亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

當前正值顛覆性技術劇變時代,“人工智能”(AI)領域尤為如此。盡管由商業部門開發且為其服務,人工智能顯露的軍事應用潛力正推動全球武裝力量開始試驗雛形階段的“AI賦能防御系統”。對率先充分理解人工智能、進而改革現有人本中心兵力結構并接納“AI作戰模式”的國家而言,或將獲得顯著的“先發制人”優勢。

澳大利亞國防學院探索了適用于近中期“AI賦能戰爭”的海陸空作戰概念。鑒于大量底層“窄人工智能”技術已在商業領域成熟發展,此舉并非純理論推演。當代人工智能的“通用屬性”意味著其初期應用將嵌入現有作戰層級結構,而非構建全新體系。

本文聚焦空中領域。為集中論述,嚴格限定于“防空作戰”范疇,避免擴展至聯合與聯軍作戰層面。即便如此,仍可探索激發未來思考與備戰準備的作戰概念。關鍵需認知:人工智能是其他技術的“激活劑”。其并非獨立作用體,而是與眾多數字技術協同運作——為這些技術注入某種形式的“認知能力”。

近中期內,人工智能的核心吸引力在于其快速識別模式、探測海量數據中隱藏目標的能力。在為移動系統賦予新型自主性的同時,AI將徹底變革戰場全域的目標感知、定位與識別能力,“戰場隱蔽性”將日益困難。然而人工智能并非完美:其固有缺陷包括“易受欺騙性”“系統脆弱性”“跨任務知識遷移障礙”及“高度數據依賴性”。

因此人工智能的核心作戰效能可概括為“探測與反制”。依托機器學習,AI在“高雜波背景”中識別隱藏目標的能力遠超人類且速度驚人;但另一方面,人工智能也易受多種手段欺騙——其卓越的目標探測能力缺乏穩健性支撐。

傳感器網絡與指揮控制體系

“探測能力”構建的起點是在敵方力量可能活動的陸海空天網全域最優位置布設大量低成本“物聯網”(IoT)傳感器。這一理念已在“綜合防空系統”(IADS)中得到部分實踐——通過地面雷達站鏈與“空中預警機”協同探測高低空目標。空戰中“AI賦能防御概念”主張大規模增補現有高成本、數量受限的傳感器部署方式,轉而采用海量具備AI功能的小型低成本地面及機載傳感器。

擴展型物聯網傳感器網絡中的小型單元可利用“邊緣計算”技術,將預處理數據經云端傳輸至融合中心并匯入指揮控制系統。此類微型傳感器雖可搭載主動短程雷達發射器,但受制于“供電瓶頸”而應用受限。更可行的方案是采用被動式物聯網傳感器,探測涵蓋聲學、紫外、紅外、無線電及雷達頻段的電磁頻譜信號。單個傳感器性能或許有限,但當數百個節點數據整合時,便可實現三維空間內的空中目標追蹤與識別。

地面防空物聯網傳感器通常采用固定持久部署,而“無人機”(UAV)搭載的傳感器續航時間可達數小時至一晝夜。新興物聯網技術(如“高空氣球”“微衛星”及“偽衛星”)有望大幅提升續航能力,這些平臺均可集成AI功能。

建設采用被動探測模式的大型物聯網傳感器網絡后,滲透飛行器必須規避雷達、數據鏈及通信等輻射源以防暴露。盡管如此,常規飛機排放的噪音、熱輻射及可視特征仍可能泄露行蹤。因此構建“深層次物聯網傳感器網絡”至關重要:當飛行器接近已知傳感器時或通過機動降低輻射(尤指前向輻射),但深層網絡仍可從側翼及后方探測到規避中的目標——即使其未直接進入主探測區。

AI實現的超大規模物聯網傳感器網絡將部分處理數據經云端輸送至融合設施,由AI執行深度解析。此過程可套用“觀察-研判-決策-執行”(OODA)模型:“觀察”環節AI既作用于各物聯網節點邊緣計算,也參與融合中心數據處理;“研判”階段AI在“作戰管理系統”中發揮核心作用,不僅生成近實時全景空情圖,還能預判敵機行動軌跡;隨后的“決策”AI層基于防空單元可用狀態,向人類指揮官提交按威脅等級排序的攔截目標清單、推薦跨域攻擊最優方案、行動時間節點及防誤傷措施,此時人類通過“人在回路”或“人在環上”模式保持深度介入;經人工批準后,最終“執行”環節由AI主導——自動分配武器至各目標并傳遞制導數據、確保友軍誤傷規避、確認打擊完成狀態、必要時下達彈藥補給指令。

AI賦能的戰斗機

隨著多款高性能無人機投入應用,開發具備“視距內空戰”能力、利用“人工智能”進行戰術決策的無人機,似乎已成為一項明確的工程任務。美國空軍(USAF)計劃在2024年重啟2020年“AI駕駛戰機對抗人類飛行員”的試驗——此次將采用“實體戰術戰機”而非模擬系統。實戰化、經優化的“AI賦能近距格斗無人機”可實現比有人戰機更“小型化”“輕量化”與“低成本化”;若執行防御任務,甚至無需掛載武器即可瓦解敵方空襲。

該無人機可由“指揮控制系統”指派,對敵機實施“攔截”“逼近”并啟動“格斗”。敵有人戰機因此被迫分心應對,“攻擊路徑”遭到干擾,進而暴露于其他有人作戰系統的打擊范圍。若敵機進行規避機動,“燃油消耗率”將激增,可能需提前撤離以返回遙遠的基地。

另一方面,“AI武裝戰斗機”可根據實際戰況,采用“人在環內”或“人在環上”模式運作。但武器掛載會帶來“工程設計難題”:引發“通信穩定隱患”、觸發“武裝沖突法律風險”并衍生“戰術顧慮”。綜合考量下,采用“鎖定-全程伴飛”模式的無人機更具優勢——該型無人機“鎖定”敵機后持續伴飛,實時“廣播”其航跡與詳細參數。

“AI戰斗機”可執行“戰斗空中巡邏”(CAP)或“地面待命攔截”(GAI)任務。CAP任務需要較大機體以保證有效“滯空時間”(同尺寸無人機滯空能力遠超有人戰機),但機體增大將加劇“設計”與“操作”復雜度。執行GAI任務時,無人機可設計得更輕巧(更接近導彈構型),例如美空軍“XQ-58A女武神”驗證機:從固定發射架升空,傘降回收,并可部署于“可移動貨運集裝箱”中。若GAI型AI無人機無需機場,將簡化“多層防空體系”構建流程,更能催生“分布式防空”等創新理念——在物聯網傳感器網絡內分散部署GAI無人機,由指揮控制系統遠程調度實施“快速反應攔截”,與CAP有人戰機“協同作戰”。此類無人機同樣無需武器掛載即可發揮效用。

關鍵在于,此類“AI賦能的綜合防空系統”需明晰“人機任務分工”:人類承擔“高層級認知功能”的決策職責(制定“全局作戰策略”、篩選及“排序目標”、批準“交戰”),AI則執行“低層級認知功能”(如“飛行器機動控制”與“格斗戰術實施”)。

欺騙功能AI

AI的“探測功能”需輔以“欺騙功能”形成作戰效能。攻擊方需充分掌握目標及防御信息以確保打擊成功率。“AI賦能欺騙系統”可在物理戰場與網絡空間全域部署,旨在通過構建誤導或混淆態勢破壞敵方“探測效能”。此類系統還可融入“精密欺騙行動”,發揮協同效應。

廣泛分散的移動式“邊緣計算系統”通過發射可變保真度信號群,可生成復雜電子誘餌。雖可借助道路網絡部署“無人地面載具”模擬機動防空系統等特定功能,但依托“無人機平臺”部署可實現最優機動性。其戰術目標是在短暫攻擊期間遮蔽戰場態勢。

成本更高的方案是采用“無人機電子復制技術”——模擬大量防御戰機在目標區域各CAP戰位升空,營造“防御力量遠超預期”的假象,誘使敵方攻擊編隊因預判高戰損而撤退。“欺騙功能”還可與“被動防御措施”及“作戰路徑選擇”深度集成。機場通常在戰前提前建設,可針對性設計抗打擊能力。但現代“精確制導武器”削弱了“加固工事”的防御效果,“分散部署”成為優選方案。AI技術將使這一分散部署策略的可行性達到數十年來新高。

永久性機場周邊可設若干“臨時起降場”。此類場站設計使用壽命為數周至數月(遠低于永久機場的幾十年)。沖突期間,戰機可在永久機場與臨時起降場持續輪轉。這種機動將與“AI賦能欺騙行動”深度融合,旨在迷惑敵方決策——使其無法確定打擊目標,最終徒勞攻擊無戰機駐扎區域。該戰術通過強化“戰爭迷霧”,操控敵認知模式,精準削弱敵作戰效能。

敵反航空作戰可投入的戰機、“防區外武器”及彈道導彈數量有限。攻擊無戰機駐扎的機場既使有人戰機蒙受不必要損耗,又造成珍貴彈藥儲備浪費(短期沖突中不可補充)。“AI欺騙系統”與“物理分散部署”相結合,既可降低敵空襲效能,又能誘使敵方消耗有生力量。此類分散部署的傳統痛點是:多臨時機場運作戰機需在各點位“復刻后勤支援體系”,導致人力和資源成本激增。AI賦能系統可破解此困局——永久機場可通過“智能物流通道”聯接其大型倉庫與臨時起降場的耗材補給點,當前已有成熟AI技術應用于倉儲端。

現代化倉庫已具備四大特征:“庫存實時監測”“AI機器學習云端大數據物聯網實時訂購”“機器人揀貨”“載具自動轉運”。部分倉庫引入“按需3D打印”技術,滿足老舊設備備件的一次性需求,避免大量占庫。新建的“物流控制中樞”集成多源數字信息,運用大數據分析技術實現供應鏈(含運輸環節)全景實時可視化。同類技術可應用于耗材儲備設施管理。

在補給運輸通道層面,“AI智能物流”可采用“機器人卡車編隊行駛”模式(亦稱“集群隨行技術”):頭車由人類駕駛領航,多輛無人載具緊密跟隨。研發“無人化機場物流卡車”比陸軍補給車技術門檻更低——前者主要在勘測過的鋪裝道路上運行,并可依托GPS導航。

臨時起降場端可全面部署AI賦能系統。通過整合“人工智能”“機器學習”“大數據”“云計算”“物聯網”“自主運行”及“機器人技術”,此類基地能以遠少于現役編制的人員規模高效生成作戰架次:包含“自主加油裝彈”的可服役戰機機器人化保障成為可能;“AI預測性維護”將大幅減少計劃外維修頻次。機場可呈現“無人值守”狀態,由永久基地或異地“工程物流中心”遠程管控,甚至采用“可再生能源+儲能電池”實現半自主供能。

臨時機場的啟用設備或已預置完畢,戰時激活即可。另一種方案是預設基礎設施網絡,待“即插即用”系統與載具通過首輪卡車編隊運抵后,迅速接入機場“體系中的體系”。正如本次聚焦防空的討論所揭示:AI正如同現代版的“機器之魂”,深度滲透多數軍事裝備,勢將開辟空戰新紀元。鑒于空軍轉型常需數十年沉淀,推動這場“未來空戰革新”已刻不容緩。

參考來源:

1 Peter Layton, “Fighting Artificial Intelligence Battles Operational Concepts for Future AI-Enabled Wars,” Joint Studies Paper, No. 4, 2021, //www.defence.gov.au/.

2 Peter Layton, “Algorithmic Warfare: Applying Artificial Intelligence to Warfighting,” Air Power Development Centre, 2018, .

3 Steve Ranger, “What Is the IoT? Everything You Need to Know about the Internet of Things Right Now,” ZDNet, 3 February 2020, .

4 Maj Peter W. Mattes, USAF, “What is a Modern Integrated Air Defense System,” Air Force Magazine, 1 October 2019, .

5 Duncan Stewart et al., “Bringing AI to the Device: Edge AI Chips Come into Their Own,” Deloitte, 9 December 2019, .

6 Michael Spencer, “Pseudosatellites: Disrupting Air Power Impermanence,” Air Power Development Centre, 2019, .

7 Sarah Lewis, “OODA Loop,” TechTarget, June 2019, .

8 Chris Westwood, “5th Generation Air Battle Management,” Air Power Development Centre, 2020, .

9 Joseph Trevithick, “Navy Establishes First Squadron to Operate Its Carrier-Based MQ-25 Stingray Tanker Drones,” The Drive, 1 October 2020, ; and Kyle Mizokami, “Russia’s ‘Hunter’ is Unlike Anything in America’s Arsenal,” Popular Mechanics, 10 August 2020, .

10 Patrick Tucker, “An AI Just Beat a Human F-16 Pilot in a Dogfight — Again,” Defense One, 20 August 2020, ; and Secretary of Defense Dr. Mark T. Esper, “Secretary of Defense Remarks for DoD Artificial Intelligence Symposium and Exposition,” US Department of Defense, 9 September 2020, .

11 “Combat Air Patrol,” Wikipedia, ; and Lt Col Ernani B. Jordao, “An Investigation of the Combat Air Patrol Stationing in an Integrated Air Defense Scenario,” (BS Thesis, Brazilian Air Force Academy, 1971), .

12 Joseph Trevithick, “This Containerized Launcher for the XQ-58A Valkyrie Combat Drone Could Be a Game Changer,” The Drive, 16 October 2019, .

13 Col Daniel Javorsek, USAF, “Air Combat Evolution (ACE),” DARPA, .

14 Miranda Priebe et al., “Distributed Operations in a Contested Environment: Implications for USAF Force Presentation,” RAND Corporation, 2019, .

15 Stefan Schrauf and Philipp Berttram, “Industry 4.0: How Digitization Makes the Supply Chain More Efficient, Agile, and Customer-Focused,” Strategy& and PWC, 7 September 2016, .

16 “Oshkosh Defense Delivers Autonomous Vehicles,” Nation Shield, Military and Strategic Journal, 2 February 2020, .

17 Peter Layton, “Surfing the Digital Wave: Engineers, Logisticians and the Future Automated Airbase,” Air Power Development Centre, 2020, .

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

自2024年起,俄烏戰爭已成為現代無人機戰爭的試驗場,無人機(UAV)在軍事與民用領域均發揮關鍵作用。眾多觀察家將俄烏沖突稱為全球首場全面無人機戰爭——廉價無人機已從邊緣工具蛻變為戰場最重要且廣泛使用的武器。通過將傳統塹壕戰與"無人機驅動型技術創新"融合,無人機助力烏克蘭部分抵消俄軍在常規火力上的優勢。本深度報告回顧2024至2025年烏克蘭無人機領域關鍵進展,涵蓋戰場運用、本土創新、民用貢獻、外援支持及地緣政治影響,并援引專家與官員的直接論述。

戰場無人機:前線軍事應用

無人航空器已遍布俄烏戰場。幾乎所有烏克蘭旅級部隊均配備專職無人機分隊執行偵察、炮校及攻擊任務。小型第一人稱視角(FPV)無人機(原為業余競速四旋翼)經改裝攜帶爆炸物后可直接撞擊目標。這些成本僅500美元的自殺式FPV無人機可摧毀或癱瘓價值百萬美元的坦克與火炮,生動詮釋無人機的非對稱價值。每日發布的作戰視頻顯示:500美元無人機可擊毀重型裝甲載具,"彰顯其在現代戰爭中的變革性作用"。前線士兵已畏懼頭頂持續的無人機嗡鳴聲——烏步兵報告稱當前空中無人機密度已至"難以往返塹壕而不被偵測或攻擊"的程度。

烏軍將無人機整合為分層防御戰略,常被稱作"無人機防御墻"。沿數百英里戰線,偵察無人機與巡飛彈構成縱深防御區,有效阻滯瓦解俄軍攻勢。該戰術在2024年初炮彈短缺時尤為重要:無人機作為廉價精準替代品填補火力空缺。盡管單架無人機戰斗部遠小于炮彈,但協同蜂群可高效打擊敵軍人員載具,使俄軍大規模進攻集群難以集結。據分析師估算,當前雙方戰場損失約70%歸因于無人機。國際戰略研究所(IISS)指出:俄軍2024年損失逾1400輛坦克及3700輛裝甲車,此等規模毀傷主要源于烏軍激進無人機戰術。

雙方競相調整戰法。面對烏軍無人機"防御墻",俄軍放棄重型裝甲縱隊,改用摩托車與沙灘車組成小型突擊單元規避無人機偵測。同時俄部署自研無人機展現致命效能:從引導炮火的"海鷹-10"偵察機,到獵殺烏軍榴彈炮的"柳葉刀"巡飛彈。自2022年末,俄軍使用的伊朗制"沙希德-136"自殺式無人機屢次襲擊烏城市與基礎設施,迫使烏方臨時研發反制措施。目前烏軍已列裝可追擊攔截"沙希德"的攔截無人機,電子戰部隊則嘗試干擾或誘偏其航向。烏克蘭上空由此爆發激烈對抗,電子戰與反無人機防御成為雙方日益關鍵的作戰要素。

遠程與戰略無人機作戰

在戰線后方,烏克蘭日益依賴無人機實施遠程打擊高價值俄軍目標。2023至2024年間,烏軍對距前線數百公里的俄軍基地、補給站、煉油廠等基礎設施發動數十次縱深打擊。僅2024年,烏武裝部隊即執行約130次遠程無人機行動,打擊俄境內377個關鍵目標,涵蓋空軍基地、彈藥庫、國防工廠及能源設施。這些突襲標志著烏軍運用無人系統將戰火引向敵后的大膽戰略。

該戰略在2025年6月1日"蛛網行動"中達到頂峰——這場大規模協同無人機攻擊被烏官員譽為"開戰以來射程最遠、最具雄心的打擊"。通過"策劃18個月的奇襲",烏安全局(SBU)滲透小組深入俄境,將117架小型FPV無人機藏匿于偽裝成普通貨柜的卡車中秘密運輸。早晨時分,特工遠程開啟車頂,從俄領土腹地直接釋放無人機蜂群。這些通過第一人稱視角操控(推測操作員位于境外)的無人機同時突襲多個空軍基地,令俄軍措手不及。據SBU局長瓦西爾·馬柳克透露,無人機在四座基地損毀41架軍機,含戰略轟炸機(圖-95、圖-160、圖-22M3)及A-50預警機。總統澤連斯基盛贊此次"卓越"行動動用117架無人機對應117名操作員,宣稱一夜重創俄軍約34%戰略轟炸機隊。獨立分析評估指出:烏軍"僅憑小型無人機即癱瘓至少十余架俄軍機——包括俄約10%轟炸機隊",此等戰果在缺乏大型導彈或有人空襲條件下曾不可想象。

烏軍遠程無人機攻擊顯著驗證低成本無人系統的戰略覆蓋力。自2023年起,烏制單向攻擊無人機(多為改裝蘇制機型或本土新設計)已打擊俄本土及克里米亞占領區縱深目標,最遠觸及距烏2500英里的西伯利亞機場。此類行動迫使俄調整防御部署甚至轉移資產。例如在海上無人機反復襲擊軍艦及克里米亞大橋后,俄黑海艦隊主力艦艇基本撤離塞瓦斯托波爾港。分析指出:"烏海上無人機迫使俄黑海艦隊棄守克里米亞占領區母港",攜帶炸藥的烏海軍無人機甚至成功破壞俄軍艦艇與岸基設施。在陸域戰場,烏軍部署小型地面機器人至前線——這些遙控無人地面載具可運送補給、后送傷員乃至攻擊敵戰壕,同時避免人員傷亡。烏方在多域產生威脅。

俄方亦不甘示弱,2024-2025年加強針對烏城市的無人機與導彈打擊,常以"沙希德"無人機群試圖飽和防空系統。這使烏克蘭自身成為反無人機技術試驗場。西方援烏防空系統(如"獵豹"高炮、"IRIS-T"及"NASAMS"導彈)經改裝用于攔截無人機,烏科技界則臨時開發防御手段——從反無人機干擾槍到聯動監控攝像頭與AI的來襲無人機識別軟件。空域對抗場景深刻印證無人系統在攻防兩端已成不可或缺要素。

烏克蘭本土無人機生產與創新

面對持續的無人機軍備競賽,烏克蘭在2024至2025年間大力推進本土無人機產能擴張。戰爭初期該國僅有個位數無人機生產商;至2025年,運營制造商已近500家——涵蓋大型防務企業至小型初創公司。澤連斯基將無人機生產列為戰略優先事項,2025年初宣布烏克蘭年產能可達400萬架。產能躍升規模驚人:隨著新工廠與裝配線投產,簡易FPV無人機月產量從2024年約2萬架飆升至2025年20萬架。大西洋理事會報告稱:"今年烏克蘭計劃生產約400萬架各型無人機,超過去年總量兩倍",產品譜系從微型四旋翼、巡飛彈延伸至可打擊數百英里外目標的大型遠程無人機。

產業爆發式增長源于政策扶持與基層創新共筑的防務科技生態。2022年中啟動"無人機軍團"計劃為軍隊眾籌采購無人機,2023年設立Brave1科技孵化器支持本土開發者。至2025年,Brave1已向無人機及防務科技項目發放超470項資助,1500余家烏科技企業投身無人系統及相關技術研發。政府通過政策激勵零部件本土化——零部件本土化率超50%的企業可獲長期國家合同。烏克蘭企業由此加速機架、電子設備、發動機等核心部件國產化。2025年3月,Vyriy公司實現里程碑突破:量產千架全本土組件(飛控、無線電、攝像頭、發動機等)無人機,顯著降低對外依賴并增強供應鏈抗風險能力。

烏克蘭工程師在戰火中展現卓越敏捷性與創新力。借助3D打印與快速原型技術,新機型設計投產周期縮短至數周。創新成果包括抗干擾光纖制導無人機、應對俄電子戰優勢的AI自主制導實驗機型。觀察家指出:"依托戰場快速反饋與精簡采購流程,烏克蘭創新敏捷性遠超西方漫長研發周期",其無人機以極低成本實現媲美西方型號的作戰效能。官員表示若有額外100億歐元資金及更多組件供應,年產能可進一步擴至1000萬架。

迅猛發展伴隨挑戰:大量新廠商涌入導致質量控制與標準化問題,亟需嚴格規范確保本土無人機可靠性。成功背后存悖論:當前產能已超越軍隊部署能力,預示生產線或將超前于前線需求。盡管如此,烏克蘭崛起為無人機生產大國仍具標志性意義。這個曾依賴外國無人機的國家,正將無人載具列為國家長期科技經濟優先方向,"致力于打造國防科技硅谷"。

國際支持與伙伴關系

認識到無人機的決定性作用,烏克蘭的國際合作伙伴在2024年至2025年期間通過資金、捐贈和技術轉讓加大了支持力度。2023年年中,約20個盟國組成的“無人機聯盟”成立,由英國和拉脫維亞共同主持,旨在協調對烏克蘭無人機項目的援助。截至2025年,該聯盟已承諾投入約27.5億歐元,幫助烏克蘭在2025年前額外獲取100萬架無人機。其中大部分涉及為從烏克蘭制造商處采購提供資金(提振了當地產業)以及供應關鍵部件。進展比期望的要慢——聯盟成員最初依靠自身有限的生產能力——但新的機制正在加速援助。例如,丹麥推出了一種“丹麥模式”,捐贈者的資金(包括凍結俄羅斯資產的利息)被匯集起來,直接從烏克蘭公司采購無人機,繞過了繁瑣流程。預計僅2025年,這種簡化方法就將為烏克蘭無人機領域注入15億歐元。

盟國政府也從其庫存中捐贈了大量現貨無人機和巡飛彈藥。美國和波蘭提供了“彈簧刀”(Switchblade)和“戰友”(Warmate)自殺式無人機,英國為城市作戰派發了輕量級“黑黃蜂”(Black Hornet)偵察微型無人機,許多北約國家向前線運送了數百架商用無人機用于偵察。在戰爭早期成名的土耳其“巴伊拉克塔爾”(Bayraktar)TB2無人機持續少量交付(盡管其較大的尺寸使它們在面對2024年改進的俄羅斯防空系統時生存能力降低)。在海上,據報道美國和英國通過提供專業知識并可能包括關鍵部件,協助烏克蘭為其新興的海軍無人機艦隊開發無人水面艇。這種海軍無人機被用于2023年對塞瓦斯托波爾和新羅西斯克的俄軍艦艇進行的引人注目的攻擊,展示了西方技術支持在新領域中的價值。

值得注意的是,國際援助不僅基于硬件,還側重于培訓和知識共享。烏克蘭無人機操作員和工程師接受了有關北約先進無人機系統的培訓,而西方軍方則悄然研究烏克蘭的無人機戰術,以期為自身防務汲取經驗。聯合研發項目也相繼涌現——例如,烏克蘭與波蘭合作開展一個新的遠程無人機項目,美國科技公司則與烏克蘭初創企業合作研究用于無人機情報的人工智能驅動圖像分析。到2024年底,烏克蘭國防部與幾家西方制造商簽署協議,將在烏克蘭本土建立無人機生產或維修設施,從而鞏固了長期伙伴關系。

民用及志愿者無人機行動

烏克蘭無人機領域最顯著的特點之一,是平民和志愿者深度參與無人機的開發與操作。從戰爭初期開始,烏克蘭精通技術的民間力量便積極響應軍隊無人機需求。著名案例是由平民IT專家組建的志愿者無人機部隊"空中偵察"(Aerorozvidka)。該組織2014年僅為小型興趣團體,到2022年已發展為烏軍內部高效的偵察攻擊小隊,不僅自制無人機還將民用無人機武器化。

各地志愿者籌集資金購買現貨無人機——從微型競速四旋翼到重型八旋翼——再進行戰斗改裝。消費級機型被重新涂裝,加裝簡易炸彈投放裝置或紅外攝像頭后送往前線。空中偵察團隊甚至自主設計制造了R-18八旋翼無人機。這款造價約2萬美元的八旋翼飛行器可投擲5公斤(11磅)炸彈并回收重用,已成功摧毀俄軍裝甲車,借助熱成像功能實現夜間40分鐘續航,印證了烏克蘭在壓力下的創新能力。截至2024-25年,數百個志愿團體和初創企業投身類似事業:從3D打印無人機零件到開辦"無人機學校"培訓普通民眾成為熟練的FPV無人機操作員。地方政府亦參與其中——如2024年初日托米爾市議會啟動項目,教導平民為軍隊需求制造操控FPV無人機。

眾籌在此領域至關重要。2022年中啟動的全球捐贈項目"無人機軍團"持續至2024年,籌集數千萬美元用于海外采購無人機及零部件。社交媒體活動常聚焦具體需求(如為某次攻勢眾籌1000架FPV神風無人機),獲得烏國民眾及僑胞的慷慨響應。科技企業家與愛好者俱樂部同樣通過整合資源制造實驗性原型機。這種自下而上的力量在2024年顯著壯大了烏克蘭無人機機隊,本質上動員民用科技圈成為輔助軍工產業。

無人機戰爭中軍民角色的模糊化帶來了機遇與挑戰。一方面,烏克蘭利用現成商用技術與基層人才,快速形成傳統軍隊官僚體系需多年才能發展的能力。但依賴國外商業平臺存在隱患:供應商曾因政治壓力斷供。這也意味著數千平民志愿者需在戰場速成軍事技能,甚至作為無受訓操作員出現傷亡。盡管如此,烏克蘭經驗展示了"大眾化"戰爭模式:普通無人機愛好者能為國防做出切實貢獻。正如專家觀察指出:"烏克蘭戰爭中無人機的廣泛應用提供了關鍵啟示——從平民日益深入的參與到過度依賴外國零部件的風險"。基輔正將部分志愿力量制度化:將優秀志愿者部隊編入正規軍,并制定新飛行員標準化培訓計劃。

地緣政治影響與專家評論

2024-2025年烏克蘭無人機的大規模運用產生了深遠的地緣政治影響,引發全球軍事領域既敬畏又焦慮的復雜情緒。對烏克蘭及其支持者而言,無人機行動已成為戰爭中的潛在戰略點。通過平衡技術代差,無人機幫助烏克蘭抵御了數量占優的敵軍。烏方分析人士主張:若將無人機年產量提升至百萬量級,就能用廉價無人機群壓垮俄軍防御體系,其打擊速度將超越對手反應能力。這種思路已影響西方援助策略,盟國正考慮專項撥款以實現烏克蘭的"無人機蜂群"戰略。

國際層面,烏克蘭的無人機成就為未來戰爭形態敲響警鐘。2025年6月的"蛛網行動"尤其震撼北約軍事規劃者。"這次無人機伏擊應給美軍拉響警報",防務分析師斯泰西·佩蒂約翰與莫莉·坎貝爾在襲擊后撰文警告,指出美軍基地可能同樣脆弱。他們強調"烏克蘭僅用小型無人機就癱瘓了至少十余架俄軍戰機——包括俄轟炸機隊約10%的兵力",此舉暴露了傳統防御體系面對廉價無人機群的嚴重漏洞。據報道五角大樓高層以焦慮又艷羨的矛盾心態觀戰:既擔憂美軍資產遭遇類似威脅,又垂涎烏克蘭開創的創新戰術。教訓顯而易見:未來任何涉及先進軍隊的沖突都可能充斥無人機,缺乏強力反制手段者必將遭受重創。受烏克蘭戰局直接刺激,西方軍隊正大力投資反無人機系統——從干擾槍、激光武器到戰機加固掩體。

烏克蘭DIY無人機的成功案例鼓舞了一些國家甚至非國家行為體,他們從中發現了不對稱戰爭藍圖:憑借充足現貨技術與獨創性,弱勢方能對抗強敵。英國皇家國際事務研究所指出:"烏軍使用廉價無人機打擊俄腹地目標,為快速演變的現代戰爭提供了范本",呼吁各國政府據此重新思考防務理念。事實上,歐洲防務官員日益將烏克蘭無人機防御視為"抵御激進俄羅斯的歐洲第一道防線"。

專家們最后指出,烏克蘭戰爭催化了全球無人機擴散。作戰無人機曾專屬少數先進軍隊;如今受烏戰啟發,數十國正開發或獲取類似能力。烏克蘭自身也表示戰后要成為無人機技術出口大國,或將重塑國防工業格局。但若落入惡徒之手,同樣的廉價無人機戰術可能用于恐怖活動或制造動蕩(如非國家組織襲擊關鍵基礎設施)。此類憂慮重啟了關于無人機使用國際準則的討論。正如某歐洲分析師所言,烏克蘭局勢意味著"無人機精靈已經逃離瓶子"——當下要務是學會與之共存,并確保盟國在無人機創新與防御領域保持領先優勢。

結論

2024至2025年,烏克蘭的生存之戰日益演變為無人機博弈,在此過程中革新了軍事思想。從戰壕四旋翼到遠程自主轟炸機,無人機滲透進沖突的每個環節。依托本土創造力、全民動員與外圍支持,烏克蘭對無人系統的聚焦不僅在戰場取得成果,更引發戰爭形態的深層變革。隨著該國持續精進無人機武庫與戰術,其經驗為世界提供了些許教益。

參考來源:Drone warfare analyses and expert commentary;news reports on Ukraine’s drone operations and industry;official statements and statistics from Ukrainian authorities and allied officials

付費5元查看完整內容

戰場指揮在未來將走向何方?這個問題是軍事當前一代人改革的核心。在尋找答案時,軍事域將目光投向烏克蘭戰場。那里的戰事揭示了兩大真相:第一,"分布式指揮"(美軍稱為任務式指揮并宣稱其為準則)將繼續作為優勢存在;第二,未來指揮官將借助人工智能決策所有事務——行軍路線、攻擊目標與救援對象。美國陸軍近期宣布的改革計劃表明,其意圖同步推進這兩大方向。

但由此衍生出新的困境:軍隊如何在維系分布式指揮文化的同時,將人工智能融入每項任務?換言之,若各層級指揮官依賴人工智能輔助決策,是否可能催生另一種形式的"集中化"——權力并非集中于高層,而是受限于不完美的算法模型?要理解并最終解決這一困境,不妨再次聚焦烏克蘭地圖,不過這次需回溯兩個世紀——從克里米亞戰場那位名叫列夫·托爾斯泰的年輕炮兵身上汲取智慧。

托爾斯泰的戰場洞察

成為文學巨匠之前,二十多歲的托爾斯泰是名炮兵軍官。1854年,他親歷了克里米亞戰爭的高潮——被困于遭英法聯軍猛烈炮擊的塞瓦斯托波爾港。在堅守城市險要"第四棱堡"炮陣的間隙,托爾斯泰為圣彼得堡的《現代人》雜志撰寫戰地通訊。這些以坦誠與文采風靡俄國文壇的報道使他聲名鵲起,后被輯錄為《塞瓦斯托波爾故事集》,被公認為現代戰地報道的開山之作。報道的成功讓托爾斯泰確信寫作是畢生使命,克里米亞戰爭結束后他便退役專職寫作。

成為平民的托爾斯泰并未遠離戰爭題材。他終其一生都在從軍旅經歷中汲取創作素材。在其代表作《戰爭與和平》對奧斯特里茨與博羅季諾戰役的經典敘述中,清晰可見他對軍事指揮的見解:托爾斯泰認為"指揮"概念本身近乎虛妄——指揮官構想的計劃、下達的指令與實際戰場態勢間的關聯脆弱不堪。在他筆下,最糟糕的軍官因狂妄臆測戰局而釀成大禍,實則對戰場態勢一無所知;最優秀的軍官則坦然接受認知局限,沉著自若地展示冷靜以激勵士兵。無論何種情形,多數軍官在硝煙彌漫與地形起伏的戰場中如同盲人行路,只能在戰事后編織解釋性的故事,而這些故事卻被他人誤作可信的戰場證言。

指揮還是幻覺?

軍事研究者或疑托爾斯泰的見解是否超越了克勞塞維茨1832年《戰爭論》的論述。畢竟克氏早已闡明"意外事件"與"微小因素"如何塑造戰場結局,其"摩擦"理論至今仍在美軍廣泛沿用。但"摩擦"隱喻本身已暗示二人戰爭觀的本質差異:克勞塞維茨視戰爭為精密機器——摩擦僅是阻礙其順暢運轉的例外故障;而托爾斯泰眼中,這臺機器純屬高階指揮官臆想——無論他們如何努力,戰場實況終將粉碎其精心設計。

托爾斯泰的突破性觀點在于:指揮官不僅難以預見摩擦,更在制造集體幻覺。他們在無序戰場強尋規律,于巧合事件妄斷因果。《戰爭與和平》中:彼得·巴格拉季昂在奧斯特里茨敗局已定時仍請戰;1814年莫斯科大火因消防員潰逃而非庫圖佐夫命令;俄軍在塔魯季諾的完美側擊實為后勤事故而非預定計劃。然而歷史學者與當時將領竟將此類事件歸功于巴格拉季昂與庫圖佐夫的"天才指揮",更遑論被托氏塑造成"拉著車廂韁繩便自認馭者的孩童"般自欺的拿破侖。

為何指揮官與史家總將戰果歸因于不相關的計劃?托爾斯泰在《戰爭與和平》的哲學篇章中揭示:"人類心智無法窮盡事件全貌,但探尋因果的欲望深植靈魂。"人們渴求邏輯連貫卻無力洞察萬千微因,遂虛構出本不存在的宏大敘事與偉人。托氏核心論旨在于:事件并非無因,只是成因過于繁雜隱晦而超越人類認知。他將這些因素稱為"無窮小量",主張研究者應"撇開帝王將相",轉而考察"驅動民眾的細微元素"。

此即托爾斯泰的著名批判。他劍指當時盛行的"偉人史觀"——該理論認為歷史由天才意志推動。但此論亦可視為對任務式指揮的強力佐證:托氏戰爭敘事表明,分散指揮不僅是優選模式,更是唯一真實的指揮形態,余者皆為幻象。高階指揮官因遠離戰場(脫離士兵與炊事員的真實層面),其幻覺得以免受現實沖擊而持久存續。貼近地面的領導者最擅整合"無窮小量"以理解戰場。如以賽亞·伯林在托學名篇《刺猬與狐貍》所言,這種整合本質是"藝術-心理"層面的工作。而陸軍條令視為任務式指揮基石的"互信"與"共享理解",豈非正是精妙心理過程的產物?

從偉人論到偉大模型論

或許無人需借托爾斯泰之見方能領悟任務式指揮的價值。當今美國觀察家在烏克蘭戰場隨處可見其智慧明證:烏軍憑借更動態分散的指揮控制抵消俄軍數量與裝備優勢,此舉被類比為美軍自身風格。另有觀點歸功于烏軍將人工智能應用于多元戰場職能——此領域烏軍已大幅領先美軍。將AI融入數據中心的指揮控制工具、參謀作業及作戰條令的呼聲高漲,但兩大要務——整合AI與維系任務式指揮——的辯證關系卻遭忽視。

初看之下,人工智能似為托爾斯泰詰難的完美解答。以賽亞·伯林在《刺猬與狐貍》中如此概括其核心:

吾輩無知非因根本原因不可觸及,實緣其數量龐雜、終極單元微小,加之人類無力盡察盡記盡錄盡協可用之材。全知于經驗性存在原則上可行,然實踐終不可及。

還有比這更精妙的人工智能宣言嗎?AI對指揮官的價值主張,不正在于整合所有托氏"無窮小量"(即"終極單元"),并將其投射至可穿戴設備,供受敵壓迫的動態軍官快速參考?換言之,偉大模型能否在戰場實現偉人未竟之功?

困境有三重:

  1. 集中化隱憂:無論何種"人工智能"模型(計算機視覺或多模態系統)融入指揮控制平臺,皆代表單一思維而非多元心智。指揮官每將分析外包于AI,即是一次變相集權。
  2. 模式固化與傲慢:現有模型傾向模式依賴與認知自負,恰是托爾斯泰所嘲弄的"幻覺指揮官"復刻,而非其對立面。
  3. 現實感知讓位:因迷信AI"超然計算"的權威性,指揮官或摒棄自身視聽證據,恰恰放棄托氏指為理解戰局關鍵的底層輸入。

集權悖論
 盡管軍方開發多用途模型,但AI指揮系統大規模列裝將導致同質化模型在作戰部隊泛濫。若任務式指揮僅為通過復制高層思維加速決策,則AI將使其過時——但陸軍條令手冊ADP 6-0明示其核心在于"激發下屬創造力",此特質恰為集權所扼殺。最終或使全軍共享同一"教練"(若非同一指揮官),縱使其才智卓絕。

模型幻覺癥候
 大型語言模型虛構內容并自信宣稱為真已非新聞,其本質是尋求模式并機械外推。計算機視覺同樣產生誤判。最新研究稱此"思維幻構"嚴重限制AI處理新問題與環境之能。托氏曾諷拿破侖在侵俄戰爭中"抱怨戰事違背所有規則——仿佛殺人存在規則",其博羅季諾慘敗正源于AI易犯之錯:機械套用過時規則。模型訓練的邏輯與《戰爭與和平》中拿破侖兵臨莫斯科前的妄想如出一轍——數據支撐的預期勝利終成泡影。

系統性過度自信
 研究表明模型類同幼稚軍官:寧自信作答拒不認無知。可設想AI處理殘缺敵情報告時,強行擬合模式、填補數據缺口,最終自信預測與士官實況相悖的敵行動。同理可推指揮官受AI建議,在幻構地形設伏或虛構敵巡邏隊調度。宏觀層面,AI或憑訓練數據幻想整場戰役,實則戰場僅聞遠方載彈無人機微爆。

自動化偏信陷阱
 軍方AI倡導者明言無意取代人類判斷,僅強調"輔助決策""賦能指揮"。且人類指揮官本就會犯同類錯誤——無需機器助長自欺。癥結在于:我們將AI視作超人,產生研究者所稱"自動化偏信"。今人視拿破侖為洞悉戰爭復雜性的天才固顯可笑,但當下眾多人士卻對AI"超智能"(OpenAI薩姆·奧爾特曼語)抱有同等迷信。"超智能"與"偉人"概念何其相似?我們正冒險將AI塑造成拿破侖未能成為的"終極偉人"——整合無窮小量的天才,托氏在《戰爭與和平》中徹底解構的歷史主角。若視AI為歷史偉人,年輕中尉豈敢違抗其建議?

應對之道

人工智能以其多元形態必將深度融入軍事體系。陸軍在此戰略間歇期絕不能陷入盧德派式抗拒,必須將AI整合至作戰體系。任何嘗試預測旅級戰備狀態、營級燃料補給節點或士兵牙科診療需求者,皆深知狹義人工智能在高頻次、結構化、去情境化任務中的巨大增效潛力——"下一代指揮控制"等項目正著眼于此。但AI對任務式指揮的風險不容小覷,托爾斯泰的警示為陸軍認知與化解這些風險提供了關鍵鏡鑒。

降低AI對任務式指揮風險的首要是嚴格限定其應用場景于海量簡單任務。AI本質上不適應低頻次、高復雜、強情境依賴的人類深度決策領域(戰爭本質恰屬此類),故其在戰役設計、戰術規劃、敵情研判及士兵領導等環節的角色應受限制。AI在此類領域僅能加速人類決策所需的輔助計算。這種人機協同戰爭觀并非新見(阿曼達·科拉佐少校等學者已深入探討),但在技術狂熱中,陸軍需警惕并嚴格界定人機邊界——這不僅出于倫理考量,更因托爾斯泰雄辯揭示:戰場指揮終將挫敗任何算法心智(無論人類或機器)。用伯林的話說,指揮始終是"藝術-心理"工作,且至今仍是人類專屬。審慎態度不意味禁止AI用于模擬推演(那將自毀長城),但要求軍官抵制作戰方案外包誘惑——此原則當下顯見,未來或遭侵蝕。

其次需在軍官教育中植入對AI的健康懷疑精神。可采取類比炮兵訓練模式:迫擊炮手需同步掌握標圖板與彈道計算機兩種火控技能。軍官應先掌握無AI輔助的獨立規劃與指揮能力,再引入智能工具。此項能力應在職業全程定期復核。機器學習課程(強調模型對數據質量的依賴性)應與戰場情報準備課程同步開設。課程設計者或抱怨教學容量超載,但若AI指揮控制真如其鼓吹者所言具有革命性,則必須配以同等程度的教育變革。

第三條路徑是在訓練中強化AI懷疑論實踐。借鑒喬治·馬歇爾在戰間期步兵學校的創舉:他與約瑟夫·史迪威將學員趕出教室投入無預演演習,提供劣質地圖模擬戰場不確定性。循此傳統,陸軍應在野戰演習中刻意配備幻構AI模型。指揮官評估標準應包括:識別AI構建的虛擬戰場與實際戰場的差異能力。當訓練檢查清單要求"部隊需在動態降級環境下完成任務"時,"降級"條件必須涵蓋AI幻構/失效場景

即便至此,陸軍指揮官永不可忘托爾斯泰之訓:指揮是充滿變數的人類事業。戰爭常以獨特形態打破既有模式。貼近戰場的年輕指揮官恰是寶貴資產——他們能洞察海量數據無法捕捉的"無窮小量"。任務式指揮哲學雖善變且時有挫敗,卻最善接納這些戰場微觀洞見。唯此,陸軍方能穿透硝煙辨識托氏筆下的戰爭本源,方得整合制勝要素之希冀。

參考來源:美國西點軍校

付費5元查看完整內容

盡管商業與消費產業投入擴展現實(XR)技術研發已數十年,近期突破仍為軍事開辟了諸多新型應用場景。美國國防部研究與工程事務副部長辦公室已將XR人機交互列為美國防部(DOD)14項關鍵技術領域之一。隨著美國防部持續推進XR及相關應用開發,美國會正在考量其對國防授權撥款、軍隊結構及網絡安全的影響。

概述

XR涵蓋三大物理與數字環境類別(圖1):

  • 虛擬現實(VR):完全沉浸式數字環境(例如使用戶置身游戲虛擬世界的視頻游戲)

  • 增強現實(AR):物理環境上的數字對象疊加層(例如在用戶視頻/照片疊加預設特效的Instagram濾鏡)

  • 混合現實(MR):物理與數字環境融合體系,支持實體與虛擬物體交互。區別于AR,MR允許用戶操控物理/數字對象,并在同一混合環境中共享視圖(例如在投影數字地圖上協同標注敵軍位置)

圖1. 擴展現實主要類別

5G與邊緣計算(在“數據源位置或鄰近區域”執行的計算)等關鍵技術將持續拓展XR應用邊界。這些技術可提升數據傳輸速率、增加用戶承載量、縮短延遲時間,從而支撐大規模網絡化應用。美國防部已在劉易斯-麥克科德聯合基地(華盛頓州)與圣安東尼奧聯合基地(得州)測試支持5G的XR應用。

擴展現實的軍事應用

美軍各軍種正探索XR在戰術訓練、飛行訓練、裝備維護、醫療訓練及作戰等領域的應用。

  • 訓練領域

美國防部意圖借力“游戲產業成熟的AR/VR與實況訓練技術”開發定制化XR項目。這可使軍隊開展物理環境中成本過高或風險過大的訓練課目,并實現異地官兵協同訓練。

以美陸軍“合成訓練環境(STE)”為例——這個旨在輔助實況訓練的XR系統,力求讓士兵“在首戰開始前,就能與未來并肩作戰的戰友,在包含城市密林、叢林、沙漠及地下空間的復雜作戰環境中開展實戰化訓練”。STE設計目標是通過高效重復訓練提升士兵專業素養,進而增強戰備水平與殺傷效能。

美空軍運用XR開展飛行訓練以降低成本、縮短訓時、減少機體損耗,同時探索維護訓練應用并構建虛擬機庫體系,“實現各類機型全天候隨地訓練”。美海軍則致力通過XR技術聯通全球工程師與維護人員,實施實時遠程協同維修。

美國防部正研究XR在醫療訓練領域的應用。據空軍表述,XR可“在無需增加人力配置的情況下提升訓練可及性”,為人員短缺的醫療培訓課程提供分布式學習解決方案。

  • 作戰領域

軍方持續推進XR作戰應用探索(圖2)。長期以來,XR技術已融入飛行員使用的平視顯示器(HUD)及頭盔顯示器(HMD)。這些設備能實時提供飛行參數與傳感器數據,強化用戶態勢感知與武器瞄準能力。以F-35戰機HMD為例,其外置攝像頭賦予飛行員360度全景視野,疊加夜視熱成像功能并同步顯示探測目標技術參數(如高度、速度)。

美陸軍正開發“綜合視覺增強系統(IVAS)”——基于微軟商用HoloLens加固設計的平視顯示器。軍方文件表明,IVAS旨在“整合新一代全天候態勢感知工具與高分辨率數字傳感器,打造提升士兵感知、決策、目標捕獲與交戰能力的單一平臺”。

圖2. XR戰場應用示意圖

美國會關注的議題

美國會評估國防部XR軍事應用投資時可能考量以下問題:

  • 成本效益

XR軍事應用前期開發成本差異顯著,其中耗資220億美元分十年部署的IVAS系統屬最大規模項目。不過XR系統部署后可通過避免人員集中、實彈消耗及平臺損耗降低訓練成本。國會或要求獨立評估XR訓練與作戰應用的潛在收益(如認知過載風險)與成本節約空間,研判是否存在成本更低的替代方案。同時需獲取包含維護需求的XR系統全壽命周期成本預測。

  • 技術成熟度

部分XR應用(尤以獨立AR系統)已相對成熟,但更多項目仍處早期階段,面臨技術整合難度或部署測試延遲。國會或將持續追蹤XR系統技術成熟度以判定資金支持力度,并評估配套支撐技術的成熟度與資金保障狀況。

  • 人力資源影響

XR應用或對軍隊結構與人員配置產生多重影響:若顯著提升訓練作戰效能,可縮減訓練單位編制或降低總兵力需求(以更少兵力維持更高戰備水平);反之亦可能增加維護保障與網絡安全人員需求,甚至推高總體兵力規模。

  • 網絡安全與信息防護

分析人士警示XR系統存在網絡安全漏洞風險,可能遭受竊取數據或操控社交交互的“初始攻擊”。此類漏洞或使對手獲取高價值目標數據庫(含訓練數據、武器維護信息、圖像分類、地圖測繪等)及美軍位置情報。

若對手操控XR系統,可扭曲軍事行動協同的通用作戰視圖,導致人員裝備誤判(引發誤傷或平民傷亡),甚至奪取美軍無人系統控制權(如IVAS系統操控微型無人機執行ISR任務的功能)。美國會可要求聽取國防部XR系統網絡安全測試報告,并對存在重大漏洞的系統凍結撥款資金。

付費5元查看完整內容

近年來,無人機已成為現代戰爭的標志性技術。從小型商用四旋翼飛行器到精密遠程系統,這些無人航空載具(UAV)正深刻重塑戰場形態。其低成本與易部署特性引發全球多國政府的高度關注。這一轉變在持續進行的烏克蘭戰爭中尤為顯著——無人機在情報搜集、目標鎖定及直接攻擊敵方裝備人員等環節發揮著核心作用。

俄烏無人機戰爭

烏克蘭戰場已成為各類無人機技術與反制手段的試驗場。

近期戰例是烏克蘭對俄實施的大規模無人機集群襲擊。數十架無人機經協同編隊深入俄羅斯領土(包括別爾哥羅德、韃靼斯坦及克拉斯諾達爾地區),同步攻擊煉油廠與軍事基礎設施。此舉不僅彰顯烏克蘭日漸增強的敵后打擊能力,更凸顯協同無人機集群構成的重大威脅。尤為重要的是,這標志著基輔方面戰術轉型,將無人機運用推向戰略前沿。

俄方當時宣稱通過電子戰系統與地對空導彈防御攔截了多數無人機。然而后續衛星圖像與開源情報證實:至少部分無人機成功突破防御并造成重大設施損毀。該事件暴露出同時偵測與壓制大量低空小型無人機的極端困難性。

而就在幾天前,據烏克蘭國防情報局向全球披露的戰報:烏方無人機襲擊摧毀了逾40架縱深部署于俄境內的軍用飛機。一位匿名烏克蘭高級軍官向美聯社透露,此次遠程打擊經18個月周密策劃,由總統澤連斯基親自督導實施。

澤連斯基表示,117架無人機從俄聯邦安全局(FSB)地方辦公室附近區域協同出擊。俄羅斯媒體發布的社交媒體畫面顯示,無人機從卡車貨廂的發射容器中升空,于6月1日同步襲擊多個軍用機場的41架軍機,包括A-50預警機、圖-95及圖-22M戰略轟炸機。俄軍此前曾使用圖-95與圖-22轟炸機對烏實施導彈打擊,A-50則承擔偵察與指揮職能。

據美聯社報道,烏克蘭國防情報局官員后續確認此次行動摧毀約34%的俄軍戰略轟炸機隊。俄羅斯國防部承認這些襲擊,并補充說明伊爾庫茨克地區(距烏4000公里)及北部摩爾曼斯克的空軍基地亦有飛機損傷與火災發生。

作戰中的無人機運用

除直接攻擊外,無人機在前線其他領域同樣發揮關鍵作用。在烏克蘭東部戰場,俄烏雙方部署數千架第一人稱視角(FPV)無人機執行偵察與直接打擊任務。此類無人機常配備爆炸裝置,由佩戴視頻護目鏡的操作員引導實施“自殺式打擊”,可實現精準點殺傷。社交媒體近期涌現大量視頻,展現FPV鎖定孤立無援的單兵實施絕殺的場景。阿夫迪夫卡與巴赫穆特周邊戰事的影像資料還證實:這些裝置被用于癱瘓坦克、摧毀掩體及襲擾步兵單位。

烏克蘭無人機部隊精通商用無人機改裝技術,并能協調廣闊戰線的協同打擊。作為回應,俄軍重點投入電子對抗手段(包括信號干擾與欺騙)以破壞無人機通信導航。

但前線還存在其他限制無人機效能的應對方法。

反制無人機的手段

鑒于現代作戰中無人機應用激增,據報道全球軍隊正研發三類反無人機技術與戰術:動能、電子與程序化應對手段。

  1. 電子對抗(EW):

電子干擾是最廣泛使用的無人機壓制手段,涵蓋GPS干擾、射頻干擾及信號欺騙。俄羅斯部署“克拉蘇哈”(Krasukha)及“驅離”(Repellent)系列移動式電子戰系統,用于保護關鍵資產并破壞無人機行動。但電子對抗并非萬全之策:多數商用無人機預編程“自動返航”或“跟隨”功能,信號中斷時仍可觸發;現代集群攻擊常采用不依賴持續操控的自主無人機,使其抗干擾能力顯著增強。

  1. 動能攔截武器

導彈、高射炮乃至激光器等傳統防空武器可摧毀無人機,但對高速小型目標常顯成本過高或響應遲緩。這催生了以色列“鐵光束”(Iron Beam)激光系統及美制“郊狼”(Coyote)攔截無人機等專用裝備的發展熱潮。在烏克蘭戰場,雙方更多采用簡易應對手段:包括隨手武器射擊,甚至使用霰彈槍擴大彈著散布面。此外,雷達制導自行高炮(如德國援助的"獵豹"(Gepard)系統)經證實能有效攔截低空無人機。

  1. 程序化應對與戰術調整

除硬件方案外,前線部隊通過戰術調整降低無人機威脅。烏軍精于運用偽裝、煙霧及誘餌欺騙操作員,部隊機動常選擇低能見度時段,單位頻繁轉移陣地規避偵測。有報道稱甚至采用充氣假目標誘導攻擊火力,掩護真實坦克、裝甲運兵車等裝備。上述措施配合便攜式雷達、聲學傳感器及人工瞭望哨使用,可預警來襲無人機,為地面單位爭取反應時間或尋求掩體。

反無人機戰略的未來發展??

北約等軍事聯盟正投資構建分層反無人機系統,整合傳感器、電子戰工具、動能攔截武器及人工智能驅動的指揮系統。其核心目標可概括為:在不同環境中實時偵測、追蹤并摧毀無人機。

由此,定向能武器(如激光與微波系統)等新興技術有望提供針對無人機集群的性價比防御方案——至少在相對開闊區域適用。英國陸軍已測試能精準擊落無人機的激光武器,其附帶損傷可控制在最低限度。

然而迄今尚無單一反制手段被證實完全有效,尤其針對集群式自主無人機。隨著無人機技術日益精密與普及,軍事規劃者必須采用融合技術、戰術及訓練的多層防御策略,以有效應對這一漸長的威脅。烏克蘭戰爭不僅暴露全球頂級軍隊的脆弱性,更在決定未來戰爭走向的關鍵領域加速了技術創新。

參考來源:intellinews

付費5元查看完整內容

人工智能(AI)正日益成為指揮控制(C2)及相關決策鏈的關鍵組成。AI系統通過賦能指揮員依托數據信息實現更快、更高效的決策支持,其核心價值在于顯著加速指揮控制活動。然而此類系統兼具高度復雜性:決策結果常呈“黑箱效應”難以解析驗證,且面臨倫理思量困境。為消減這些缺陷,人類操作員無需認同AI的每項決策,但必須保留對系統的實質性掌控權,確保可隨時干預并中止特定決策。鑒于AI賦能的指揮控制活動持續加速,指揮機構維持這種“可干預性”的能力將面臨嚴峻挑戰。

引言??

高效遂行作戰行動離不開信息的快速共享與處理。隨著數字化系統與傳感器陣列的普及使當代戰場呈現“數據富集化”特征,指揮員必須處理持續膨脹的數據量以有效實施作戰。為迅速解析數據內涵,指揮員日益依賴基于人工智能(AI)的決策支持系統。AI在指揮控制(C2)領域的深度應用正加速從戰役規劃、戰斗執行到作戰行動的全鏈路決策進程,成為應對戰爭演變中速度、規模與復雜性升級的“關鍵賦能器”。此處C2特指“指揮官對所屬部隊行使指揮權與作戰指令下達以達成任務目標”的行為。

AI的戰略價值提升及其引發的“C2加速效應”,使指揮體系面臨多重挑戰:包括系統過度依賴、可信度缺失、操作訓練不足等固有問題,以及AI賦能的指控系統在戰術、技術與倫理層面構成的“三維風險”。核心矛盾在于如何認知AI應用于C2的固有缺陷,并通過平衡“人機協同決策”機制予以消解。

本文主張:AI驅動的C2加速既具必要性又存戰略價值,但必須確保人類持續“接入”AI輔助決策回路——“決策回路”指代完整決策流程,“接入”狀態意味著人類無需認同AI每項決策,但須保留決策實施中的干預權與緊急中止能力。論文首先剖析“AI加速C2”的收益風險及衍生影響,繼而聚焦該進程對陸軍指揮機構的具體效應,最終為歐洲地面部隊提出針對性建議。

1. AI賦能的C2加速效應影響分析??

技術創新及時有效的應用對戰爭實施具有關鍵作用。自海灣戰爭精確制導彈藥與數字系統問世以來,軍事領導者始終致力于打造新興技術賦能的高效快速部隊。與此同時,戰場電子化與數字化革命使傳感器與數據系統呈指數級增長——能否及時有效進行數據優先級排序將獲得決定性優勢。為AI算法提供數據的傳感器至關重要,其信息處理速度遠超人類能力上限。因此,對全域傳感器海量數據進行優先級排序是支撐C2決策的核心環節。

AI帶來的效率增益正全域加速指揮控制活動。正如沃特林(2023)強調:數據的戰術價值存在有效期,信息有效性驗證周期必須短于其戰術價值存續期。該過程同時依賴硬件與帶寬能力以實現數據高速傳輸。為避免系統過載,AI可進一步優化數據傳輸優先級。這在電子飽和戰場尤為重要——陸軍部隊無法依賴海空平臺級帶寬資源時,AI可最大化有限帶寬利用率,從而提升決策精確度與效能。

基于海量數據的AI網絡系統日趨復雜化,其部署運作難度同步增大。地面部隊管理此類系統面臨獨特挑戰:需建立更多連接節點、保障高能耗系統電力供應、應對復雜地形干擾。為構建AI輔助C2體系建立的節點網絡,更易成為敵對國家與非國家行為體網絡攻擊的突破口。硬件與軟件的雙重制約使AI系統實戰部署仍存挑戰。

指揮官在作戰中必須應對“戰爭迷霧”(克勞塞維茨提出的不確定性概念)、摩擦阻力、戰場恐懼及態勢突變。虛擬環境研發的AI系統初涉高風險實戰環境時極易出現異常。其原因包括訓練數據缺失或受安全/后勤限制無法開展實戰化測試。AI系統持續面臨“戰略混沌”中戰場摩擦、多義性及多重可能結果的壓力。

AI在C2決策相關的倫理道德領域同樣存在局限。當前無人干預的致命性自主武器系統實施動能打擊決策,已違反《國際人道法》武裝沖突條款。這引發責任歸屬與可追溯性質疑:若AI決策違反國際人道法,追責主體如何界定?以軍事必要性為由授權AI處理道德困境的做法,仍存國際爭議(Johnson, 2023)。該爭議將深度影響AI在軍事體系及C2決策回路中的定位。

AI與C2結合可指數級提升通信能力、數據分析與決策效率。隨著技術進步,AI賦能的C2發展具有必然性。然而C2全流程自動化將催生新脆弱性并危及系統生存能力:基于網絡連接的AI系統及其數據存儲節點面臨多重網絡攻擊風險。更關鍵的是,決策加速正改變戰略戰役層級的戰爭節奏,理解這些新動態成為當務之急。C2中AI自動化程度最終取決于部隊結構需求、戰場約束與任務目標。

武器系統與決策鏈的AI應用將重塑戰略格局與力量平衡。軍隊戰略原則須納入AI與C2加速要素。值得注意的是,AI將深刻改變戰爭的倫理屬性與法律特征。歐洲地面部隊需展現對國際秩序及其規則體系的維護承諾——若欲充分利用AI賦能的C2優勢,其指揮機構必須直面這些挑戰。

2. AI賦能C2加速效應對地面部隊指揮機構的深層影響??

決策結構中的所有信息最終匯聚至指揮員。指揮員的戰場態勢感知能力取決于信息數量、關聯價值及其獲取、理解與響應速度。有學者將態勢感知定義為“士兵對己方與敵方的相對位置關系,以及周邊作戰意圖的認知程度”。AI通過優化數據優先級排序與分發效能,協助指揮員預判敵軍動向并規劃己方兵力部署。在聯合全域作戰背景下,AI對戰場態勢的“實時全景掌握”,可加速多軍種在“決策回路”中的行動協同。該能力通過預判敵方行動增強部隊“抗毀韌性”,使地面部隊能在AI支持下實施精準高效作戰。

AI通過彌補人類“認知與生理局限”進一步提升地面部隊戰力。C2流程中“關鍵環節自動化”可有效抑制疲勞與人為失誤。倫理層面而言,整合“戰場微觀態勢”與法律體系的AI系統,可實現更精確的“武裝沖突法比例評估”及合規打擊決策。盡管將倫理準則植入AI無法消除算法偏見,但結合人類監管可降低“違法使用武力”風險。隨著AI加速C2全流程,通過抑制人因失誤提升決策可靠性的框架愈發重要。

然而AI系統的“技術新穎性”與“快速迭代”特性,阻礙指揮機構深度整合應用。要使AI有效支持C2決策,系統除準確性外更需具備“可信賴屬性”。當AI輸出結論的“驗證復雜度”遠超傳統模式時,指揮員決策意愿顯著降低。這種“黑箱效應”——即不可解析的AI輸出——持續削弱信任根基。“技術脆弱性”構成另一信任障礙,例如支撐AI決策的“關鍵數據鏈”可能因戰場環境失穩。標準化演訓體系、抗毀架構與“高質量數據鏈”仍是建立人機信任的基石。

AI引發的“C2半自動化轉型”,促使指揮員角色從“系統主導者”轉向“團隊協作者”,深刻改變行為模式與認知框架。該轉型易滋生“決策依賴癥”,若缺乏批判性思維,指揮員可能誤判“失真AI結論”。當系統“突發失效”或“可靠性降級”時,過度依賴將削弱戰場“自主應變力”。“創造性思維”與“動態適應力”始終是C2決策核心,AI應作為賦能模塊而非替代要素。歐洲地面部隊需貫徹“用戶中心”研發原則,引導作戰人員參與AI系統“需求設計”與“實裝訓練”。配合“持續強訓”,官兵將逐步掌握技術特性、構建“邏輯理解力”并建立“作戰信任度”。

AI在深度融入“決策回路”后已非被動工具,正演變為戰爭中的“戰略行為體”。這引發出超越常規的倫理詰問:是否應賦予AI“責任主體”身份及其相應權責?AI依賴度提升正重構指控體系內的“跨域協作機制”,亟需建立承認AI作戰主體地位的“新型條令架構”。

指揮官應對AI輸出保持“合理性存疑”,培養“批判思維”、“直覺感知”與“倫理抉擇”的復合決策素養。隨著“決策回路超速化”與AI依賴加深,人類(尤其指揮員)在C2中的職能定位需“動態校準”。歐洲地面部隊應警惕“AI專屬脆弱域”:重點防范“數據投毒”與“網電突襲”。強化“系統全維監控”、設限“網信活動邊界”及“安全數據實踐”,是維持AI戰場“存活性”與“可信度”的關竅。在滿足上述條件且確保人類“全時介入”決策回路的前提下,歐洲地面部隊方能有效釋放AI的C2賦能價值。

結論??

人工智能(AI)在指揮控制(C2)活動與決策中的作用將持續呈不可逆指數級增長。這將加速決策回路的運轉以及支撐決策的數據處理與分發進程。為維持“全時介入”決策回路,指揮機構必須重構職能定位并重組現有C2體系。人類參與及監督機制仍不可或缺——AI賦予的作戰效率、態勢感知與響應速度,不應以犧牲倫理準則與責任追溯為代價,更不應“主導指揮思維”。AI研發應用須恪守“輔助而非替代”原則,維護人類在C2決策回路的核心地位。

若未能融入部隊文化及條令體系,AI等“顛覆性技術”將無法釋放全部潛能。為充分獲取戰爭各層級的AI決策紅利,歐洲地面部隊亟需革新C2架構,并通過系統化訓練使指揮員隊伍掌握工具底層邏輯。最終,AI在C2領域的重要性攀升將使“高效應用者”贏得戰略優勢,此趨勢將重塑全球力量平衡。歐洲地面部隊唯有實現“風險控制”與“效能釋放”的動態平衡,方能維持軍事優勢。

Barry, W.J., & Wilcox, B. (2025, May 9). Neocentaur: A Model for Cognitive Evolution Across the levels of War. Modern War Institute. //mwi.westpoint.edu/neocentaur-a-model-for-cognitive-evolution-across-the-levels-ofwar/

Collazzo, A. (2025, February 21). Warfare at the speed of thought: Balancing AI and critical thinking for the military leaders of tomorrow. Modern War Institute.

Demarest, C. (2024, February 21). Pentagon achieves ‘minimum viable’ version of CJADC2, Hicks says. C4ISRNET.

European Commission, (2019, April 8). High-Level Expert Group on Artificial Intelligence. European Commission.

Freedberg, S., Jr. (2023, September 5). 3 ways DARPA aims to tame ‘strategic chaos’ with AI. Breaking Defense.

Harper, E. (2024, September 26). Will AI fundamentally alter how wars are initiated, fought and concluded? International Committee of the Red Cross.

Hinote, C. (2024). Reimagining command and control with human-machine teams. Special Competitive Studies Project.

Johnson, J. (2023). The challenges of AI command and control. European Leadership Network.

Lucas, R. (2024). Command and control in the future; Concept paper 4: C2 enablers. RAND Europe.

Luckenbaugh, J. (2023, July 21). Army hopes AI will give soldiers an information advantage. National Defense Magazine.

Simonetti, R., & Tripodi, P. (2020). Automation and the future of command and control: The end of Auftragstaktik? Marine Corps University Press, 11(1), 88–106.

Watling, J. (2023). Supporting command and control for land forces on a data-rich battlefield. Royal United Services Institute.

付費5元查看完整內容

人工智能(AI)正引發全球各行業的革命性變革,防務領域亦不例外。隨著全球安全威脅日益復雜化與數字化,各國正重新思考如何保障邊境安全、解析情報并執行任務。從增強態勢感知到高性價比解決方案,AI正為更智能、更高效、更安全的防務系統開辟道路。

至2028年,全球軍事AI支出預計將突破300億美元。歐洲正加速防務AI投資布局,為具備技術響應能力的企業創造重要機遇。

現代防務中AI的角色:核心創新

防務領域正經歷由AI技術進步驅動的結構性變革,重塑軍事行動的規劃、執行與評估方式。以下歐盟支持的項目彰顯AI如何應對戰略防務優先事項(據最新行業洞察):

  • AI4DEF:智能化決策與多域作戰

"國防人工智能"(AI4DEF)項目聚焦運用AI提升態勢感知、優化決策能力,并強化跨域(含無人機任務與聯合情報監視偵察/ISR分析)規劃效能。通過AI整合,防務系統可實現海量數據實時處理,驅動快速精準決策。該項目凸顯歐洲將AI嵌入陸、空、網、天多域作戰的實踐路徑。

  • ARCHYTAS:高能效與成本效益AI方案

"基于非常規加速器的可靠/高能效AI系統架構"(ARCHYTAS)項目優先開發可擴展的節能AI基礎設施,集成神經形態計算與光電加速器等前沿技術,兼顧性能與可持續性目標。此項目反映歐洲現代防務系統對技術創新與環境責任的雙重關注。

  • STORE:防護成像與戰術數據安全

"光電圖像識別評估共享數據庫"(STORE)計劃旨在構建AI算法支撐的安防成像數據庫,實現戰術級實時分析。該計劃增強地面作戰態勢感知能力,確保關鍵任務成像系統符合嚴苛網絡安全標準——這對保護當今技術驅動沖突環境中的國家利益至關重要。

歐洲防務AI

歐洲國家正通過"歐洲防務基金"(EDF)等倡議追求更高防務自主權與創新能力。該基金資助AI、先進計算與互操作性解決方案的跨境研發。AI4DEF、ARCHYTAS與STORE等項目印證了歐洲強化防務韌性、降低對外部技術依賴的決心。

隨著歐洲各國加大推進軍事能力現代化,北美企業引入AI解決方案并與歐洲協作正加速形成。然而,歐洲市場的進入面臨監管復雜性、文化差異與本地化銷售策略需求等挑戰。

AI4DEF、ARCHYTAS與STORE等防務AI進展標志著行業變革機遇。通過提升態勢感知、優化決策與強化網絡安全,AI正助力防務機構高效運作。對企業而言,此刻是將專業能力引入、共塑防務創新未來的最佳時機。

參考來源:eurodev

付費5元查看完整內容

隨著軍隊面向日益復雜與技術驅動的未來,人工智能(AI)的整合正迅速成為其作戰戰略的核心要素。AI技術有望從后勤供應鏈到決策制定與戰斗行動的各個環節帶來變革。然而,與任何新興技術類似,其整合過程充滿挑戰。理解AI技術的發展軌跡對于評估其潛在影響至關重要,而"Gartner技術成熟度曲線"等模型將成為研判未來技術演進的重要工具。

AI整合評估框架

Gartner技術成熟度曲線是追蹤新興技術成熟度、應用采納與社會影響力的模型,包含五個階段:技術萌芽期、膨脹預期的頂峰、幻滅低谷、復蘇爬升期與生產力平穩期。該模型幫助組織判斷技術發展階段,并制定實驗、擴展或實戰整合的適配策略。

對軍事而言,AI技術目前處于技術萌芽期向膨脹預期頂峰的過渡階段。盡管對AI潛力的熱情高漲,該技術仍處于實驗與早期應用階段。這意味著在將AI整合至兵力設計規劃時,必須審慎評估其優勢與局限。美軍《兵力設計2030》作為海軍陸戰隊未來兵力結構與作戰能力的戰略藍圖,AI在轉型中的角色具有重要地位。通過明確AI在Gartner曲線中的定位,可更有效規劃未來5年、10年與15年的發展路徑,確保AI成為其作戰體系與未來戰備的組成部分。

未來五年(2025-2030):AI整合關鍵期

《兵力設計2030》是美海軍陸戰隊未來十年的轉型路線圖。至2030年,AI將在后勤、決策與作戰策略等關鍵領域實現實質性應用。未來五年的重點在于將AI系統整合至低風險、高回報場景——尤其是人力成本高企與重復任務密集的領域。

后勤與供應鏈自動化突破

未來五年,將在后勤與供應鏈自動化領域取得重大進展。鑒于其全球部署帶來的巨大后勤壓力,AI驅動系統(如自動駕駛載具、預測性維護系統與需求預測算法)將優化供應鏈管理。AI可監測裝備損耗并預測維護需求,減少停機時間并保障戰備狀態。無人機與機器人運輸隊還可在高危環境中執行物資投送,在提升效率的同時降低人員風險。

AI增強作戰決策

至2030年,陸戰隊將依賴AI分析海量作戰數據以支持戰場指揮官決策。AI可處理衛星影像、傳感器數據與人工情報,提供實時戰場洞察,加速指揮官決策速度與精度。盡管對機器驅動的分析與建議的信任度需逐步建立,但通過漸進式整合,AI將深度嵌入戰術行動與戰略規劃的決策流程。

自主系統戰力升級

AI驅動的自主系統(包括無人機與無人地面載具)將在偵察監視與戰術行動中發揮更大作用。至2030年,將部署可在對抗環境中運行的AI自主平臺集群,強化偵察效能、獲取拒止環境情報并提供實時戰場態勢感知。這些系統的開發需確保與現有指揮控制體系的互操作性,并整合至當前兵力結構中。

海軍陸戰隊與AI:未來十年(2030-2035)

至2035年,人工智能將在陸戰隊實現深度整合與廣泛作戰部署。部隊將跨越初期應用階段,進入大規模AI實施期,重點提升作戰效率、精度與適應性。

人工智能在作戰策略與執行中的作用將更加突出。屆時,陸戰隊將配備具備動態自主任務規劃能力的AI系統。這些系統可整合實時情報數據,基于戰場態勢變化自主生成戰術策略。機器學習算法將實現自適應靈活作戰策略,使部隊對威脅變化的響應更敏捷。此外,AI驅動系統將強化目標識別能力,減少附帶損傷并提升打擊精度。

隨著戰爭數字化程度加深,網絡安全對維持AI系統作戰完整性至關重要。至2035年,陸戰隊或采用AI實施攻防一體的網絡安全措施。AI算法將協助探測漏洞、防御網絡攻擊甚至自主發起反制。此類整合需建立嚴格倫理框架與監管機制,規避意外后果并防范敵方對AI系統的操控。

基于AI的訓練系統將顯著提升陸戰隊員戰備水平與技能熟練度。至2035年,AI驅動的模擬訓練與虛擬環境將提供個性化訓練體驗。系統可根據個體學習進度與需求自適應調整,提供高擬真度作戰場景模擬。AI還可評估訓練表現、提供反饋與定向技能強化,確保部隊持續保持應對未來挑戰的敏捷性。

海軍陸戰隊與AI:未來十五年(2035-2040)

至2040年,人工智能將全面融入陸戰隊作戰與戰略框架,成為從訓練到實戰、后勤等所有任務環節的無縫化組成部分。

未來十五年內,AI將發展為指揮控制系統的核心要素。至2040年,可預見具備自主管理與協調大規模作戰能力的AI指揮控制系統。這些系統能在人類指揮官指導下實時評估戰場態勢、執行復雜任務并調配資源,大幅縮短決策周期并提升作戰效率,助力部隊更快速精準達成目標。

從無人機到機器士兵的自主作戰平臺或成為前線行動主力。至2040年,AI驅動的作戰單元將被整合至高風險環境(如高對抗區域或高強度作戰)中,作為力量倍增器維持戰略優勢。

隨著AI深度嵌入軍事體系,人機交互與自主作戰倫理問題將凸顯。海軍陸戰隊需在2040年前制定明確的AI作戰使用政策,確保其應用符合部隊價值觀與倫理標準。陸戰隊員與AI系統的協同信任關系,將成為技術成功的關鍵要素。

結語

未來5年、10年與15年,AI整合將革新陸戰隊的作戰效能、效率與戰略決策能力。盡管AI技術將經歷Gartner技術成熟度曲線的各個階段,但至2040年其必將成為部隊不可或缺的裝備。從優化后勤到增強戰斗力,AI將在塑造陸戰隊未來中發揮關鍵作用,確保其準備好應對日益復雜和對抗性世界的挑戰。兵力設計2030作為轉型路線圖,為打造更具適應性與技術先進性的部隊確定指南。

付費5元查看完整內容

設想一個未來:人工智能(AI)以空前的速度、精度與洞察力賦能北約部隊。這場變革的核心正是盟軍轉型司令部——推動北約釋放AI集體安全潛能的引擎。該司令部正推進多項舉措,將AI融入軍事行動、創新、教育與能力發展,呼應北約2030年實現數字化轉型、數據驅動與多域作戰能力的目標。

奠基工程:數據即戰略資產

盟軍轉型司令部AI工作的核心理念簡明有力:數據即戰略資源。正如優質食材成就佳肴,高質量、結構化數據是AI高效、可靠、負責任運行的基礎。缺乏可訪問、可共享、易理解的數據,AI工具將無法釋放全部潛能。

為實現這一愿景,該司令部主導提升北約數據管理與應用效能的行動,包括實施數據開發計劃。該計劃聚合北約作戰與轉型領導者,聚焦將現實需求轉化為實用案例、推動負責任數據共享、確保北約工具系統使用統一數字語言。

通過這一框架,盟軍轉型司令部著力培養數據與AI人才隊伍,支持標準化建設以確保數據可信度與跨系統適用性。這種"數據優先"策略是AI能力融入北約體系的關鍵基礎。在此之上,司令部正將前瞻概念轉化為支撐聯盟行動與決策的實用工具。

從概念到能力:推進實戰化AI解決方案

盟軍轉型司令部對北約數字化轉型最顯著的貢獻在于推進實戰相關的AI解決方案與原型系統。這些項目驗證了AI如何加速決策、提升作戰效能、強化態勢感知。

典型案例是AI FELIX(人工智能前端學習信息執行系統)。該數字助手旨在減少重復性文書工作,優化北約機構知識管理。其最初應用于"戰備委員會"——負責接收、登記、審核所有正式來函的北約總部核心部門。AI FELIX通過每日自動分析數百份文件、標注關鍵信息并分發給相應團隊,將處理時間縮減80%。

基于數萬份文檔訓練,AI FELIX融合機器學習與規則系統,在元數據標注與文件分類上超越人工效率。除自動化外,它還完成北約檔案庫全量回溯標注,顯著提升內部檢索工具效能。該工具已擴展至多個北約司令部,預計服務超2萬用戶,通過自動化常規任務解放人力專注核心職責。

更進一步的AIDA(人工智能數字助手)為北約知識庫引入對話界面。用戶可通過自然語言交互獲取附溯源引文的語境化答案。在保密網絡運行的AIDA采用檢索增強生成技術(RAG),依托數十萬份多密級文件確保回答準確可溯。超越聊天機器人范疇,AIDA代表北約人員數字輔助的進化方向:未來將支持文件起草、數據查詢、系統集成與多智能體協作。每位參謀或可配備AI助手團隊,根據個人偏好執行研究、簡報生成、反饋協調等任務,實現從基礎自動化到智能支持的躍升。

另一新興能力AI CLAIRE(快速開發內容鏈接與人工智能)專注語義搜索與智能內容導航。該工具通過理解查詢意圖(非簡單關鍵詞匹配),幫助北約標準與條令管理者從海量開源與內部資料中提取相關信息,加速關鍵知識獲取,優化動態文件體系的更新維護。

決策優勢賦能:政治-軍事輔助決策(PM-ADM)

為增強北約預見、理解與應對新興威脅的能力,盟軍轉型司令部推進跨域AI應用。**政治-軍事輔助決策(PM-ADM)**計劃在數據攝取、分析、知識建模與智能代理等多層面部署AI。

PM-ADM系統全天候運行,持續處理傳統指揮控制系統與開源數據。通過自然語言處理解析結構化/非結構化信息,并對照北約戰略知識模型(以本體論構建的聯盟關鍵概念關系圖譜)。當識別可能影響戰略優先級的新數據時,系統自動將其整合至知識庫并建立關聯。

數據攝入后,系統基于**網絡本體語言(OWL)**等標準進行語義推理,生成新洞見與模式識別。這些推斷納入知識庫,支撐高級查詢工具與驗證框架。系統內智能代理可識別認知空白并提出填補方案。

分析結果輸入各類可視化工具,助力戰略洞察與人類認知。PM-ADM最終目標在于捕捉低層級指標,通過語境化分析揭示北約利益風險,實現更早期、更明智的干預以遏制事態升級。

情報能力現代化:強化北約認知優勢

在戰略競爭中獲得"認知優勢"(比對手更快思考、決策與行動的能力)至關重要。盟軍轉型司令部主導的情報與ISR(情報監視偵察)功能服務能力項目,正在革新北約開源情報(OSINT)與圖像情報(IMINT)的采集處理方式。

該計劃整合人員、流程、工具與數據,支撐北約全情報周期(從采集到分發)。其目標是為規劃分析團隊提供無縫銜接的集成體驗,實現情報輸入與決策流程直連。

全面部署后,系統將提供預測分析、自然語言處理、關系圖譜、變化檢測、圖像目標識別等AI工具,加速情報工作流的同時提升決策洞見深度與精度。最終目標是幫助北約保持認知優勢,并將態勢感知擴展至信息環境領域。

解碼信息疆域:AI賦能信息環境評估

在當今互聯互通且充滿對抗的世界,理解與應對信息流動至關重要。北約**信息環境評估(IEA)**能力通過監測公共信息空間中友方、中立與對抗方的信息活動,支撐戰略傳播的"理解"功能。

IEA實時持續評估信息環境,識別關鍵社會群體、行為模式與影響路徑。這種深度受眾理解助力任務行動中的快速循證決策。該項目整合敘事分析、情感分析、社交網絡分析與建模仿真等先進方法,AI技術在自動化海量數據處理、新興議題識別、信息傳播預測等方面發揮核心作用。

通過人機協作,北約力求領先對抗性敘事,促進真實信息傳播,確保戰略響應明智有效,最終捍衛聯盟內部信任、團結與韌性。

兵棋推演革新:AI強化軍事演習與戰略思維

兵棋推演作為檢驗戰略、測試方案、提升決策的傳統方法,正在盟軍轉型司令部獲得AI賦能。該司令部探索如何通過生成式AI與大語言模型提升推演真實性、效率與場景多樣性。

近期實驗表明,AI可生成精細想定、模擬敵我行為策略、輔助艱難決策,甚至在推演中提供實時評估。例如生成式AI工具在戰略級兵推中模擬紅藍隊策略,幫助參演者動態探索復雜決策空間,獲得快速定制化反饋。

所有AI兵推應用均遵循《北約負責任使用AI原則》,確保人類監督、透明度與可靠性貫穿始終。

培養AI就緒人才隊伍

國防領域AI應用不僅關乎技術部署,更需人才儲備。盟軍轉型司令部著力培養北約機構的AI素養,創建專項培訓計劃,將AI主題融入演習與課程。

典型舉措包括面向司令部人員的大語言模型(LLM)系列培訓,重點破除技術神秘感,建立負責任使用AI的信心。司令部新設數據科學與AI團隊,通過TIDE Sprint會議與專家網絡推進北約實踐社區建設,確保AI轉型"以人為本"。

戰略引領與責任治理

作為北約AI戰略方向的核心塑造者,盟軍轉型司令部與創新、混合與網絡事務助理秘書長聯合主持數據與AI審查委員會(DARB)。該治理機構監督聯盟AI負責任應用,推動《北約AI戰略(修訂版)》落地,強調優質數據、嚴格測試評估框架、防范AI對抗性使用等原則。

戰略要求加速實用AI案例開發、支持國際標準建設、深化與盟國、工業界和學界合作。盟軍轉型司令部正通過北大西洋防務創新加速器(DIANA)、國家測試中心與學術伙伴等多渠道推進相關工作。

未來之路:以關聯速度驅動負責任創新

國防AI時代已至,盟軍轉型司令部正引領北約轉型。通過推進負責任創新、培育數字素養人才、擴展具有作戰影響力的AI能力,該司令部正在塑造聯盟防務未來。

集體安全的未來將由智能技術定義——盟軍轉型司令部正為此鋪路。通過其工作,司令部為聯盟配備應對新興挑戰所需的工具、人才與信任基石,以自信姿態把握前方機遇。

參考來源:北約

付費5元查看完整內容

人工智能正在重塑戰爭形態、加速決策進程并影響平民傷亡——但過度依賴將帶來風險與脆弱性。

圖:烏克蘭第24旅使用A1-S Furia無人機,2022年6月29日(烏克蘭國防部供圖)

人工智能(AI)的快速發展正以前所未有的速度變革各行業,戰爭領域亦不例外。各國競相將AI融入軍事行動,其中烏克蘭與俄羅斯在開發自主系統獲取戰場優勢方面處于前沿。但隨著技術融入作戰,關鍵問題浮現:我們應給予多大程度的依賴?又需承擔何種風險?

奧地利外交部長亞歷山大·沙倫伯格警示:"這是我們時代的'奧本海默時刻'"。正如核武器在20世紀重新定義戰爭,AI武器系統正在重塑戰場——烏克蘭戰場尤為顯著。在維也納自主武器會議上,沙倫伯格警告AI驅動戰爭可能引發失控軍備競賽的風險:自主無人機與算法驅動的目標鎖定系統或將使大規模殺戮機械化且近乎毫不費力。

五角大樓已在實戰場景中積極測試AI決策工具。例如2024年1月,據報美軍開始在印太地區使用類ChatGPT的生成式AI工具,以強化針對同級對手等高科技對手的戰場決策能力。

由美國防部首席數字與人工智能辦公室(CDAO,2022年設立)主導的AI整合計劃,通過與安杜里爾(Anduril)和帕蘭泰爾(Palantir)等公司合作,加速戰場指揮官決策進程。此舉標志著美軍正借助私營領域創新提升軍事決策能力。

具體而言,安杜里爾的Lattice AI軟件整合傳感器數據實現實時決策,為指揮控制注入自主態勢感知能力。帕蘭泰爾的AI數據融合技術為指揮官提供跨域可執行情報,通過整合陸海空天網電全域數據,實現實時決策、增強戰場感知并確保復雜環境下協同響應。

帕蘭泰爾的AI軟件使烏克蘭成為《時代》雜志所稱的"AI戰爭實驗室"。該技術助力分析衛星圖像、處理無人機鏡頭、融合開源情報,使烏軍得以實時識別與定位俄軍目標。新美國安全中心高級研究員塞繆爾·本德特強調,俄烏戰爭產生的空前數據量正推動軍事AI創新:"過去三年積累的數據量橫跨空天陸網領域,相當于數百年的數據總量。交戰雙方正利用這些數據塑造軍事規劃與兵棋推演,尤其在無人機與無人系統應用方面。"

烏克蘭戰場的人工智能軍備競賽

烏克蘭與俄羅斯已陷入AI驅動的無人機競賽,雙方均借助自主技術謀求戰場優勢。面對俄方數量優勢,烏軍在戰爭初期轉向無人機作戰,迫使俄方跟進。隨著俄軍電子戰能力提升(對烏軍無人機實施干擾),雙方技術迭代速度不斷加快。當前俄烏戰爭中,無人機造成約70%的戰場傷亡。

這場"貓鼠游戲"促使雙方采用光纖通信規避干擾,而針對光纖的對抗手段亦在研發中。無人機戰即將進入新階段:AI賦能目標識別系統可在強干擾環境下自主運作,實現最小化人為干預的識別與打擊。

烏克蘭前總司令瓦列里·扎盧日內在2023年11月接受《經濟學人》采訪時,將戰場比作"一戰"僵局:"我們已達到導致戰略相持的技術水平。"他強調突破僵局需無人與機器人系統的重大躍升,并承認"難以實現深度且漂亮的突破"。

當前雙方正竭力尋求短期技術突破。這場技術競賽已演變為無人機霸權之爭,而AI賦能的無人機將推動戰爭向算法對抗演進。具備最快適應能力的AI方將主導殺傷鏈中的目標識別與打擊環節,速度與精度成為決勝要素。算法獲取的數據與傳感輸入越多,AI目標識別系統的精準性與殺傷力越強。

AI作戰能力的下一階段進化

某俄羅斯軍事博主在Telegram發文警告,AI將終結傳統戰爭形態,使偽裝、欺騙與電子對抗近乎失效:"偽裝無法實現——AI算法憑借算力持續分析偵察數據,可捕捉最細微變化。"

該博主稱,AI將顛覆電子戰:模擬人聲的機器學習系統可攔截通信、操控敵方決策,使無線電偵察過時。"無線電偵察失去意義——GPT聊天機器人能模擬真人語音進行無線電交互,侵入無線電網絡獲取談判信息只會干擾偵察。電子戰喪失價值——每個作戰單元實現自主。"

博主同時強調AI增強型集群武器的進化,包括實時從交戰中學**的無人機、導彈改型與制導彈藥。他認為AI目標識別系統將創造持續進化的戰場,使對抗手段快速過時。

"所有武器都在學。被車輛或坦克規避的反坦克導彈會瞬間回傳數據至載具(如阿帕奇直升機),后者發射的新導彈將'知曉'如何應對之前的規避動作。魚雷、反艦導彈、空對空導彈等所有制導武器同理。這堪稱'新型原子彈',甚至更為可怕。"

盡管存在此類擔憂,《經濟學人》防務編輯沙什克·喬希指出,AI的直接影響并非完全自主戰爭,而是增強軍事戰略與決策。AI在實戰中最顯著的應用案例是以軍對加沙的轟炸行動,AI目標識別系統在其中發揮關鍵作用。

盡管該博主可能高估AI的短期影響,但其警告反映出對戰爭演變速度的深切憂慮。這場競賽的關鍵不僅在于戰場部署AI,更在于同步開發對抗手段。

人工智能的雙刃劍效應

人工智能將以無與倫比的精度與適應性重塑戰爭形態,但其快速整合伴隨嚴峻風險。盡管可能減少意外傷亡并提升戰場效率,但該技術也可能導致失控升級與對自動化的過度依賴,為未來戰爭帶來不可預知的后果。

究其根本,研究人員仍難以完全理解AI的運作機制(尤其是訓練與決策過程)。AI模型的"黑箱"特性意味著即使開發者也未必明晰其結論生成邏輯。這種透明度的缺失在涉及生死決策的軍事應用中引發重大關切——可靠性、可預測性與問責性至關重要。若軍隊過度依賴AI卻未充分認知其局限,可能部署存在不可預知失效風險的系統(原因包括對抗性操縱、隱性偏差或戰場環境下的運行故障)。

Insight Forward公司首席地緣政治官、喬治城大學兼職教授特雷斯頓·惠特在采訪中表示,他相信AI有助于減少意外傷亡。例如,依賴多源情報的指揮官可能忽視關鍵細節并下達導致平民傷亡的打擊指令,而AI系統可實時處理海量數據,識別人類可能遺漏的細節從而避免此類錯誤。

"AI必將降低平民傷亡,這將成為此類武器的核心優勢,"惠特解釋稱,"盡管人類具備創造力與思辨力,但AI處理信息(包括評估潛在場景)的速度遠超人類。此外,人類的視野更為受限。因此,AI將使武器更有效區分目標。"

然而,AI雖提升精度并減少意外傷亡,但其融入戰爭仍伴隨風險。隨著AI應用規模擴大,過度技術依賴問題將凸顯——當系統失效或受干擾時,軍隊將陷入脆弱境地。

惠特援引軍事史上技術優勢反遭低技術手段壓制的案例,反映出現代軍隊的普遍困境:過度技術依賴可能削弱基礎軍事技能。當戰場技術突發故障(信號干擾、電量耗盡或敵方網絡攻擊)時,士兵是否具備無技術依托的作戰能力?墨西哥緝毒行動中,技術依賴使警員在設備失效時暴露風險,印證技能退化的危險性。

"軍隊過度聚焦技術優勢總會產生問題,"惠特警示,"以色列與美國均面臨此類困境——高度依賴先進技術時,對手以低技術手段實施反制。"

例如,美國在"反恐戰爭"中主導信號情報,基地組織則轉向紙質通信與人力傳訊規避偵測。第二次黎巴嫩戰爭中,真主黨使用防火毯遮蔽導彈發射點,使以軍空襲失效。

盡管AI與自主武器必將增強戰場殺傷力,但惠特強調,創新思維與低技術手段仍可消解技術優勢。"先進技術與自主武器無疑提升軍隊殺傷力,"他指出,"但決策者切勿忘記,想象力與低技術方案可瓦解此類優勢。"

美國陸軍戰爭學院助理教授、特種作戰主任保羅·盧申科以以色列在加沙的AI驅動目標識別為例,說明AI已影響實時戰場決策。他指出,基于軍事數據集訓練的機器學習算法可預測敵方位、分析作戰條令并優化打擊方案。

但他警告,AI融入致命行動引發嚴重倫理問題(尤其是自主武器與算法驅動目標識別)。以軍在對哈馬斯作戰中高度依賴名為"薰衣草"的AI目標識別系統,據報該系統篩選出約3.7萬個潛在關聯目標,大幅加速空襲節奏,卻導致大量平民卷入交火。

盧申科還論及"牛頭怪戰爭"概念——AI可能接管更多作戰控制權,指揮地面巡邏、空戰與海戰。他認為這要求軍事架構根本性變革,包括重新定義指揮控制、創建新職業領域并重構集中式與分散式作戰模式。

該構想將AI視為軍事行動的"中央大腦",以超越傳統方式的速度與精度分析戰場數據并向人機單元下達指令。"牛頭怪"概念體現人機協同的混合模式,在自動化與人工監管間尋求平衡以提升作戰效能。

隨著AI加速融入戰爭,核心問題依舊:應賦予機器多少決策權?代價幾何?

并非所有AI模型均針對全戰場場景訓練,AI自有其局限。諷刺的是,過度依賴AI驅動戰爭的一方可能暴露新弱點——對手必將學會利用這些弱點。

"技術永遠存在漏洞,"惠特指出,"關鍵在于我們部署AI增強網絡防御的效能,但無法排除網絡攻擊成功的可能性——尤其是存在意外內部風險或高能力威脅行為體時。"

若AI目標識別系統依賴預設交戰規則,可能難以適應非常規戰爭。若AI模型主要基于傳統戰爭模式訓練,可能無法識別與應對快速演變的威脅。更甚者,若AI系統優先效率而忽視倫理約束,可能誤判非傳統戰斗人員或物體為合法目標,導致戰場災難性誤判。

俄羅斯在烏克蘭戰場投入民用車輛作戰即為明證。當對手系統性無視國際法與規范時,西方AI模型是否應訓練識別民用戰斗車輛?若俄軍(或其他對手)完全放棄軍服偽裝平民發動襲擊,又當如何?部分俄軍甚至嘗試穿戴烏軍制服滲透防線。

此類戰術暴露戰爭AI研發的根本挑戰:當交戰規則被刻意模糊時,系統如何區分合法軍事目標?對手始終尋求利用技術進步,過度依賴AI可能在未來沖突中制造致命弱點。

參考來源:LAWFARE

付費5元查看完整內容

現代戰爭形態正經歷深刻變革,其核心驅動力之一是無人機系統(UAS)的廣泛擴散。從精密偵察平臺到改裝攻擊型商用四軸飛行器,這類曾屬技術先進軍隊專屬的裝備,如今已遍布全球戰場。無人機提供的持續監視、精確打擊乃至集群協同作戰能力,構成復雜非對稱威脅。因此,發展并部署高效反無人機技術(C-UAS/C-UAV)已成為保護空域、人員與關鍵資產的戰略競賽核心。

普適性威脅——無人機如何改變戰爭規則

無人機威脅的崛起源于多重因素。首先,可獲取性與低成本使空中能力"民主化"。商用現貨(COTS)無人機價格低廉,可簡易改裝搭載手榴彈或小型炸藥等臨時彈藥,使非國家行為體、叛亂組織與恐怖集團獲得與正規軍相當的空中打擊能力。

其次,無人機具備無與倫比的通用性。小型無人機是理想的情報、監視與偵察(ISR)工具,可提供曾需昂貴大型裝備才能實現的實時戰場感知。它們能隱蔽滯留、引導炮火或追蹤敵軍動向。大型無人機則扮演精密打擊平臺或電子戰工具角色。"游蕩彈藥"或"神風無人機"的出現進一步模糊偵察與直接攻擊的界限——這類裝備可自主搜索目標后俯沖自毀攻擊。

第三,小型無人機的探測與追蹤具有天然難度。其低空飛行特性、微小雷達截面、微弱熱信號及靜音操作,可規避多數針對大型高速飛行器設計的傳統防空系統。集群攻擊的可能性加劇挑戰——大量無人機通過數量壓制突破防御。近期烏克蘭與中東地區的沖突清晰展現了無人機的毀滅性效能及反制措施的迫切需求。

防御必要性——反無人機技術的戰略價值

反無人機技術的必要性體現于多層次。其核心在于部隊防護——無人機對前線士兵、前進基地、運輸車隊及關鍵基礎設施構成直接致命威脅。若無可靠反制手段,士兵將暴露于持續空中監視與突襲之下,士氣與作戰效能將受重創。

除直接威脅外,反無人機技術對維持作戰安全(OPSEC)至關重要。敵方ISR無人機可暴露部隊位置、動向、補給線與戰術意圖,剝奪突襲優勢并增加己方傷亡。壓制此類ISR平臺是保持戰術優勢的關鍵。

反無人機技術還確保機動自由度。無人機的持續威脅會限制部隊移動,迫使采用可預測行動模式或高強度偽裝,從而遲滯行動節奏并妨礙任務達成。有效反制手段可恢復部隊信心,提升作戰靈活性。此外,保護高價值資產、指揮中心、后勤樞紐乃至民用關鍵設施免受無人機攻擊,亦是其核心職能。

構建防御盾牌——反無人機殺傷鏈

有效反無人機系統的開發涉及多階段流程,通常稱為"殺傷鏈"——即探測、追蹤、識別與摧毀。

探測環節:常為最具挑戰性階段。鑒于單一傳感器無法應對全類型無人機,通常采用分層多傳感器融合方案:

· 雷達系統:專為捕捉低雷達截面、慢速移動的小型目標設計。

· 射頻(RF)傳感:偵測無人機與操作者間的通信鏈路。對多數商用無人機有效,但對預編程路徑或加密信號傳輸的自主無人機效果有限。

· 光電/紅外(EO/IR)攝像頭:通過可見光與熱成像進行目視識別與追蹤,晝夜適用。

· 聲學傳感器:捕捉無人機螺旋槳聲紋特征,適用于短距離探測。

追蹤與識別:潛在目標被探測后,采用融合人工智能與機器學習(AI/ML)的算法整合多傳感器數據,確認目標屬性(區分無人機與鳥類等)、評估飛行軌跡并判定威脅等級。

攔截/摧毀:確認敵意無人機后,可啟用多種"效應器":

· 動能解決方案:物理摧毀或癱瘓無人機。包括反火箭炮與迫擊炮系統(C-RAM)、速射炮、專用空爆彈藥、小型制導導彈、發射網彈或攔截無人機。

· 電子戰(EW)/非動能解決方案:無物理接觸式干擾。適用于避免附帶損傷的環境。手段包括:射頻干擾、信號欺騙/劫持(接管或偏轉無人機控制/GPS信號)、定向能(DE)武器——高功率微波(HPM)燒毀電子元件或高能激光(HEL)物理損毀/致盲傳感器。

挑戰與未來

盡管技術快速進步,反無人機領域仍面臨重大挑戰。"成本交換比"是核心關切——使用昂貴導彈擊落廉價無人機往往不可持續。無人機技術的快速迭代迫使反制系統必須持續進化。應對依賴射頻鏈路的集群攻擊與全自主無人機仍具極高難度。此外,在城區或民用區域部署效應器(尤其是動能武器或強干擾裝置)需審慎考量附帶損傷、空域管制規則與交戰原則。

反無人機技術的未來在于更高度的集成化、自動化與創新。人工智能與機器學習(AI/ML)將在威脅快速探測、分類與優先級判定(特別是應對集群攻擊)中發揮關鍵作用。隨著技術成熟,定向能武器(尤其是激光)將實現光速攔截并降低單次打擊成本。跨平臺與單位的傳感器數據共享網絡化系統將構建更全面、更具彈性的反無人機防護盾。具備自主獵殺能力的專用反制無人機研發亦成新興領域。

無人機系統的擴散已不可逆地重塑現代戰場。反無人機技術不再是邊緣能力,而成為全球軍事與安全機構的必備核心能力。精密探測、追蹤與攔截機制的持續發展,標志著奪回低空制空權、抵御空中威脅升級的關鍵努力。這場技術軍備競賽對保障人員安全與21世紀復雜沖突中的作戰勝利至關重要。

參考來源:americangrit

付費5元查看完整內容
北京阿比特科技有限公司