻因延遲、有限連接性與安全漏洞等問題,難以滿足孤立及敵對環境的需求。戰術邊緣計算應運而生,成為變革性解決方案——通過在無人機、傳感器、載具或單兵穿戴設備等數據源頭直接進行實時處理,實現即時響應。
通過分布式計算能力,戰術邊緣系統在最需要的時空節點為作戰人員提供可行動洞察。本文探討戰術邊緣計算如何與現有軍事基礎設施整合、其在現實場景中的應用,以及在極端部署條件下面臨的挑戰。
戰術邊緣計算使數據能在采集點本地處理(如作戰人員設備、無人機或載具),無需依賴集中式云基礎設施。這種去中心化方法確保在對抗性或偏遠環境中實現更快決策、更高作戰彈性與強化安全性。
核心優勢:
? 降低延遲:本地數據處理最大限度減少滯后,支持關鍵場景下的快速決策。
? 優化帶寬:本地數據過濾減少向中央節點傳輸的信息量,緩解通信網絡壓力并節省帶寬資源。
? 增強彈性:去中心化架構抵御中斷風險,確保即使與中央指揮的連接中斷,系統仍可持續運作。
? 提升安全性:敏感數據保留在本地區域,降低遭攔截或泄露風險。
? 支持先進技術:戰術邊緣計算賦能實時運用先進技術,增強作戰能力。
應用場景:
? 實時數據分析:即時解析傳感器數據,提供零延遲可行動情報。
? 自主系統:機載處理使無人機與機器人平臺能自主導航地形并獨立決策。
? 強化態勢感知:本地整合傳感器數據,生成全景環境視圖以加速決策。
挑戰:
盡管戰術邊緣計算具備變革性優勢,仍面臨保護邊緣設備安全、平衡加密需求與低延遲要求,以及應對電力與存儲容量等資源限制的難題。
現代化影響:
戰術邊緣計算通過系統現代化改造、支持尖端平臺、構建互聯設備統一生態系統,實現對現有基礎設施的補充。該路徑契合強調速度、適應性與信息主導的作戰條令。
戰術邊緣計算旨在通過現代化改造老舊系統、支持尖端平臺、構建互聯設備統一生態系統,增強并補充現有軍事基礎設施。其整合路徑如下:
升級老舊系統:
邊緣計算為老舊軍事平臺賦予現代化能力。例如:
? 數字化士兵計劃:配備可穿戴傳感器的士兵可在依賴老舊通信網絡時,實現本地數據處理與共享。
? 老舊戰機數據融合:F-35等平臺運用邊緣計算整合多源傳感器數據,為飛行員提供實時態勢感知。
通過為老舊系統加裝邊緣賦能技術,軍隊可在延長現有裝備服役壽命的同時獲得先進能力。
部署戰術邊緣服務器:
戰術邊緣服務器作為本地化樞紐,處理物聯網設備、傳感器與自主系統生成的數據。其功能包括:
? 就近處理數據消除延遲
? 在網絡中斷時為關鍵任務應用提供分布式存儲
? 通過本地運行人工智能驅動分析實現實時決策
例如:偵察任務中運用戰術服務器現場解析無人機影像,向戰場部隊投送可行動情報。
支持自主系統:
自主無人機與載具依賴機載邊緣計算實現自主導航與威脅偵測。此類系統:
? 無需外部指引即可適應動態環境
? 與其他作戰單元通信實現協同作戰
該整合降低對集中式控制的依賴,同時提升戰場全域作戰效率。
構建統一生態系統:
邊緣計算支撐「戰場物聯網」(IoBT)互聯環境,實現士兵、載具、無人機與指揮中心無縫數據共享。該生態系統:
? 在具備連接時同步邊緣設備與中央云系統數據
? 通過多源實時更新為指揮官提供全景作戰視圖
部署戰術云端節點:
便攜式戰術云端節點將類云能力直接投送至戰場,實現本地托管計算密集型應用。其功能包括:
? 過濾非必要信息降低帶寬占用
? 為偏遠地區離線任務預加載關鍵數據
加固型硬件:
部署于軍事環境的邊緣設備必須具備輕量化、耐用性與高能效。此類系統設計需耐受高溫、嚴寒或物理沖擊等極端條件,同時維持高性能運作。
優化軟件:
戰術邊緣軟件須優先確保速度與效率。算法需快速處理海量數據,并根據任務需求輸出定制化可行動洞察。
人工智能與機器學習(ML):
AI與ML通過實現預測性分析、威脅偵測與自主決策,在戰術邊緣計算中發揮關鍵作用。模型量化等技術可在不犧牲精度前提下壓縮機器學習模型,適配資源受限的硬件部署。
可靠網絡:
維持設備間通信對協同作戰至關重要。戰術邊緣網絡需平衡帶寬效率與可靠性,確保在拒止或降級環境中仍能實現不間斷數據交換。
安全協議:
邊緣設備必須具備防篡改特性及抗網絡攻擊能力。加密技術與安全啟動機制確保敏感信息在作戰全程受到保護。
盡管戰術邊緣計算潛力巨大,但在嚴苛環境中部署服務器面臨顯著障礙:
環境壓力:
極端條件——例如溫度波動(-50°C至55°C)、濕度、沙塵暴、水浸、載具/飛機引發的沖擊振動、太陽輻射——可能損害服務器性能。必須采用加固型設計確保設備在此類條件下的耐用性。
網絡限制:
由于敵方干擾或基礎設施有限導致的間歇性連接,維持可靠通信十分困難。邊緣服務器需在斷聯時自主運作,同時優先保障關鍵數據傳輸的帶寬效率。
電源挑戰:
偏遠部署常缺乏穩定電力供應。服務器須依賴電池或便攜發電機,并通過優化能效實現持續運行。
安全風險:
鄰近敵方的作戰環境加劇網絡攻擊與物理篡改風險:
? 加密協議在傳輸過程中保護敏感數據。
? 防篡改設計確保設備即使遭物理破壞仍能安全運作。
高壓環境下的可靠性:
硬件韌性對維持極端壓力下的運行可靠性至關重要。先進散熱機制與自動系統恢復協議有助于緩解硬件故障或網絡中斷影響。
可擴展性與靈活性:
動態戰場環境要求模塊化硬件解決方案,可通過增加內存或GPU等升級應對數據量增長或新應用需求。
實時監視與偵察:
作戰行動高度依賴無人機與傳感器獲取態勢感知。戰術邊緣計算使這些系統能在本地處理監視數據,為士兵即時提供敵軍動向或潛在威脅的洞察。
自主系統:
配備邊緣計算的自主載具與無人機可在不依賴外部支援的情況下,導航復雜地形、識別障礙或威脅并實時通信。這使動態戰斗場景中的快速響應成為可能。
單兵穿戴技術:
增強現實(AR)眼鏡等可穿戴設備為士兵提供實時戰術信息,如部隊位置或目標數據。戰術邊緣計算確保這些設備在戰場條件下無縫運作。
戰地醫療支持:
集成邊緣計算的AI診斷工具可即時分析生命體征或醫學影像掃描,協助醫護人員在戰區實施急救。自主醫療無人機通過投送物資或遠程支援,進一步提升戰場醫療保障。
后勤優化:
邊緣賦能系統根據任務需求或環境條件預測裝備需求,在減少后勤瓶頸的同時確保物資的及時投送。
戰術邊緣計算通過實現數據在采集源(如戰場、無人機或載具內部)的本地化處理,顯著增強實時決策能力。這種模式消除對集中式基礎設施的依賴,極大降低延遲,確保可行動情報的即時可用。通過本地處理數據,作戰人員能更快作出信息完備的決策——這在分秒必爭的高風險場景中至關重要,任何延誤都可能導致任務失敗。
關鍵提升領域包括:
? 降低延遲:數據在現場處理而非傳輸至中央服務器,使決策時間從秒級縮短至毫秒級。
? 強化態勢感知:對傳感器與影像數據的實時分析,即時解析威脅、戰場態勢與關鍵任務信息。
? 對抗環境韌性:戰術邊緣計算確保即使與中央指揮的通信中斷,決策能力仍可持續運作。
? 自主系統支持:無人機等自主系統借助邊緣計算即時響應環境變化,消除行動延遲。
該策略確保決策速度與沖突節奏同步,在動態且資源受限環境中提供戰術優勢。
戰術邊緣計算通過在采集點(如無人機、載具或武器平臺)直接進行實時數據處理與分析,顯著提升目標系統的精準度。這種本地化處理減少延遲,確保目標鎖定決策基于最新、最精確的信息。其提升目標系統的關鍵路徑包括:
? 實時數據分析:邊緣計算本地處理傳感器與影像數據,即時完成目標識別、追蹤與分析,消除向中央服務器傳輸數據引發的延遲。
? 改進目標追蹤:通過降低網絡延遲,確保對移動目標的持續追蹤,即便在建筑物密集或交通復雜的城區等復雜環境中也能實現。
? 增強傳感器融合:整合雷達、攝像頭與紅外傳感器等多源數據,生成目標位置與運動的統一精準視圖。
? 對抗環境韌性:邊緣計算獨立于集中式基礎設施運行,在通信降級或受干擾場景中仍維持功能。
這些能力確保目標系統更快、更可靠,并能更好適應動態戰場條件。
戰術邊緣計算通過結合先進加密技術、分布式處理及針對邊緣環境獨特挑戰的強化安全框架,實現數據安全管理。核心方法包括:
數據安全:
? 加密:所有數據在存儲與傳輸過程中均加密,確保敏感信息即使通過開放或敵對網絡仍受保護。
? 本地處理:在邊緣本地處理數據,避免敏感信息傳輸至中央服務器,降低遭攔截或監視風險。
? 零信任安全:零信任網絡訪問(ZTNA)確保僅經認證的用戶與設備可訪問敏感資源,采用最小權限原則與持續監控限制入侵損害。
? API安全:通過強認證、加密、速率限制與定期審計保護連接邊緣設備的API,防止漏洞危及防御系統。
? 抗敵手韌性:通過微隔離、相互TLS(mTLS)安全通信、數據歸零功能(節點受攻擊時快速銷毀數據)等機制,強化邊緣節點抵御物理與網絡威脅。
操作保障:
? 行為分析:監控設備行為以偵測可能指示篡改或入侵的異常活動。
? 備份策略:安全備份系統確保敏感數據在中斷或攻擊時仍可恢復。
抗干擾保護:
? 去中心化架構:消除對集中式基礎設施的依賴,確保通信中斷時仍可持續運作。
? 抗電子戰能力:系統設計可抵御干擾與網絡攻擊,在對抗環境中維持功能。
? 自適應安全框架:零信任網絡訪問(ZTNA)根據實時狀況動態調整訪問控制,防止未授權訪問并減輕干擾影響。
? 冗余與故障切換機制:邊緣系統內置冗余設計,確保部分故障時任務仍無縫執行。
上述措施共同保障戰術邊緣計算系統在鄰近敵方的對抗環境中,維持高水平的隱私與安全性。
人工智能與戰術邊緣計算的融合將重新定義軍事戰略:
? 自主系統將實時評估戰場態勢,其策略調整速度遠超人類操作員。
? 增強的態勢感知能力通過精準預測敵軍動向或資源分布,賦能指揮官在高壓下作出精確決策。
? 國防機構與科技企業的合作將驅動硬件設計、機器學習算法與安全網絡解決方案的突破性進展。
隨著全球軍隊加大對戰術邊緣技術的投入,其不僅提升作戰能力——更在塑造以速度、彈性與智能主導的未來戰場形態。
戰術邊緣計算通過需求節點的實時數據分析加速決策進程,并與現有基礎設施無縫集成,正在引發軍事行動的深刻變革。然而,在嚴苛環境中部署此類系統需克服環境壓力、網絡限制、電源制約、安全風險、可靠性要求、可擴展性需求、人為因素及嚴苛標準合規等挑戰。
通過采用加固型設計、安全通信協議、先進散熱系統與模塊化配置應對這些障礙,軍隊可確保戰術邊緣計算在極端條件下仍能提供可靠性能——為分秒必爭的作戰人員賦予關鍵優勢。
參考來源://www.linkedin.com/pulse/tactical-edge-computing-key-faster-smarter-military-michael-kimes-jkzre
設想一個未來:人工智能(AI)以空前的速度、精度與洞察力賦能北約部隊。這場變革的核心正是盟軍轉型司令部——推動北約釋放AI集體安全潛能的引擎。該司令部正推進多項舉措,將AI融入軍事行動、創新、教育與能力發展,呼應北約2030年實現數字化轉型、數據驅動與多域作戰能力的目標。
盟軍轉型司令部AI工作的核心理念簡明有力:數據即戰略資源。正如優質食材成就佳肴,高質量、結構化數據是AI高效、可靠、負責任運行的基礎。缺乏可訪問、可共享、易理解的數據,AI工具將無法釋放全部潛能。
為實現這一愿景,該司令部主導提升北約數據管理與應用效能的行動,包括實施數據開發計劃。該計劃聚合北約作戰與轉型領導者,聚焦將現實需求轉化為實用案例、推動負責任數據共享、確保北約工具系統使用統一數字語言。
通過這一框架,盟軍轉型司令部著力培養數據與AI人才隊伍,支持標準化建設以確保數據可信度與跨系統適用性。這種"數據優先"策略是AI能力融入北約體系的關鍵基礎。在此之上,司令部正將前瞻概念轉化為支撐聯盟行動與決策的實用工具。
盟軍轉型司令部對北約數字化轉型最顯著的貢獻在于推進實戰相關的AI解決方案與原型系統。這些項目驗證了AI如何加速決策、提升作戰效能、強化態勢感知。
典型案例是AI FELIX(人工智能前端學習信息執行系統)。該數字助手旨在減少重復性文書工作,優化北約機構知識管理。其最初應用于"戰備委員會"——負責接收、登記、審核所有正式來函的北約總部核心部門。AI FELIX通過每日自動分析數百份文件、標注關鍵信息并分發給相應團隊,將處理時間縮減80%。
基于數萬份文檔訓練,AI FELIX融合機器學習與規則系統,在元數據標注與文件分類上超越人工效率。除自動化外,它還完成北約檔案庫全量回溯標注,顯著提升內部檢索工具效能。該工具已擴展至多個北約司令部,預計服務超2萬用戶,通過自動化常規任務解放人力專注核心職責。
更進一步的AIDA(人工智能數字助手)為北約知識庫引入對話界面。用戶可通過自然語言交互獲取附溯源引文的語境化答案。在保密網絡運行的AIDA采用檢索增強生成技術(RAG),依托數十萬份多密級文件確保回答準確可溯。超越聊天機器人范疇,AIDA代表北約人員數字輔助的進化方向:未來將支持文件起草、數據查詢、系統集成與多智能體協作。每位參謀或可配備AI助手團隊,根據個人偏好執行研究、簡報生成、反饋協調等任務,實現從基礎自動化到智能支持的躍升。
另一新興能力AI CLAIRE(快速開發內容鏈接與人工智能)專注語義搜索與智能內容導航。該工具通過理解查詢意圖(非簡單關鍵詞匹配),幫助北約標準與條令管理者從海量開源與內部資料中提取相關信息,加速關鍵知識獲取,優化動態文件體系的更新維護。
為增強北約預見、理解與應對新興威脅的能力,盟軍轉型司令部推進跨域AI應用。**政治-軍事輔助決策(PM-ADM)**計劃在數據攝取、分析、知識建模與智能代理等多層面部署AI。
PM-ADM系統全天候運行,持續處理傳統指揮控制系統與開源數據。通過自然語言處理解析結構化/非結構化信息,并對照北約戰略知識模型(以本體論構建的聯盟關鍵概念關系圖譜)。當識別可能影響戰略優先級的新數據時,系統自動將其整合至知識庫并建立關聯。
數據攝入后,系統基于**網絡本體語言(OWL)**等標準進行語義推理,生成新洞見與模式識別。這些推斷納入知識庫,支撐高級查詢工具與驗證框架。系統內智能代理可識別認知空白并提出填補方案。
分析結果輸入各類可視化工具,助力戰略洞察與人類認知。PM-ADM最終目標在于捕捉低層級指標,通過語境化分析揭示北約利益風險,實現更早期、更明智的干預以遏制事態升級。
在戰略競爭中獲得"認知優勢"(比對手更快思考、決策與行動的能力)至關重要。盟軍轉型司令部主導的情報與ISR(情報監視偵察)功能服務能力項目,正在革新北約開源情報(OSINT)與圖像情報(IMINT)的采集處理方式。
該計劃整合人員、流程、工具與數據,支撐北約全情報周期(從采集到分發)。其目標是為規劃分析團隊提供無縫銜接的集成體驗,實現情報輸入與決策流程直連。
全面部署后,系統將提供預測分析、自然語言處理、關系圖譜、變化檢測、圖像目標識別等AI工具,加速情報工作流的同時提升決策洞見深度與精度。最終目標是幫助北約保持認知優勢,并將態勢感知擴展至信息環境領域。
在當今互聯互通且充滿對抗的世界,理解與應對信息流動至關重要。北約**信息環境評估(IEA)**能力通過監測公共信息空間中友方、中立與對抗方的信息活動,支撐戰略傳播的"理解"功能。
IEA實時持續評估信息環境,識別關鍵社會群體、行為模式與影響路徑。這種深度受眾理解助力任務行動中的快速循證決策。該項目整合敘事分析、情感分析、社交網絡分析與建模仿真等先進方法,AI技術在自動化海量數據處理、新興議題識別、信息傳播預測等方面發揮核心作用。
通過人機協作,北約力求領先對抗性敘事,促進真實信息傳播,確保戰略響應明智有效,最終捍衛聯盟內部信任、團結與韌性。
兵棋推演作為檢驗戰略、測試方案、提升決策的傳統方法,正在盟軍轉型司令部獲得AI賦能。該司令部探索如何通過生成式AI與大語言模型提升推演真實性、效率與場景多樣性。
近期實驗表明,AI可生成精細想定、模擬敵我行為策略、輔助艱難決策,甚至在推演中提供實時評估。例如生成式AI工具在戰略級兵推中模擬紅藍隊策略,幫助參演者動態探索復雜決策空間,獲得快速定制化反饋。
所有AI兵推應用均遵循《北約負責任使用AI原則》,確保人類監督、透明度與可靠性貫穿始終。
國防領域AI應用不僅關乎技術部署,更需人才儲備。盟軍轉型司令部著力培養北約機構的AI素養,創建專項培訓計劃,將AI主題融入演習與課程。
典型舉措包括面向司令部人員的大語言模型(LLM)系列培訓,重點破除技術神秘感,建立負責任使用AI的信心。司令部新設數據科學與AI團隊,通過TIDE Sprint會議與專家網絡推進北約實踐社區建設,確保AI轉型"以人為本"。
作為北約AI戰略方向的核心塑造者,盟軍轉型司令部與創新、混合與網絡事務助理秘書長聯合主持數據與AI審查委員會(DARB)。該治理機構監督聯盟AI負責任應用,推動《北約AI戰略(修訂版)》落地,強調優質數據、嚴格測試評估框架、防范AI對抗性使用等原則。
戰略要求加速實用AI案例開發、支持國際標準建設、深化與盟國、工業界和學界合作。盟軍轉型司令部正通過北大西洋防務創新加速器(DIANA)、國家測試中心與學術伙伴等多渠道推進相關工作。
國防AI時代已至,盟軍轉型司令部正引領北約轉型。通過推進負責任創新、培育數字素養人才、擴展具有作戰影響力的AI能力,該司令部正在塑造聯盟防務未來。
集體安全的未來將由智能技術定義——盟軍轉型司令部正為此鋪路。通過其工作,司令部為聯盟配備應對新興挑戰所需的工具、人才與信任基石,以自信姿態把握前方機遇。
參考來源:北約
人工智能正在重塑戰爭形態、加速決策進程并影響平民傷亡——但過度依賴將帶來風險與脆弱性。
圖:烏克蘭第24旅使用A1-S Furia無人機,2022年6月29日(烏克蘭國防部供圖)
人工智能(AI)的快速發展正以前所未有的速度變革各行業,戰爭領域亦不例外。各國競相將AI融入軍事行動,其中烏克蘭與俄羅斯在開發自主系統獲取戰場優勢方面處于前沿。但隨著技術融入作戰,關鍵問題浮現:我們應給予多大程度的依賴?又需承擔何種風險?
奧地利外交部長亞歷山大·沙倫伯格警示:"這是我們時代的'奧本海默時刻'"。正如核武器在20世紀重新定義戰爭,AI武器系統正在重塑戰場——烏克蘭戰場尤為顯著。在維也納自主武器會議上,沙倫伯格警告AI驅動戰爭可能引發失控軍備競賽的風險:自主無人機與算法驅動的目標鎖定系統或將使大規模殺戮機械化且近乎毫不費力。
五角大樓已在實戰場景中積極測試AI決策工具。例如2024年1月,據報美軍開始在印太地區使用類ChatGPT的生成式AI工具,以強化針對同級對手等高科技對手的戰場決策能力。
由美國防部首席數字與人工智能辦公室(CDAO,2022年設立)主導的AI整合計劃,通過與安杜里爾(Anduril)和帕蘭泰爾(Palantir)等公司合作,加速戰場指揮官決策進程。此舉標志著美軍正借助私營領域創新提升軍事決策能力。
具體而言,安杜里爾的Lattice AI軟件整合傳感器數據實現實時決策,為指揮控制注入自主態勢感知能力。帕蘭泰爾的AI數據融合技術為指揮官提供跨域可執行情報,通過整合陸海空天網電全域數據,實現實時決策、增強戰場感知并確保復雜環境下協同響應。
帕蘭泰爾的AI軟件使烏克蘭成為《時代》雜志所稱的"AI戰爭實驗室"。該技術助力分析衛星圖像、處理無人機鏡頭、融合開源情報,使烏軍得以實時識別與定位俄軍目標。新美國安全中心高級研究員塞繆爾·本德特強調,俄烏戰爭產生的空前數據量正推動軍事AI創新:"過去三年積累的數據量橫跨空天陸網領域,相當于數百年的數據總量。交戰雙方正利用這些數據塑造軍事規劃與兵棋推演,尤其在無人機與無人系統應用方面。"
烏克蘭與俄羅斯已陷入AI驅動的無人機競賽,雙方均借助自主技術謀求戰場優勢。面對俄方數量優勢,烏軍在戰爭初期轉向無人機作戰,迫使俄方跟進。隨著俄軍電子戰能力提升(對烏軍無人機實施干擾),雙方技術迭代速度不斷加快。當前俄烏戰爭中,無人機造成約70%的戰場傷亡。
這場"貓鼠游戲"促使雙方采用光纖通信規避干擾,而針對光纖的對抗手段亦在研發中。無人機戰即將進入新階段:AI賦能目標識別系統可在強干擾環境下自主運作,實現最小化人為干預的識別與打擊。
烏克蘭前總司令瓦列里·扎盧日內在2023年11月接受《經濟學人》采訪時,將戰場比作"一戰"僵局:"我們已達到導致戰略相持的技術水平。"他強調突破僵局需無人與機器人系統的重大躍升,并承認"難以實現深度且漂亮的突破"。
當前雙方正竭力尋求短期技術突破。這場技術競賽已演變為無人機霸權之爭,而AI賦能的無人機將推動戰爭向算法對抗演進。具備最快適應能力的AI方將主導殺傷鏈中的目標識別與打擊環節,速度與精度成為決勝要素。算法獲取的數據與傳感輸入越多,AI目標識別系統的精準性與殺傷力越強。
某俄羅斯軍事博主在Telegram發文警告,AI將終結傳統戰爭形態,使偽裝、欺騙與電子對抗近乎失效:"偽裝無法實現——AI算法憑借算力持續分析偵察數據,可捕捉最細微變化。"
該博主稱,AI將顛覆電子戰:模擬人聲的機器學習系統可攔截通信、操控敵方決策,使無線電偵察過時。"無線電偵察失去意義——GPT聊天機器人能模擬真人語音進行無線電交互,侵入無線電網絡獲取談判信息只會干擾偵察。電子戰喪失價值——每個作戰單元實現自主。"
博主同時強調AI增強型集群武器的進化,包括實時從交戰中學**的無人機、導彈改型與制導彈藥。他認為AI目標識別系統將創造持續進化的戰場,使對抗手段快速過時。
"所有武器都在學。被車輛或坦克規避的反坦克導彈會瞬間回傳數據至載具(如阿帕奇直升機),后者發射的新導彈將'知曉'如何應對之前的規避動作。魚雷、反艦導彈、空對空導彈等所有制導武器同理。這堪稱'新型原子彈',甚至更為可怕。"
盡管存在此類擔憂,《經濟學人》防務編輯沙什克·喬希指出,AI的直接影響并非完全自主戰爭,而是增強軍事戰略與決策。AI在實戰中最顯著的應用案例是以軍對加沙的轟炸行動,AI目標識別系統在其中發揮關鍵作用。
盡管該博主可能高估AI的短期影響,但其警告反映出對戰爭演變速度的深切憂慮。這場競賽的關鍵不僅在于戰場部署AI,更在于同步開發對抗手段。
人工智能將以無與倫比的精度與適應性重塑戰爭形態,但其快速整合伴隨嚴峻風險。盡管可能減少意外傷亡并提升戰場效率,但該技術也可能導致失控升級與對自動化的過度依賴,為未來戰爭帶來不可預知的后果。
究其根本,研究人員仍難以完全理解AI的運作機制(尤其是訓練與決策過程)。AI模型的"黑箱"特性意味著即使開發者也未必明晰其結論生成邏輯。這種透明度的缺失在涉及生死決策的軍事應用中引發重大關切——可靠性、可預測性與問責性至關重要。若軍隊過度依賴AI卻未充分認知其局限,可能部署存在不可預知失效風險的系統(原因包括對抗性操縱、隱性偏差或戰場環境下的運行故障)。
Insight Forward公司首席地緣政治官、喬治城大學兼職教授特雷斯頓·惠特在采訪中表示,他相信AI有助于減少意外傷亡。例如,依賴多源情報的指揮官可能忽視關鍵細節并下達導致平民傷亡的打擊指令,而AI系統可實時處理海量數據,識別人類可能遺漏的細節從而避免此類錯誤。
"AI必將降低平民傷亡,這將成為此類武器的核心優勢,"惠特解釋稱,"盡管人類具備創造力與思辨力,但AI處理信息(包括評估潛在場景)的速度遠超人類。此外,人類的視野更為受限。因此,AI將使武器更有效區分目標。"
然而,AI雖提升精度并減少意外傷亡,但其融入戰爭仍伴隨風險。隨著AI應用規模擴大,過度技術依賴問題將凸顯——當系統失效或受干擾時,軍隊將陷入脆弱境地。
惠特援引軍事史上技術優勢反遭低技術手段壓制的案例,反映出現代軍隊的普遍困境:過度技術依賴可能削弱基礎軍事技能。當戰場技術突發故障(信號干擾、電量耗盡或敵方網絡攻擊)時,士兵是否具備無技術依托的作戰能力?墨西哥緝毒行動中,技術依賴使警員在設備失效時暴露風險,印證技能退化的危險性。
"軍隊過度聚焦技術優勢總會產生問題,"惠特警示,"以色列與美國均面臨此類困境——高度依賴先進技術時,對手以低技術手段實施反制。"
例如,美國在"反恐戰爭"中主導信號情報,基地組織則轉向紙質通信與人力傳訊規避偵測。第二次黎巴嫩戰爭中,真主黨使用防火毯遮蔽導彈發射點,使以軍空襲失效。
盡管AI與自主武器必將增強戰場殺傷力,但惠特強調,創新思維與低技術手段仍可消解技術優勢。"先進技術與自主武器無疑提升軍隊殺傷力,"他指出,"但決策者切勿忘記,想象力與低技術方案可瓦解此類優勢。"
美國陸軍戰爭學院助理教授、特種作戰主任保羅·盧申科以以色列在加沙的AI驅動目標識別為例,說明AI已影響實時戰場決策。他指出,基于軍事數據集訓練的機器學習算法可預測敵方位、分析作戰條令并優化打擊方案。
但他警告,AI融入致命行動引發嚴重倫理問題(尤其是自主武器與算法驅動目標識別)。以軍在對哈馬斯作戰中高度依賴名為"薰衣草"的AI目標識別系統,據報該系統篩選出約3.7萬個潛在關聯目標,大幅加速空襲節奏,卻導致大量平民卷入交火。
盧申科還論及"牛頭怪戰爭"概念——AI可能接管更多作戰控制權,指揮地面巡邏、空戰與海戰。他認為這要求軍事架構根本性變革,包括重新定義指揮控制、創建新職業領域并重構集中式與分散式作戰模式。
該構想將AI視為軍事行動的"中央大腦",以超越傳統方式的速度與精度分析戰場數據并向人機單元下達指令。"牛頭怪"概念體現人機協同的混合模式,在自動化與人工監管間尋求平衡以提升作戰效能。
隨著AI加速融入戰爭,核心問題依舊:應賦予機器多少決策權?代價幾何?
并非所有AI模型均針對全戰場場景訓練,AI自有其局限。諷刺的是,過度依賴AI驅動戰爭的一方可能暴露新弱點——對手必將學會利用這些弱點。
"技術永遠存在漏洞,"惠特指出,"關鍵在于我們部署AI增強網絡防御的效能,但無法排除網絡攻擊成功的可能性——尤其是存在意外內部風險或高能力威脅行為體時。"
若AI目標識別系統依賴預設交戰規則,可能難以適應非常規戰爭。若AI模型主要基于傳統戰爭模式訓練,可能無法識別與應對快速演變的威脅。更甚者,若AI系統優先效率而忽視倫理約束,可能誤判非傳統戰斗人員或物體為合法目標,導致戰場災難性誤判。
俄羅斯在烏克蘭戰場投入民用車輛作戰即為明證。當對手系統性無視國際法與規范時,西方AI模型是否應訓練識別民用戰斗車輛?若俄軍(或其他對手)完全放棄軍服偽裝平民發動襲擊,又當如何?部分俄軍甚至嘗試穿戴烏軍制服滲透防線。
此類戰術暴露戰爭AI研發的根本挑戰:當交戰規則被刻意模糊時,系統如何區分合法軍事目標?對手始終尋求利用技術進步,過度依賴AI可能在未來沖突中制造致命弱點。
參考來源:LAWFARE