亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在大型語言模型(LLMs)中的幻覺總被視為局限。然而,它們也可能成為創造力的來源嗎?本綜述探索了這種可能性,暗示幻覺可能通過培養創造力促進LLM的應用。本綜述首先回顧了幻覺的分類及其對LLM在關鍵應用中可靠性的負面影響。然后,通過歷史案例和近期相關理論,綜述探討了LLMs中幻覺的潛在創造性好處。為了闡明這種聯系的價值和評估標準,我們深入研究了創造力的定義和評估方法。遵循發散思維和收斂思維階段的框架,本綜述系統性地回顧了文獻,討論了如何轉換和利用LLMs中的幻覺以培養創造力。最后,綜述討論了未來研究方向,強調需要進一步探索和完善LLMs內創造性過程中幻覺的應用。

付費5元查看完整內容

相關內容

基于Transformer的大型語言模型取得了巨大成功。然而,在推理過程中產生的顯著內存和計算成本,使得在資源受限的設備上部署大型模型變得具有挑戰性。在本文中,我們從算法角度調查了大型語言模型的壓縮和高效推理方法。就分類而言,類似于較小的模型,大型語言模型的壓縮和加速算法仍可以分為量化、剪枝、蒸餾、緊湊架構設計、動態網絡。然而,與較小模型相比,大型語言模型有兩個突出的特點:(1)大多數壓縮算法在壓縮后需要進行微調甚至重新訓練模型。大型模型最顯著的方面是與模型微調或訓練相關的非常高成本。因此,許多針對大型模型的算法,如量化和剪枝,開始探索無需調整的算法。(2)大型模型強調的是通用性和泛化能力,而不是在單一任務上的性能。因此,許多算法,如知識蒸餾,關注于如何在壓縮后保持其通用性和泛化能力。由于這兩個特點在早期的大型模型中并不十分明顯,我們進一步將大型語言模型區分為中等模型和“真正”的大型模型。此外,我們還提供了一些成熟框架的介紹,這些框架可以支持大型模型的高效推理,支持基本的壓縮或加速算法,極大地便利了用戶的模型部署。

大型語言模型(LLMs)已成為人工智能領域中一個重要且受歡迎的話題。與以往的語言模型相比,LLMs(例如ChatGPT、LLaMA、Claude)對未見數據顯示出了更強的泛化能力。此外,它們甚至展現出了較小模型所不具備的能力(即,突現能力),如多步驟推理和指令跟隨能力。這些進展展示了LLMs的巨大潛力。然而,在推理過程中的高昂內存和計算預算也阻礙了LLMs的部署。例如,一個帶有float32權重的10B模型消耗37GB內存,更不用說隨著序列長度增加,推理內存成本會以平方速度進一步增加。為了在資源受限的設備上,甚至是移動設備上部署模型,許多LLMs采用模型壓縮方法,如量化,以減少推理內存和計算成本。深度學習模型的模型壓縮是一個比LLMs出現得早得多的領域。它假設我們已經有了一個預定義的(甚至是預訓練的)模型。模型壓縮致力于減少模型在推理過程中的內存和計算成本,以便模型可以在各種資源受限的設備上運行。從算法上講,常見的模型壓縮方法包括:

  • 量化將float32權重或激活轉換為低位的浮點數或整數。較少的位意味著較少的內存需求。此外,較少的位可能表示更高的并行性和更快的推理速度。
  • 剪枝致力于移除預設計模型中不重要的組件(例如,神經元,層等),從而減少推理成本中的內存和計算成本。
  • 知識蒸餾引入一個預訓練的大模型作為教師,并將其知識轉移到一個新的較小的模型上,后者稱為學生模型。然后,較小的模型將幾乎擁有與教師相同的能力,并享受較少的內存和計算成本。
  • 緊湊架構設計設計新的運算符,以較低的成本替換(通常是近似)原始模型中的笨重運算符。對于Transformer模型,自注意力是主要目標,通常被其他運算符替換。
  • 動態網絡對每個推理樣本進行不同的處理。原始模型是一個超網,每個樣本只選擇超網的一個子結構進行推理。專家混合(MoE)是一種動態推理。 此外,上述方法也可以組合使用,以進一步壓縮和加速。現有的壓縮方法為我們壓縮LLMs提供了重要的基石和見解。然而,LLMs也為模型壓縮帶來了許多新的挑戰:
  1. 許多之前的模型壓縮方法經常需要在壓縮后對模型進行微調。然而,由于微調LLMs的巨大預算,研究人員不得不探索免微調或至少更高效的微調方法。

  2. 與處理單一任務(如神經機器翻譯)不同,大型語言模型強調跨各種任務和未見數據的通用性和泛化能力,甚至是突現能力。因此,壓縮后的大型語言模型需要更仔細地驗證其通用性和泛化能力。 面對這些挑戰,提出了許多專門針對LLMs的壓縮方法。在本文中,我們將對這些方法進行全面綜述。為了更好地展示這些方法,我們進一步將參數約為十億或更少的語言模型,如BERT、GPT2,稱為中等模型,盡管它們通常被視為大型語言模型。參數超過十億的模型,如LLaMA、Claude、ChatGPT等,保持大型語言模型的名稱。原因是中等模型受上述兩個挑戰的影響較小,即中等模型相對容易進行微調,展示較少的突現能力。結果,許多針對中等模型的壓縮方法仍與較小模型的方法相似。 以下各節的組織如下:第2節將介紹一些初步知識。然后,我們將在第3、4、5、6、7、8節分別討論剪枝、知識蒸餾、量化、緊湊架構設計和動態網絡。

量化

量化是指將輸入值(在一個大的(通常是連續的)集合中)映射到輸出值(在一個小的(通常是有限的)集合中)的過程(例如,見圖2)。量化是減少內存成本和提高LLMs推理速度的最直接方法,特別是在支持低位數據類型(如INT4)快速操作的硬件上。值得注意的是,量化在神經網絡訓練和推理中都取得了令人印象深刻的成功,而本綜述的焦點僅在推理部分。量化方法相比其他壓縮方法(如剪枝和蒸餾)有幾個優勢。1)高壓縮比:將LLMs中的權重從32位浮點數量化為4位整數,可以將模型大小大幅壓縮至大約1/8,這對于內存受限的過程(如LLMs推理)至關重要。2)低成本:許多量化方法不需要重新訓練整個LLMs,使其對于計算資源有限的研究人員更加可行。3)高靈活性:量化與大多數其他壓縮方法兼容,為進一步提高性能引入了異常的機會。為了幫助讀者更好地理解量化方法,我們首先在3.1小節介紹標準量化方法和一些基本概念。然后,在3.2節,我們將簡要總結LLMs出現之前一些針對中等大小語言模型(如BERT,GPT2等)的最重要工作。3.3節和3.4節涵蓋了專注于LLMs推理的量化方法的最新進展。考慮到重新訓練擁有數十億參數的模型的困難,我們根據技術是否需要重新訓練,將LLMs量化方法分為兩部分。不需要重新訓練的方法(即,訓練后量化,PTQ)在3.3節討論,而需要重新訓練的方法(即,量化感知訓練,QAT)在3.4節討論。最后,在3.5節,我們討論了一些展現未來研究潛力但在前面章節中未覆蓋的高級話題。

剪枝

作為一種常規技術,用于壓縮和加速神經網絡,剪枝通過消除模型中非必需的權重或結構,同時保持網絡性能幾乎等同于它們原始狀態。盡管剪枝在卷積神經網絡(CNNs)中顯示出顯著結果,但與量化和蒸餾等其他壓縮技術相比,其對于LLMs的有效性較不穩健。剪枝效果減弱的原因來自于微調過程。由于模型參數數量龐大,微調的高成本使得實現剪枝的全部效果變得更加困難。然而,剪枝是壓縮模型的關鍵技術,需要進一步探索以增強和完善其在LLMs中取得改進結果的有效性。在接下來的部分,我們將在4.1節提供剪枝方法和基本概念的概覽。隨后,在4.2節,我們將詳細闡述為中等大小語言模型(即,參數達到數十億的模型)量身定制的剪枝技術,鑒于它們與LLMs的結構相似性。4.3節將深入探討專門為LLMs設計的剪枝方法論。最后,在4.4節,我們將介紹一些輔助技術,這些技術雖然不是剪枝方法,但與剪枝相關,用于改進LLMs的剪枝結果,并討論LLMs剪枝領域未來進步的挑戰。

知識蒸餾知識蒸餾(KD)是一種常用的模型壓縮和加速技術。具體實施過程包括將復雜教師模型獲得的知識轉移到一個更簡單的學生模型中,從而實現教師模型知識的更簡潔高效的表示。在5.1節中,我們將介紹知識蒸餾的一些基本概念,并提供知識蒸餾方法的簡要分類。然后我們將在5.2節總結使用中等大小語言模型(具有大約10億參數的語言模型)的各種知識蒸餾方法,并根據蒸餾發生在預訓練階段、微調階段還是兩者都有進行分類。最后,我們將在5.3節提供大型語言模型(具有超過10億參數的語言模型)知識蒸餾的詳細概述,將它們分類為黑盒蒸餾和白盒蒸餾。

緊湊架構設計是一種追求效率和簡化的設計哲學,其目標是通過優化網絡結構和算法,在減少計算資源和內存使用的同時,實現模型效率的顯著提升。具體而言,它可以分為微觀和宏觀兩個研究層次。本節將重點優化注意力計算和Transformer架構設計。由于Transformer層目前是LLM的主要組成部分,并且對于大型和中等大小模型來說沒有區別,因此我們在這里不會特別按模型大小分類方法。

動態網絡

擴大語言模型的規模已被證明是提升其在自然語言處理(NLP)任務上性能的有效方法。然而,擴展帶來的大量計算成本和內存需求構成了LLMs進步的主要挑戰。為了解決這些問題,同時仍然利用規模增加的好處,動態神經網絡(DyNNs)只針對每個輸入處理網絡的一個子集,使整個模型在資源受限的環境下更加靈活和高效地滿足計算需求。在NLP領域和LLMs領域,當前對DyNNs的研究主要包括以下三種方法:提前退出、級聯推理和專家混合(MoE)。提前退出旨在動態地在深度神經網絡(DNNs)的早期層次終止推理過程,從而減少計算成本并提高響應時間。直覺是,對于不太復雜的詞匯,往往可以在網絡的較早層次中準確完成預測。這些方法通常在網絡內部集成了一系列內部分類器,這些分類器在推理過程中提供提前退出的信號。已經提出了各種退出標準。這一系列工作主要關注并應用于小型或中型語言模型,如Bert。并且準確度可能不足以支持一般LLMs在更復雜和現實的場景中的應用。級聯推理利用不同大小的一系列語言模型處理不同復雜度級別的請求。Tabi提出了一個具有多級推理模型和基于概率的調度器的推理系統,以確定輸入查詢的處理策略,并平衡準確度和效率。FrugalGPT學會適應性地分類來自不同數據集和任務的查詢,并將它們引導至合適的LLMs API組合。EcoAssistant和另一個研究利用查詢緩存引用歷史數據以加快響應速度,并使用LLMs的層級結構來處理那些不匹配的新查詢。Mixture-of-Thoughts考慮了來自較弱LLMs的答案一致性作為問題難度的指標,以決定是否利用更強大的LLMs。一般來說,這一系列工作最近才出現,并顯示出發展更高效LLM系統的有希望的方向。與上述兩種方法相比,MoE的研究有著橫跨多個機器學習領域(包括NLP)的廣泛歷史。MoE通過多個子網絡水平擴展前饋網絡(FFN),其中只有一個或少數幾個會在單次前向傳播中被激活。它被廣泛地整合到今天的LLMs架構中,以提供高效而強大的服務。因此,在本節的剩余部分,我們將深入探討MoE的領域。7.1節首先介紹MoE的基本概念,接著是對將MoE整合到LLMs中的當代研究的廣泛綜述,包括算法和架構設計、訓練策略和實際應用。7.2節提供了一些代表性研究的簡要回顧,這些研究將MoE與之前討論的模型壓縮和加速技術集成在一起,突出了其在開發更全面和成本效益更高的LLM系統中的潛力。

隨著基于Transformer的模型的快速發展,出現了各種模型。由于不同的應用場景,它們在延遲、吞吐量、內存等方面有著額外的需求,這使得我們難以部署模型。在本節中,我們介紹了一些最近開發的針對LLM的推理加速框架,這些框架有效地提高了不同場景下模型的效率,如表6所示。我們根據通用性將框架分為通用框架和專用框架。這里還有一些特定于訓練的加速框架[351]、[352]、[353]、[354]、[355]、[356]、[357],由于本文關注于推理,我們不會具體討論它們。如果您想要部署訓練好的模型以快速獲得高效推理,可以參考這些框架[358]、[359]、[360]、[361]、[362]、[363]。

結論

在本文中,我們從算法角度對大型語言模型的壓縮和高效推理進行了全面調查,包括量化、剪枝、蒸餾、緊湊架構設計、動態網絡。此外,我們還介紹了一些為大型語言模型量身定制的流行壓縮和加速框架。然而,正如我們在引言中提到的,與較小模型相比,大型模型的壓縮和加速面臨更多挑戰。盡管現有算法已經做出了重大努力來應對這些挑戰,但許多算法仍然依賴于為壓縮小型模型而設計的框架,壓縮大型模型的挑戰依然存在。未來,需要進一步探索,以開發更高效、更有效的壓縮算法,同時確保大型模型的通用性和泛化能力。

付費5元查看完整內容

近期,大型視覺-語言模型(LVLMs)的發展在人工智能領域引起了越來越多的關注,因其實際應用潛力。然而,“幻覺”——或更具體地說,事實視覺內容與相應文本生成之間的錯配,為利用LVLMs提出了一個重大挑戰。在這份全面的綜述中,我們解剖與LVLM相關的幻覺現象,試圖建立一個概覽并促進未來的緩解措施。我們的綜述從闡明LVLMs中幻覺的概念開始,呈現了多種幻覺癥狀并突出了LVLM幻覺固有的獨特挑戰。隨后,我們概述了專門為評估LVLMs獨有的幻覺而定制的基準和方法論。此外,我們深入調查了這些幻覺的根本原因,包括來自訓練數據和模型組件的洞察。我們還批判性地回顧了緩解幻覺的現有方法。本綜述最后討論了與LVLMs中的幻覺相關的開放問題和未來方向。

1. 引言

在人工智能迅速發展的領域中,如GPT-4 [OpenAI, 2023]、LLaMA [Touvron等,2023a]和LLaMA2 [Touvron等,2023b]等大型語言模型(LLMs)在自然語言理解(NLU)和生成(NLG)方面取得了顯著進步。為了利用LLMs的NLU和NLG能力來處理視覺-語言任務,一種流行的方法是將視覺特征作為補充輸入插入到LLMs中,并將它們與文本特征對齊。這種方法已經在幾個大型視覺-語言模型(LVLMs)中得到應用,如MiniGPT-4 [Zhu等,2023]、LLaVA [Liu等,2023c]和LLaVA-1.5 [Liu等,2023b]。盡管現有LVLMs顯示出了令人充滿希望的結果,但一個不可忽視的問題一直阻礙著它們的實際應用:幻覺。LVLM中的幻覺指的是圖像的事實內容與相應生成的文本內容之間的不一致,類似于在大型語言模型中遇到的純文本幻覺[Huang等,2023a]。

現有研究[Rohrbach等,2018; Li等,2023b; Hu等,2023; Zhai等,2023]已經解決了圖像標題生成模型中的幻覺問題,主要關注“對象的存在”,特別是給定圖像中描繪的對象是否被模型生成的文本準確描述。與在封閉領域內訓練的圖像標題生成模型相比,LVLMs利用LLMs的強大理解和表達能力,獲得更詳細和可解釋的生成描述。然而,這些增強的能力也多樣化并可能加劇了幻覺,這不僅限于對象的存在,還表現在描述性錯誤中,如屬性和關系錯誤。我們關注視覺幻覺,指的是圖像傳達的語義內容與模型生成的文本內容之間的所有不一致。

LVLMs中的幻覺癥狀是多方面的。從認知角度來看,幻覺可以表現為真/假判斷的錯誤和對視覺信息描述的不準確。例如,正如圖1的第一個例子所示,模型對“圖像中有貓嗎?”和“圖像中有四只鳥嗎?”等問題的響應有缺陷,顯示出錯誤的事實辨別。此外,第二個例子顯示了生成的描述與視覺事實的不一致。同時,從視覺語義的角度提供了一個三元分類:對象、屬性和關系上的幻覺。例如,模型在圖像中生成不存在的對象如“筆記本電腦”和“小狗”,提供錯誤的屬性描述如將男人描述為“長發”,并對對象之間的關系進行不準確的斷言,如聲稱自行車“在”男人“前面”。當前方法基于模型的認知性能評估這些LVLMs中的幻覺,主要關注兩個方面:非幻覺生成和幻覺鑒別。前者涉及對模型響應中的幻覺元素進行詳細分析并量化它們的比例。后者,另一方面,只需要對響應是否包含任何幻覺內容進行二元判斷。這些方法在§3中進行了全面討論。

盡管LLM社區已廣泛討論了LLMs中幻覺的原因,但LVLMs的視覺模態引入了分析這些事件的獨特挑戰。我們對LVLMs中的幻覺進行了徹底分析,重點關注訓練數據和模型特性。我們的分析表明,LVLMs中的幻覺不僅由LLMs的生成性質引起,還由偏見訓練數據、視覺編碼器無法準確地定位圖像、不同模態之間的錯位、對上下文關注不足以及許多其他因素引起。在此之后,我們提供了現有幻覺緩解方法的全面概述。針對這些原因,當前的緩解方法主要集中在訓練數據的優化、LVLMs內各個模塊的精細化以及生成輸出的后處理上。這些方法被用來減少幻覺的發生,從而產生更忠實的響應。最后,我們列出了幾個發展LVLMs中幻覺研究的重要方向。 總之,這項研究旨在為LVLMs的發展提供洞察,并探索與LVLMs幻覺相關的機會和挑戰。這一探索不僅幫助我們了解當前LVLMs的局限性,還為未來的研究和開發更可靠、更高效的LVLMs提供了重要指導。

2 幻覺在LVLM時代

**2.1 大型視覺-語言模型

LVLMs是處理視覺和文本數據以解決涉及視覺和自然語言的復合任務的高級多模態模型。結合了LLMs的能力,LVLMs是之前視覺-語言預訓練模型(VLPMs)[Long等,2022]的演進。 LVLM架構通常包含三個組件:視覺編碼器、模態連接模塊和LLM。視覺編碼器,通常是CLIP視覺編碼器[Radford等,2021]的一個調整,將輸入圖像轉換為視覺令牌。連接模塊旨在將視覺令牌與LLM的詞嵌入空間對齊,確保LLM可以處理視覺信息。模態對齊的方法有多種,包括交叉注意力[Alayrac等,2022]、適配器[Gao等,2023]、Q-Formers[Li等,2023a; Dai等,2023a; Zhu等,2023],以及更簡單的結構如線性層或多層感知器(MLP)[Liu等,2023c; Chen等,2023b; Liu等,2023b]。LLM在LVLMs中像中央處理單元一樣,接收對齊的視覺和文本信息,隨后綜合這些信息以產生響應。 LVLMs的訓練涉及兩個關鍵階段:(1)預訓練,LVLMs從對齊的圖像-文本對中獲取視覺-語言知識;(2)指令調優,期間LVLMs學習使用多樣化的任務數據集遵循人類指令。完成這些階段后,LVLMs可以高效地處理和解釋視覺和文本數據,使它們能夠在像視覺問題回答(VQA)這樣的復合多模態任務中進行推理。

**2.2 LVLMs中的幻覺

LVLMs中的幻覺指的是視覺輸入(視為“事實”)和LVLM的文本輸出之間的矛盾。通過視覺-語言任務的視角,LVLM幻覺癥狀可以被解釋為判斷或描述的缺陷。 當模型對用戶的查詢或陳述的響應與實際視覺數據不一致時,會發生判斷幻覺。例如,如圖1所示,當面對展示三只鳥的圖像并詢問圖片中是否有貓時,模型錯誤地肯定回答“是”。另一方面,描述幻覺是無法忠實地描繪視覺信息的失敗。例如,在圖1下部,模型不準確地描述了男人的頭發、杯子的數量和顏色、自行車的位置,并編造了不存在的對象,如筆記本電腦和狗。 從語義角度來看,這種錯位可以通過聲稱不存在的對象、不正確的對象屬性或不準確的對象關系來表征,如不同顏色所突出的那樣。

**2.3 LVLMs中幻覺的獨特挑戰

LVLMs通過結合視覺和語言模塊來處理視覺-語言任務。然而,這種整合也在幻覺檢測、因果推理和緩解方法方面帶來了獨特的挑戰。 幻覺檢測困難:LVLM的多模態性質妨礙了幻覺的檢測。LVLM幻覺可能在包括但不限于對象、屬性和關系等多個語義維度上表現出來[Zhai等,2023; You等,2023]。為了全面檢測這些幻覺,模型不僅需要進行自然語言理解,還需要使用細粒度的視覺注釋并將它們與生成的文本精確對齊。

交織的原因

LVLMs中幻覺的原因通常是多方面的。一方面,LLMs和LVLMs共享的數據相關問題,如錯誤信息、偏見以及知識邊界限制[Hu等,2023]。然而,LVLMs獨特地受到它們結合視覺數據的影響。例如,視覺不確定性,如不清晰或扭曲的圖像,可以加劇LVLMs中的語言先驗和統計偏見,導致更嚴重的幻覺[Liu等,2023a]。

綜合緩解方法

除了采用針對LLM的幻覺緩解方法,如數據質量提升、編碼優化和與人類偏好對齊外,LVLM特有的方法還包括精煉視覺表現和改進多模態對齊。例如,有建議擴大視覺分辨率可以有效減少幻覺[Bai等,2023]。盡管如此,使用大量數據訓練高分辨率視覺編碼器可能需要大量資源。因此,探索更具成本效益的增強視覺表現的策略是至關重要的。此外,視覺和文本令牌之間的顯著差距表明,改善視覺-語言令牌對齊可能降低幻覺發生率[Jiang等,2023]。

3 評估方法和基準

在建立了LVLM中幻覺的概念之后,我們轉向檢查現有的LVLM幻覺評估方法和基準。對應于圖1中提到的描述和判斷任務中的幻覺癥狀,當前的評估方法可以分為兩大類:(1) 評估模型生成非幻覺內容的能力,和(2) 評估模型幻覺鑒別的能力,如圖2所示。同樣,基于評估任務,基準也可以被分類為區分性和生成性兩種,如表1所示。

評估方法:

非幻覺內容生成評估(Evaluation on Non-Hallucinatory Generation):

手工流程方法(Handcrafted Pipeline Methods):這些方法通過手動設計多個步驟,具有強解釋性。例如,CHAIR(Caption Hierarchy and Image Relationship)專注于評估圖像描述中對象幻覺,通過量化模型生成與真實描述之間的差異。CCEval(Contrastive Caption Evaluation)則在應用CHAIR之前使用GPT-4進行對象對齊。FAITHSCORE提供了一種無參考的、細粒度的評估方法,通過識別描述性子句、提取原子事實,并與輸入圖像進行比較。 * 基于模型的端到端方法(Model-based End-to-End Methods):這些方法直接評估LVLMs的響應。LLM-based Evaluation使用先進的LLM(如GPT-4)基于幻覺來評估LVLM生成的內容。幻覺數據驅動模型評估則構建標記的幻覺數據集,用于微調模型以檢測幻覺。例如,M-HalDetect創建了一個帶有注釋的LVLM圖像描述數據集,并在該數據集上微調InstructBLIP模型以識別幻覺。

幻覺鑒別評估(Evaluation on Hallucination Discrimination)

這些方法通常采用問答格式,詢問LVLMs關于圖像內容的問題,并評估模型的響應。例如,POPE(Perceptual Object Presence Evaluation)設計了關于圖像中對象存在的二元(是/否)問題來評估LVLMs的幻覺鑒別能力。CIEM(Contrastive Instruction Evaluation Method)類似于POPE,但通過ChatGPT自動化對象選擇。NOPE(Negative Object Presence Evaluation)是另一種基于VQA的方法,旨在評估LVLMs識別視覺查詢中對象缺失的能力。

基準(Benchmarks):

基準測試是專門針對LVLMs的幻覺問題設計的,旨在評估模型在非幻覺內容生成或幻覺鑒別方面的能力。這些基準可以分為兩類:

判別性基準(Discriminative Benchmarks):

這些基準專注于評估模型在對象幻覺方面的性能。例如,POPE、NOPE和CIEM都是判別性基準,它們的數據集大小分別為3000、17983和72941,主要關注對象幻覺,使用準確度作為評估指標。

生成性基準(Generative Benchmarks):

生成性基準擴展了評估范圍,包括屬性和關系幻覺。例如,AMBER(A Multimodal Language Model Benchmark)是一個綜合性基準,集成了生成性和判別性任務。生成性基準的評估指標通常比判別性基準更復雜和多樣化,因為它們需要針對特定的幻覺類別設計定制的評估方法。

這些評估方法和基準為研究者提供了一套工具,以系統地分析和改進LVLMs在處理視覺-語言任務時的性能,特別是在減少幻覺方面。通過這些工具,研究者可以更好地理解模型的局限性,并開發出更有效的緩解策略。

4. LVLM幻覺的原因

數據問題(Data Issues)

數據偏見(Data Bias):訓練數據中可能存在分布不平衡,例如在事實判斷問答對中,大多數答案可能是“是”(Yes),導致模型傾向于給出肯定的回答,即使在不準確的情況下。 * 注釋不相關性(Annotation Irrelevance):生成的指令數據可能包含與圖像內容不匹配的對象、屬性和關系,這可能是由于生成模型的不可靠性造成的。

視覺編碼器問題(Vision Encoder Issues)

有限的視覺分辨率(Limited Visual Resolution):視覺編碼器可能無法準確識別和理解高分辨率圖像中的所有細節,這可能導致在生成描述時出現幻覺。 * 細粒度視覺語義(Fine-grained Visual Semantics):視覺編碼器可能無法捕捉到圖像中的所有細粒度信息,如背景描述、對象計數和對象關系,從而導致幻覺。

模態對齊問題(Modality Alignment Issues)

連接模塊的簡單性(Connection Module Simplicity):簡單的連接模塊,如線性層,可能無法充分對齊視覺和文本模態,增加了幻覺的風險。 * 有限的標記約束(Limited Token Constraints):在模態對齊過程中,由于標記數量的限制,可能無法完全編碼圖像中的所有信息,導致信息丟失和幻覺。

LLM問題(LLM Issues)

上下文注意力不足(Insufficient Context Attention):在解碼過程中,模型可能只關注部分上下文信息,忽視了輸入的視覺信息,導致生成的文本內容與視覺輸入不一致。 * 隨機采樣解碼(Stochastic Sampling Decoding):隨機采樣引入了解碼過程中的隨機性,雖然有助于生成多樣化的內容,但也增加了幻覺的風險。 * 能力錯位(Capability Misalignment):LLM在預訓練階段建立的能力與在指令調整階段提出的擴展要求之間存在差距,導致模型生成超出其知識范圍的內容,增加了幻覺的可能性。

這些原因相互交織,共同作用于LVLMs,導致在視覺-語言任務中出現幻覺現象。為了緩解這些問題,研究者們提出了一系列針對性的優化策略,旨在提高模型的準確性和可靠性。

5. LVLM幻覺的緩解

LVLM(Large Vision-Language Models)中的幻覺問題是指模型生成的文本內容與實際視覺輸入之間存在不一致性。為了緩解這一問題,研究者們提出了多種方法,這些方法主要針對幻覺產生的原因進行優化。數據優化:通過改進訓練數據來減輕幻覺。視覺編碼器增強(Vision Encoder Enhancement):提高圖像分辨率和感知能力。連接模塊增強(Connection Module Enhancement):開發更強大的連接模塊以更好地對齊視覺和語言模態。LLM解碼優化(LLM Decoding Optimization):通過優化解碼策略和與人類偏好對齊來減少幻覺。后處理(Post-processing):通過額外的模塊或操作來修正生成的輸出。

6 結論

配備了先進的視覺編碼器、強大的LLMs和模態對齊模塊,LVLMs在開放領域的視覺-語言任務中表現出色。然而,幻覺嚴重挑戰了LVLMs的實際應用。在這項綜述中,我們對LVLMs中幻覺現象進行了細致的調查。這項探索涵蓋了對這些幻覺背后基本原因的詳細分析,評估了創新的評估方法及相關基準,并討論了有效的緩解方法。我們還深入探討了現有的挑戰,并討論了可能的方向。這項綜述旨在為解決LVLMs中幻覺的復雜性奠定基礎,并促進未來研究,以便在各種應用中實際實施這些模型。 參考:

eason. //zhuanlan.zhihu.com/p/681171544 參考文獻 [Alayrac et al., 2022] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, et al. Flamingo: a visual language model for few-shot learning. In NeurIPS, volume 35, 2022. [Bai et al., 2023] Jinze Bai, Shuai Bai, Shusheng Yang, et al. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv preprint arXiv:2308.12966, 2023. [Chen et al., 2023a] Chi Chen, Ruoyu Qin, Fuwen Luo, et al. Position-enhanced visual instruction tuning for multimodal large language models. arXiv preprint arXiv:2308.13437, 2023. [Chen et al., 2023b] Jun Chen, Deyao Zhu, Xiaoqian Shen, et al. Minigpt-v2: large language model as a unified interface for vision-language multi-task learning. arXiv preprint arXiv:2310.09478, 2023. [Chen et al., 2023c] Zhe Chen, Jiannan Wu, Wenhai Wang, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv preprint arXiv:2312.14238, 2023.

付費5元查看完整內容

在快速發展的自然語言生成(NLG)評估領域中,引入大型語言模型(LLMs)為評估生成內容質量開辟了新途徑,例如,連貫性、創造力和上下文相關性。本綜述旨在提供一個關于利用LLMs進行NLG評估的全面概覽,這是一個缺乏系統分析的新興領域。我們提出了一個連貫的分類體系來組織現有的基于LLM的評估指標,提供了一個結構化的框架來理解和比較這些方法。我們的詳細探索包括批判性地評估各種基于LLM的方法論,以及比較它們在評估NLG輸出時的優勢和局限性。通過討論尚未解決的挑戰,包括偏見、穩健性、領域特定性和統一評估,本綜述旨在為研究人員提供洞見,并倡導更公平、更先進的NLG評估技術。

自然語言生成(NLG)處于現代AI驅動通信的前沿,近期在大型語言模型(LLMs)方面的進展徹底改變了NLG系統的能力(Ouyang et al., 2022; OpenAI, 2023)。這些模型,依靠深度學習技術和大量的訓練數據,展現出在廣泛應用中生成文本的卓越能力。隨著NLG技術的快速發展,建立可靠的評估方法以準確衡量生成內容的質量變得越來越重要。

傳統的NLG評估指標,如BLEU(Papineni et al., 2002)、ROUGE(Lin, 2004)和TER(Snover et al., 2006),主要關注表面層面的文本差異,通常在評估語義方面存在不足(Freitag et al., 2020)。這一局限性已被指出阻礙了研究進展,并可能導致誤導性的研究結論。此外,其他使用神經嵌入來計算分數的方法(Liu et al., 2016; Sellam et al., 2020; Zhang et al., 2020),盡管在評估諸如語義等價性和流暢性方面有所考慮,但它們的靈活性有限,適用范圍受限(Freitag et al., 2021a)。此外,這些傳統方法與人類判斷的一致性較低(Liu et al., 2023c),且對分數的解釋性不足(Xu et al., 2023)。這些缺點突顯了NLG領域需要更細膩和全面的評估方法的需求。

大型語言模型(LLMs)涌現的能力為基于LLM的NLG評估提供了有前景的途徑,例如Chain-of-Thought(CoT)(Wei et al., 2022b)、零次學習指令跟隨(Wei et al., 2022a)、更好地與人類偏好相一致(Ouyang et al., 2022)等。這些特性使LLMs成為評估NLG輸出的有力工具,與傳統方法相比提供了更為復雜和更好地與人類一致的評估(Liu et al., 2023c;Kocmi and Federmann, 2023;Fu et al., 2023)。例如,LLMs可以生成合理的解釋來支持最終評分(Xu et al., 2023),而利用人類反饋的強化學習(RLHF)可以使LLMs的偏好更好地與人類一致(Ouyang et al., 2022;Zheng et al., 2023)。如圖1所示,這些方法的關鍵策略涉及指示LLMs使用提示來從不同方面評估生成的文本,無論是否有參考資料和來源。然而,眾多基于LLM的NLG評估方法,針對不同的任務和目標,缺乏統一的概述。

鑒于LLMs在NLG評估領域的工作量不斷增加,迫切需要一個綜合總結來導航這一領域內的復雜性和多樣化方法。本綜述旨在提供這一有前景領域的全面概述,呈現一個用于組織現有工作的連貫分類體系。我們詳細勾勒了關鍵研究及其方法論,并深入分析了這些方法的各種優點、局限性和獨特屬性。此外,我們探索了該領域內尚未解決的挑戰和開放性問題,從而為未來的學術探索勾畫出潛在的途徑。這一全面探索旨在激發讀者對LLM在NLG評估中方法的細微差別和不斷變化的動態有深入的了解。

本綜述的組織我們呈現了利用LLMs進行NLG評估的首個全面綜述。首先,我們建立了NLG評估的正式框架,并提出了一個分類體系來分類相關工作(第2節)。隨后,我們深入并詳細闡述這些工作(第3節)。此外,我們對評估LLM評估者有效性的各種元評估基準進行了系統回顧(第4節)。鑒于這一領域的快速發展,我們確定并討論了一些可能指導未來研究的潛在開放問題(第5節)。在結束這一系統綜述時,我們倡導通過開發更公正、更穩健、更專業和統一的基于LLM的評估者來推動這一領域的發展。此外,我們強調整合其他評估方法,如人類判斷,以實現更全面和多面的評估框架。

在大型語言模型(LLMs)迅速發展的背景下,越來越多的研究將重點放在利用這些模型作為NLG任務的評估者。這種關注特別源于LLMs的高容量生成能力,導致出現了使用它們來對NLG文本進行質量評估的工作——我們將這種范式稱為生成性評估。這一類別大致分為基于提示的評估和基于微調的評估,其核心在于LLM評估者的參數是否需要微調。基于提示的評估通常涉及使用精心設計的提示指導強大的基礎LLMs來評估生成的文本。另一方面,基于微調的評估依賴于專門為NLG評估校準的開源LLMs。這兩種方法都適用于不同的評估協議,用于衡量生成文本的質量。

當前方法考慮不同的評分協議來判斷生成假設文本的質量。一些嘗試部署LLM評估者產生連續的標量分數,代表單個生成文本的質量——稱為? 基于分數的評估。其他方法計算基于提示、來源或參考文本(可選)的生成文本的生成概率作為評估指標,稱為? 基于概率的評估。在多樣化的領域中,某些工作將NLG評估轉化為分類任務,使用類似李克特量表的多級別對文本質量進行分類。在這種情況下,LLM評估者通過將生成的文本分配到特定的質量級別來評估其質量——稱為? 李克特風格評估。同時,? 成對比較方法涉及使用LLM評估者比較一對生成文本的質量。此外,? 組合評估方法利用多個不同LLMs或提示的LLM評估者,協調評估者之間的溝通以產生最終評估結果。最后,一些最新的研究探索了? 高級評估方法(考慮細粒度標準或結合連續思考或上下文學習的能力),旨在獲得更全面和細致的評估結果。

本節深入探討了這兩個主要類別的評估方法,每種方法都伴隨其相應的評估協議。表2提供了當前基于提示和基于微調評估方法的全面概述。該表詳細說明了它們各自的適應任務、基礎模型、評分協議和評估方面,以便于清晰參考。

基于LLM的評估者已在多種NLG任務中找到應用。與此同時,眾多現有和近期引入的元評估基準用于驗證這些評估者的有效性。這些基準包括了對生成文本質量的人類注釋,以及評估自動評估者和人類偏好之間一致性的程度。根據涉及的任務,這些基準可以被分類為單一場景示例,如機器翻譯和摘要,以及多場景基準。本節將提供這些NLG任務及其相關元評估基準的概述。

結論

在本綜述中,我們詳盡地調查了LLMs在NLG評估中的作用。我們全面的分類體系按三個主要維度對作品進行分類:評估功能、評估參考和評估任務。這個框架使我們能夠系統地分類和理解基于LLM的評估方法論。我們深入探討了各種基于LLM的方法,審視它們的優勢并比較它們的差異。此外,我們總結了NLG評估的普遍元評估基準。

在我們的研究中,我們強調了這一快速發展領域的進步和現存挑戰。盡管LLMs在評估NLG輸出方面提供了開創性的潛力,但仍有一些未解決的問題需要關注,包括偏見、穩健性、混合評估方法的整合,以及LLM評估者內部對特定領域和統一評估的需求。我們預計,解決這些挑戰將為更通用、有效和可靠的NLG評估技術鋪平道路。這樣的進步將顯著促進NLG評估的發展以及LLMs的更廣泛應用。

付費5元查看完整內容

廣泛的現實世界應用以其符號性質為特征,需要強大的符號推理能力。本文研究了大型語言模型(LLMs)作為符號推理器的潛在應用。我們關注基于文本的游戲,這是自然語言能力智能體的重要基準,尤其是在數學、地圖閱讀、排序以及在基于文本的世界中應用常識等符號任務方面。為了幫助這些智能體,我們提出了一個旨在解決符號挑戰并實現游戲目標的LLM智能體。我們首先初始化LLM智能體并告知其角色。然后,智能體接收來自基于文本游戲的觀察和一組有效操作,以及特定的符號模塊。有了這些輸入,LLM智能體選擇一個操作并與游戲環境互動。我們的實驗結果表明,我們的方法顯著增強了LLMs作為自動符號推理智能體的能力,我們的LLM智能體在涉及符號任務的基于文本的游戲中表現出色,平均性能達到88%。

付費5元查看完整內容

現代人工智能為產生不同風格的數字藝術提供了一種新穎的方式。神經網絡的表達能力使得視覺風格轉移方法成為可能,這些方法可以用來編輯圖像、視頻和3D數據,使它們更具藝術性和多樣性。本文報道了3D數據神經風格化的最新進展。我們提供了一種神經風格化的分類法,考慮了幾個重要的設計選擇,包括場景表示、指導數據、優化策略和輸出風格。基于這種分類法,我們的綜述首先回顧了2D圖像神經風格化的背景,然后對3D數據的最新神經風格化方法進行了深入討論,并提供了一個關于藝術風格化方法的小型基準測試。基于綜述中獲得的洞見,我們接著討論了開放性挑戰、未來研究,以及神經風格化的潛在應用和影響。

//www.zhuanzhi.ai/paper/d5ea0c58d303f46ebcf7e8cc629aa08c

數字藝術和視覺設計在我們的日常生活空間中盛行,表達了視覺上引人入勝的美學、獨特的品味和人類的情感。隨著計算硬件的最新進展,使用計算工具或算法創作高質量的數字藝術越來越受到公眾關注。人工智能(AI)技術的出現進一步推動了這一計算設計過程,并顯示出加速或自動化創作數字藝術的強大潛力。最近出現的視覺合成和編輯AI產品,如LUMA AI [Lum23]、DALL·E 3 [Ope23]、Midjourney [Mid23] 和 RunwayML [Run23] 已成功展示了它們加速高質量視覺設計和生成的能力。

本報告深入探討了利用AI創作3D數字藝術的最新進展,特別是通過風格化。一個典型的3D場景風格化涉及編輯場景幾何和/或外觀以匹配某些指定的藝術風格。風格化可以通過現代深度學習中的神經網絡實現,因此稱為神經風格化。放在傳統計算機圖形管線的背景下,3D神經風格化可以被視為傳統渲染管線的替代品,使用可編程著色器用于風格化的后處理。因此,3D神經風格化有助于減少在風格化3D場景中的勞動密集型手工工作,包括3D建模、紋理化、渲染或模擬。3D神經風格化因此對于各種工業應用具有實際價值,包括電影制作中的3D紋理設計和藝術模擬 [NR21,KAOT23,HHK?23],混合現實體驗 [THC?22, Tan19](圖2),逼真的視覺特效(VFX)和虛擬制作 [Man23],藝術品創作 [GC22] 以及視頻游戲開發 [OBW22,MLS?22]。從2D神經風格化擴展到3D,使用傳統3D表示和渲染進行的3D神經風格化通常面臨視角一致性和逼真渲染問題。多虧了神經渲染技術的進步,對于不同3D表示(包括網格、體積、點云和神經場)的3D神經風格化取得了高質量結果的顯著改進。它也適用于各種3D場景,從小型物體場景到大型野外場景,甚至應用于工業生產 [HHK?23]。

在本報告中,我們涵蓋了3D神經風格化領域的風格化基礎、最新進展、現有挑戰和未來研究方向。我們從神經風格化的基本技術(第2節)開始,包括2D視覺風格轉移算法和3D神經渲染。在第3節中,我們介紹了神經風格化的分類法,并為3D神經風格化的最新技術提供了分類。使用這種分類法,我們深入討論了先進的3D神經風格化方法,并提出了我們對3D風格化最近困難的分析。在第4節中,我們總結了3D風格化評估中常用的數據集。我們還提供了一個小型基準測試,作為評估最新3D風格化算法性能的標準。最后,在第5節中,我們討論了開放的挑戰和未來的研究方向。我們將隨報告發布我們的評估代碼和其他實施資源。

本報告的范圍專注于應用于3D場景的神經風格轉移。目標是探索基于深度學習的技術和方法,這些技術和方法能夠自動將藝術或逼真風格和語義特征轉移到3D數字世界中。盡管承認專用于風格化的3D訓練數據集的稀缺性和挑戰,本報告旨在突出現成的大型數據模型驅動的圖像引導和文本引導神經風格化的潛力,以實現視覺上吸引人的3D風格化結果。神經風格化基礎在神經風格化的基礎上,視覺風格轉移指的是編輯場景的紋理或顏色以匹配由參考圖像定義的風格,同時保持整體場景結構不變。在這一節中,我們首先提供2D神經風格化的概覽作為基礎。我們重點關注圖像引導和文本引導的風格轉移,因為它們是兩種主要的風格化方法,分別通過一張圖片或一段文字來指示目標風格參考。我們從使用經典特征提取器(如VGG分類器和CLIP編碼器)的簡單方法開始討論基礎知識。我們還根據它們的優化方法對這些2D神經風格轉移技術進行分類。最后,我們簡要介紹神經輻射場的基礎知識,這是一種重要的3D神經表示形式,在第3節中將深入討論3D神經風格化。我們參考了[JYF?19,SJJ?21,ZYW?23]中關于條件圖像合成和風格化的更多討論,以及[TTM?22,XTS?22]中關于場景表示和神經渲染的更多討論。

3D神經風格化

3D神經風格化指的是將神經風格化技術應用于修改現有3D數字表示的視覺外觀和美學特征。這個過程涉及利用神經網絡及相關風格化算法來操縱顏色、紋理、形狀等3D模型的視覺和幾何屬性。3D神經風格化促進了3D數字內容的視覺風格化自動生成,為計算機圖形學領域的創意表達和視覺設計提供了新的途徑。為了將3D表示與新風格融合,需要考慮兩個重要因素:3D幾何保留和風格轉換。與視覺風格轉移類似,我們關注基于圖像和文本的3D神經風格化方法。大多數方法依賴現有的大型預訓練模型(例如VGG和CLIP)進行零樣本特征提取,并且不需要任何額外的3D數據預訓練。與3D數據上的預訓練3D特征提取器相比(例如體素[WSK?15]、網格[MBBV15]、點云[QSMG17, ZJJ?21]),圖像和文本預訓練模型是廣泛可訪問的,它們以多級視覺模式和語義特征提取而聞名。在這一節中,我們首先引入神經風格化的分類法,并給出現有3D神經風格化方法的分類示例。在后續章節中,我們將介紹最先進的3D神經風格化技術,涵蓋了如網格、體積數據、點云和隱式場等多種3D表示,重點關注外觀和/或幾何風格化的轉變。最后,我們將深入總結和分析3D神經風格化的技術。

分類法 我們從2D對應物擴展了3D神經風格化的術語。3D神經風格化方法的分類法如圖9所示,詳細內容如下。

  • 表示形式可以是顯式圖像或隱式2D場,構建的3D資產如網格、體積模擬、多視圖3D重建(如重建的網格),以及隱式3D場。

  • 神經風格特征指的是來自預訓練特征提取器的圖像視覺嵌入或文本語義嵌入,通常是神經分類器。

  • 優化指的是基于優化的(類似于第2.1節)或基于預測的風格化方法(類似于第2.2節),支持單一、多個或任意風格。

  • 風格化類型指的是不同類型的風格化,從從藝術作品中檢索的風格(例如圖1中的梵高星夜雕塑場景),到逼真風格(包括傳統基于顏色的風格轉移和逼真的幾何與外觀變化,例如圖1中的“燃燒的松果”),再到具有風格語義對應的語義風格轉移,使用顯式標簽或掩碼,或隱式文本或視覺語義定位和映射。我們進一步將方法分類為幾何風格化和外觀風格化,其中幾何風格化指的是變換原始形狀以對齊風格參考,如改變頂點、體素的位置,外觀風格化指的是重新著色、圖案和圖騰轉移,如圖像像素、紋理映射、頂點顏色、點顏色和輻射場。 圖10展示了3D神經風格化方法的層次分類。表1詳細突出了基于我們在圖9中提出的分類法標準的選定3D風格化方法的分類和比較。

結論

本最新報告探討了3D神經風格化的進展,特別是針對3D數據的圖像引導和文本引導神經風格化技術。通過對最新3D神經風格化技術及其相應應用的全面綜述,我們強調了神經風格化在加速創造過程、實現風格化的細粒度控制、以及在電影制作、虛擬制作和視頻游戲開發等多個領域增強藝術表達的重要性。此外,我們介紹了神經風格化的分類法,為神經風格化領域的新作品提供了一個分類框架。我們對先進技術的分析和討論強調了持續的研究努力,旨在解決限制并推動3D數字領域神經風格化的邊界。最后,我們提出了一個3D藝術風格化的小型基準測試,我們的目標是為其他3D風格化作品提供靈感和評估標準。

付費5元查看完整內容

開放領域生成系統在會話人工智能領域(例如生成式搜索引擎)引起了廣泛關注。本文對這些系統,特別是大型語言模型所采用的歸因機制進行了全面回顧。盡管歸因或引用可以提高事實性和可驗證性,但模糊的知識庫、固有偏見以及過度歸因的缺點等問題可能會妨礙這些系統的有效性。本綜述的目標是為研究人員提供有價值的見解,幫助改進歸因方法,以增強開放領域生成系統生成的響應的可靠性和真實性。我們認為這個領域仍處于初級階段,因此我們維護了一個倉庫,以跟蹤正在進行的研究,網址為

//github.com/HITsz-TMG/awesome-llm-attributions。

自從由大型語言模型(LLMs)驅動的開放領域生成系統出現以來(Anil等人,2023;OpenAI,2022,2023),解決潛在不準確或虛構內容的連貫生成一直是一個持續存在的挑戰(Rawte等人,2023;葉等人,2023;張等人,2023b)。社區通常將這種問題稱為“幻覺”問題,其中生成的內容呈現出扭曲或虛構的事實,缺乏可信的信息來源(Peskoff和Stewart,2023)。這在信息搜索和知識問答場景中尤為明顯,用戶依賴大型語言模型獲取專業知識(Malaviya等人,2023)。

幻覺問題的實質可能源于事先訓練的模型是從廣泛、未經過濾的現實世界文本中獲取的(Penedo等人,2023)。這些人類生成的文本固有地包含不一致性和虛假信息。事先訓練的目標僅僅是預測下一個單詞,而不是明確建模生成內容的真實性。即使在利用人類反饋的強化學習之后(Ouyang等人,2022),模型仍然可能出現外部幻覺(Bai等人,2022)。為了解決外部幻覺的問題,研究人員已經開始采用外部參考文獻等措施來增強聊天機器人的真實性和可靠性(Thoppilan等人,2022;Menick等人,2022;Nakano等人,2021)。顯式歸因和強化學習之間的區別不僅在于需要人工驗證和遵從,還在于認識到生成的內容可能隨著時間變化而變得過時或無效。歸因可以利用實時信息來確保相關性和準確性。然而,歸因的基本挑戰圍繞著兩個基本要求(Liu等人,2023):

考慮到這些要求,我們可以將模型處理歸因的主要方式分為三種類型

  1. 直接模型驅動的歸因:大型模型本身為其回答提供歸因。然而,這種類型經常面臨挑戰,因為回答可能不僅是虛構的,而且歸因本身也可能是虛構的(Agrawal等人,2023)。雖然ChatGPT在大約50.6%的時間里提供正確或部分正確的答案,但建議的參考文獻僅在14%的時間內存在(Zuccon等人,2023)。
  2. 檢索后回答:這種方法根植于明確檢索信息然后讓模型基于這些檢索到的數據進行回答的思想。但檢索并不本質上等同于歸因(Gao等人,2023b)。當模型的內部知識和外部檢索的信息之間的邊界變得模糊時,可能會出現潛在的知識沖突問題(Xie等人,2023)。檢索也可以被用作一種專門的工具,允許模型獨立觸發它,類似于ChatGPT 1中的“使用必應進行瀏覽”。
  3. 生成后歸因:系統首先提供答案,然后使用問題和答案進行歸因搜索。如果需要,答案然后會進行修改并得到適當的歸因。現代搜索引擎,如Bing Chat 2,已經包含了這種歸因方式。然而,研究顯示,從四個生成式搜索引擎生成的內容中,只有51.5%完全得到了引用文獻的支持(Liu等人,2023)。這種歸因方式在高風險專業領域,如醫學和法律中尤其缺乏,研究發現有大量不完整的歸因(分別為35%和31%);而且,許多歸因來自不可靠的來源,51%的歸因被專家評估為不可靠(Malaviya等人,2023)。

超越對文本幻覺的一般討論(Zhang等人,2023b;葉等人,2023;Rawte等人,2023),我們的研究深入探討了大型語言模型的歸因問題。我們探討了它的起源、支撐技術以及評估標準。此外,我們也涉及了諸如偏見和過度引用的挑戰。我們相信,通過關注這些歸因問題,我們可以使模型更加可信賴和容易理解。我們這項研究的目標是以一種更加清晰的方式來闡述歸因問題,鼓勵對這一主題進行更深入的思考。

歸因是指一個實體(如文本模型)生成并提供證據的能力,這些證據通常以引用或參考文獻的形式出現,用以支撐它所產生的聲明或陳述。這些證據來源于可識別的源頭,確保這些聲明可以從一個基礎語料庫中邏輯推斷出來,使得它們對于普通受眾而言是可以理解和驗證的。歸因本身與搜索任務相關(Brin 和 Page, 1998;Page 等人, 1999;Tay 等人, 2022),在這種任務中只有幾個網頁會被返回。然而,歸因的主要目的包括使用戶能夠驗證模型所做的聲明,促進生成與引用源高度一致的文本以提高準確性和減少錯誤信息或幻覺,以及建立一個結構化的框架來評估支持證據的完整性和相關性,與所提出的聲明相比較。歸因的準確性核心在于所產生的陳述是否完全由引用源支持。Rashkin 等人(2021)還提出了歸因于已識別來源(AIS)的評估框架,以評估特定陳述是否由所提供的證據支持。Bohnet 等人(2022)提出了歸因問答,模型在這里接受一個問題,并產生一對配對的回答,即答案字符串及其從特定語料庫,如段落中得到的支持證據。

直接生成的歸因 來自參數化知識的直接生成歸因可以幫助減少幻覺現象并提高生成文本的真實性。通過要求模型進行自我檢測和自我歸因,一些研究發現生成的文本更加基于事實,并且在下游任務中的表現也有所提升。最近,研究人員發現,大型語言模型在回答特定領域的知識性問題時,不能清楚地提供知識來源或證據(Peskoff 和 Stewart, 2023; Zuccon 等人, 2023)。在大多數情況下,模型只能提供一個與問題中的關鍵詞松散相關或與當前主題無關的知識來源。即使模型正確回答了問題,它提供的證據仍然可能存在錯誤。Weller 等人(2023)嘗試通過提出根據提示方法,將模型生成的文本基于其預訓練數據,發現這種方法可以影響模型的根據性,從而影響信息尋求任務的表現。Anonymous(2023)引入了一個中間規劃模塊,要求模型生成一系列問題作為當前問題的藍圖。模型首先提出一個藍圖,然后結合基于藍圖問題生成的文本作為最終答案。藍圖模型允許在每個回答問題的步驟中采用不同形式的歸因,可以期望更具解釋性。

**檢索后回答 **

多篇研究論文已經調查了歸因的檢索后回答方法(Chen 等人,2017年;Lee 等人,2019年;Khattab 和 Zaharia,2020年)。SmartBook 框架(Reddy 等人,2023年)提出了一種方法,該方法利用大量新聞數據自動生成結構化的情況報告。SmartBook 確定了情況分析的關鍵問題,并從新聞文章中檢索相關信息。報告按時間線組織,每個時間線包括重大事件、戰略問題和由事實證據支持的概括性總結。為了解決用戶查詢和存儲知識之間的不一致問題,MixAlign(張等人,2023a)提出了一個框架,該框架結合了自動問題知識對齊和用戶澄清,增強了檢索增強生成模型的性能,并減輕了語言模型的幻覺。此外,SearChain(徐等人,2023年)引入了一個新穎的框架,它將大型語言模型(LLMs)與信息檢索(IR)結合起來,提高了復雜知識密集型任務的準確性、可信度和可追溯性。SearChain 采用檢索然后回答的方法,通過生成全球推理鏈(CoQ)并利用 IR 來驗證答案和提供缺失的知識。

生成后歸因

為了在不損害最新一代模型所提供的強大優勢的情況下促進準確的歸因,一些研究致力于生成后的歸因,這些研究使用搜索引擎或文檔檢索系統,基于輸入問題和生成的答案來搜索證據。這種方法允許研究人員評估或提高答案的事實性,而無需直接訪問模型的參數。生成后歸因的工作流程如圖3所示。RARR(高等,2023a)自主識別任何文本生成模型輸出的歸因,并執行后期編輯以糾正不支持的內容,同時努力在最大程度上保留原始輸出。在霍等人(2023)的工作中,材料是基于粗粒度的句子或細粒度的事實陳述從語料庫中檢索的。然后利用這些檢索到的材料提示LLM,以驗證生成的回應與檢索到的材料之間的一致性,并進行必要的編輯以減少幻覺。陳等人(2023b)介紹了一個全自動化的管道,旨在驗證復雜的政治聲明,這是通過從網上檢索原始證據、生成聚焦聲明的摘要并利用它們進行聲明驗證來實現的。

付費5元查看完整內容

大型語言模型(LLMs)在自然語言處理方面展示了令人印象深刻的能力。然而,它們的內部機制仍然不清楚,這種不透明性對下游應用帶來了不希望的風險。因此,理解和解釋這些模型對于闡明它們的行為、局限性和社會影響至關重要。在本文中,我們引入了可解釋性技術的分類體系,并提供了關于解釋基于Transformer的語言模型方法的結構化概述我們根據LLMs的訓練范式對技術進行分類:傳統的微調范式和基于提示的范式。對于每個范式,我們總結了生成個體預測的局部解釋和總體模型知識的全局解釋的目標和主要方法。我們還討論了用于評估生成解釋的度量標準,并討論了如何利用解釋來調試模型和提高性能。最后,我們比較了LLMs時代解釋技術面臨的關鍵挑戰和新興機會與傳統機器學習模型。

大型語言模型(LLMs),如BERT(Devlin等,2019a)、GPT-3(Brown等,2020)、GPT-4(Bubeck等,2023)、LLaMA-2(Touvron等,2023b)和Claude(AnthropicAI,2023),在各種自然語言處理(NLP)任務中展示出了令人印象深刻的性能。主要科技公司,如微軟、谷歌和百度,已在其商業產品和服務中部署了LLMs以增強功能。例如,微軟利用GPT-3.5來改善新Bing的搜索相關性排名(Mehdi,2023)。由于LLMs通常是復雜的“黑盒子”系統,其內部工作機制是不透明的,高復雜性使模型解釋變得更加具有挑戰性。這種模型不透明性的缺乏有時會導致生成有害內容或幻覺的產生(Weidinger等,2021)。因此,開發解釋能力以揭示這些強大模型的工作方式至關重要。

可解釋性指的是以人類可理解的方式解釋或呈現模型行為的能力(Doshi-Velez和Kim,2017;Du等,2019a)。提高LLMs的可解釋性至關重要,有兩個關鍵原因。首先,對于一般終端用戶,可解釋性通過以可理解的方式闡明模型預測背后的推理機制來建立適當的信任,無需技術專業知識。通過這種方式,終端用戶能夠理解LLMs的能力、局限性和潛在缺陷。其次,對于研究人員和開發人員,解釋模型行為提供了洞察力,以識別意外偏見、風險和性能改進的領域。換句話說,可解釋性充當了一個調試輔助工具,可以快速提高下游任務上的模型性能(Strobelt等,2018;Bastings等,2022;Yuksekgonul等,2023)。它有助于追蹤模型能力隨時間的變化,進行不同模型之間的比較,并開發可靠、道德和安全的模型,以供實際部署使用。 由于LLMs的獨特屬性,其可解釋性技術與傳統機器學習(ML)模型的技術有所不同。LLMs和傳統ML模型之間的差異可以歸因于多個方面。從數據的角度來看,ML模型以監督方式依賴人工構建的特征,而LLMs旨在自動從原始輸入數據中學習特征(Chai和Li,2019)。解釋LLMs捕捉了哪些特征以及這些特征中包含了什么知識是重要的。從模型的角度來看,傳統ML模型通常是針對具體任務設計的,具有不同的模型架構(Liu和Sun,2023)。相比之下,經過廣泛數據集的預訓練的LLMs可以通過微調泛化到各種下游任務(Yang等,2023)。此外,LLMs的注意力機制已被廣泛用于通過為輸入的相關部分分配更高的值來確定輸入的重要性(Hu,2020)。由于注意力權重中編碼的知識和模式可能提示了模型的理解,注意力權重可以被認為是精細調校模型的另一個重要解釋標準。此外,由于LLMs的性能更好,還應進一步研究transformer的組件,包括神經元、層和模塊,學到了什么以及它們是否有不同的功能。從應用的角度來看,傳統ML模型專注于低級模式識別任務,如解析和形態分析,而LLMs可以處理高級推理任務,如回答問題和常識推理(Lauriola等,2022)。特別是,理解LLMs在上下文學習和思維鏈提示以及幻覺現象方面的獨特能力對于解釋和改進模型至關重要。為了更好地理解和改進LLMs,有必要回顧和總結專為LLMs定制的解釋技術。 在本文中,我們提供了一種解釋基于Transformer的語言模型的方法的全面概述。在第2節中,我們介紹了應用LLMs的兩個主要范式:1)傳統的下游微調范式和2)提示范式。基于這一分類,我們在第3節中回顧了適用于微調LLMs的解釋方法,并在第4節中回顧了適用于提示LLMs的解釋方法。在第5節中,我們討論了解釋方法的評估。最后,在第6節中,我們進一步討論了與傳統機器學習模型相比解釋LLMs所面臨的研究挑戰,并提供了有關潛在未來研究方向的見解。本文旨在全面整理關于解釋復雜語言模型的最新研究進展。 LLMs的訓練范式

LLMs的訓練可以基本分為兩個范式,傳統微調和提示,根據它們如何用于適應下游任務。由于這兩個范式之間存在重大區別,因此分別提出了各種類型的解釋(如圖1所示)。 傳統微調范式

在這個范式中,首先對語言模型進行了大規模無標簽文本數據的預訓練,然后在特定下游領域的一組標記數據上進行微調,例如GLUE基準測試中的SST-2、MNLI和QQP(Wang等人,2019)。在微調過程中,很容易在語言模型的最終編碼器層上方添加完全連接的層,使其適應各種下游任務(Rogers等人,2021)。這個范式已經在包含多達十億參數的中型語言模型上取得了成功。例如,包括BERT(Devlin等人,2019a)、RoBERTa(Liu等人,2019)、ELECTRA(Clark等人,2020)、DeBERTa(He等人,2021)等。對于這個范式的解釋重點在于兩個關鍵領域:1)理解自監督預訓練如何使模型獲得語言的基礎理解(例如句法、語義和上下文關系);以及2)分析微調過程如何賦予這些預訓練模型有效解決下游任務的能力。

**提示范式 **

提示范式涉及使用提示,例如自然語言句子中的空白,以便模型填充,實現零樣本學習或少樣本學習,而無需額外的訓練數據。根據其開發階段,這個范式下的模型可以分為兩種類型: 基礎模型:隨著LLMs的規模和訓練數據的增加,它們展示了令人印象深刻的新能力,無需額外的訓練數據。其中一種能力是通過提示實現少樣本學習。這種類型的范式通常適用于大規模語言模型(擁有數十億參數)(例如GPT-3(Brown等人,2020)、OPT(Zhang等人,2022b)、LLaMA-1(Touvron等人,2023a)、LLaMA-2(Touvron等人,2023b)、Falcon(Almazrouei等人,2023))。這些模型被稱為基礎模型或基礎模型,它們可以與用戶進行對話,無需進一步與人類喜好對齊。大規模模型通常適用于這種范式,規模超過10億。例如,LLaMA-2(Touvron等人,2023b)擁有高達700億個參數。基礎模型的解釋旨在理解模型如何學習在回應提示時利用其預訓練知識。 助手模型:基礎模型存在兩個主要限制:1)它們不能按照用戶的指令進行操作,因為預訓練數據包含少量指令-響應示例,2)它們傾向于生成有偏見和有毒的內容(Carlini等人,2023)。為了解決這些限制,基礎模型通過監督微調進一步進行微調(見圖2),以實現人類級別的能力,例如開放域對話。關鍵思想是通過將模型的響應與人類反饋和喜好對齊來實現。這個過程最典型的方式是通過(提示,響應)演示對和來自人類反饋的強化學習(RLHF)進行指導調整。模型通過自然語言反饋進行訓練,以進行復雜的多輪對話。屬于這一類別的模型包括OpenAI的GPT-3.5和GPT4(Bubeck等人,2023)、Anthropic的Claude(AnthropicAI,2023)以及一些開源模型,如Meta的LLaMA-2-Chat(Touvron等人,2023b)、Alpaca(Taori等人,2023)和Vicuna(Chiang等人,2023)。這些模型也可以稱為助手模型、聊天助手或對話模型。助手模型的解釋重點在于理解模型如何從對話中學習開放式互動行為。

**傳統微調范式的解釋 **

在本節中,我們回顧了針對采用預訓練和下游微調范式訓練的LLMs的解釋技術。首先,我們介紹了提供局部解釋(第3.1節)和全局解釋(第3.2節)的方法。在這里,局部解釋旨在提供對語言模型如何對特定輸入實例進行預測的理解,而全局解釋旨在提供對LLM整體工作方式的廣泛理解。接下來,我們討論了如何利用解釋來調試和改進模型(第3.3節)。

局部解釋

解釋的第一類別涉及解釋LLMs生成的預測。讓我們考慮這樣一種情景,我們有一個語言模型,并將特定文本輸入模型。模型隨后產生分類輸出,例如情感分類或下一個標記的預測。在這種情景下,解釋的作用是闡明模型生成特定分類或標記預測的過程。由于目標是解釋LLM如何為特定輸入做出預測,我們將其稱為局部解釋。這個類別包括四個主要方法流,包括基于特征歸因的解釋、基于注意力的解釋、基于示例的解釋和自然語言解釋。

**全局解釋 **

不同于旨在解釋模型的個體預測的局部解釋,全局解釋有助于從模型的角度理解LLMs的工作方式。全局解釋旨在理解個體組件(神經元、隱藏層和較大模塊)編碼了什么,以及解釋了個體組件所學習的知識/語言屬性。我們考察了三種主要的全局解釋方法:探測方法,用于分析模型表示和參數;神經元激活分析,用于確定模型對輸入的響應性;以及基于概念的方法。

**提示范式的解釋 **

在本節中,我們介紹了解釋屬于提示范式的模型的技術,包括1)解釋基礎模型,如LLaMA-2(第4.1節),2)解釋助手模型,如LLaMA-2-Chat(第4.2節),以及3)如何利用LLMs的推理和解釋能力生成用戶友好的解釋(第4.3節)。

基礎模型解釋

隨著語言模型的規模增大,它們展示出了新的能力,如少樣本學習,即僅從少量示例中學習概念的能力。它們還展示了一種思維鏈(CoT)提示能力。鑒于這些新興屬性,解釋性研究有三個主要目標:1)研究提供解釋是否實際有助于模型自身更快地從僅有少量示例中“理解”新任務,2)理解這些大型語言模型如何能夠迅速從有限示例中掌握新任務,從而幫助終端用戶解釋模型的推理,以及3)解釋思維鏈提示。

**助手模型解釋 **

由于大規模無監督預訓練和有監督對齊微調,屬于這一范式的LLMs具有強大的推理能力。然而,它們的巨大規模也使它們容易生成問題輸出,如幻覺。解釋性研究旨在:1)闡明對齊微調的作用,2)分析幻覺產生的原因。

結論

在本文中,我們提供了對LLMs的可解釋性技術的全面概述。我們總結了基于模型訓練范式的局部和全局解釋方法。我們還討論了如何利用解釋來改進模型、評估以及主要挑戰。未來的重要發展選項包括開發針對不同LLMs的解釋方法、評估解釋的忠實性,以及提高人類可解釋性。隨著LLMs的不斷進步,可解釋性將變得極其重要,以確保這些模型具有透明性、公平性和益處。我們希望這份調查為這一新興研究領域提供了有用的組織,同時突顯了未來工作的開放性問題。

付費5元查看完整內容

序列決策,通常形式化為馬爾可夫決策過程(MDP)優化,是人工智能的一個重要挑戰。解決這個問題的兩種關鍵方法是強化學習(RL)和規劃。這項綜述是這兩個領域的集成,更廣為人知的是基于模型的強化學習。基于模型的RL有兩個主要步驟。首先,我們系統地介紹了動力學模型學習的方法,包括處理隨機性、不確定性、部分可觀察性和時間抽象等挑戰。其次,我們提出了規劃-學習集成的系統分類,包括:從哪里開始規劃,為規劃和實際數據收集分配哪些預算,如何規劃,以及如何在學習和行動循環中集成規劃。在這兩個部分之后,我們還討論了隱式基于模型的RL作為模型學習和規劃的端到端替代方案,并討論了基于模型的RL的潛在好處。在此過程中,調研還與幾個相關的RL領域建立了聯系,如分層RL和傳輸。

付費5元查看完整內容

自然語言生成(NLG)技術利用人工智能和語言學的方法來自動地生成可理解的自然語言文本。NLG降低了人類和計算機之間溝通的難度,被廣泛應用于機器新聞寫作、聊天機器人等領域,已經成為人工智能的研究熱點之一。首先,列舉了當前主流的NLG的方法和模型,并詳細對比了這些方法和模型的優缺點;然后,分別針對文本到文本、數據到文本和圖像到文本等三種NLG技術,總結并分析了應用領域、存在的問題和當前的研究進展;進而,闡述了上述生成技術的常用評價方法及其適用范圍;最后,給出了當前NLG技術的發展趨勢和研究難點。

//www.joca.cn/CN/abstract/abstract24496.shtml

付費5元查看完整內容

近年來,深度學習技術得到了快速發展。在自然語言處理(NLP)任務中,隨著文本表征技術從詞級上升到了文檔級,利用大規模語料庫進行無監督預訓練的方式已被證明能夠有效提高模型在下游任務中的性能。首先,根據文本特征提取技術的發展,從詞級和文檔級對典型的模型進行了分析;其次,從預訓練目標任務和下游應用兩個階段,分析了當前預訓練模型的研究現狀,并對代表性的模型特點進行了梳理和歸納;最后,總結了當前預訓練模型發展所面臨的主要挑戰并提出了對未來的展望。

//www.joca.cn/CN/abstract/abstract24426.shtml

付費5元查看完整內容
北京阿比特科技有限公司