亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

序列決策,通常形式化為馬爾可夫決策過程(MDP)優化,是人工智能的一個重要挑戰。解決這個問題的兩種關鍵方法是強化學習(RL)和規劃。這項綜述是這兩個領域的集成,更廣為人知的是基于模型的強化學習。基于模型的RL有兩個主要步驟。首先,我們系統地介紹了動力學模型學習的方法,包括處理隨機性、不確定性、部分可觀察性和時間抽象等挑戰。其次,我們提出了規劃-學習集成的系統分類,包括:從哪里開始規劃,為規劃和實際數據收集分配哪些預算,如何規劃,以及如何在學習和行動循環中集成規劃。在這兩個部分之后,我們還討論了隱式基于模型的RL作為模型學習和規劃的端到端替代方案,并討論了基于模型的RL的潛在好處。在此過程中,調研還與幾個相關的RL領域建立了聯系,如分層RL和傳輸。

付費5元查看完整內容

相關內容

強化學習算法被廣泛的認為可以分為兩大類:無模型(Model-Free)的算法和基于模型(Model-Based)的算法。無模型的算法在過去一段時間在許多任務中已經取得了巨大的進步,這包括了機器人,視頻游戲等。盡管這類算法取得了巨大的成功,但是由于其較高的采樣復雜度,即需要與測試任務和環境進行大量的交互,生成樣本,從而學習得到效果較好的策略,這使得無模型的強化學習算法難以應用到大量的實際場景問題中,而僅僅應用在具有仿真環境的問題當中。

而通過學習一個近似環境的參數化的模型(Model),進而進一步幫助策略的學習的這類算法,被稱為基于模型的算法,使得其相比無模型算法可以大大降低采樣復雜度。本教程對基于模型的強化學習(MBRL)領域進行了廣泛的概述,特別強調了深度方法。MBRL方法利用環境模型來做決策——而不是將環境看作一個黑箱——并且提供了超越無模型RL的獨特機會和挑戰。我們將討論學習過渡和獎勵模式的方法,如何有效地使用這些模式來做出更好的決策,以及計劃和學習之間的關系。我們還強調了在典型的RL設置之外。

付費5元查看完整內容

摘要

本文綜述了遷移學習在強化學習問題設置中的應用。RL已經成為序列決策問題的關鍵的解決方案。隨著RL在各個領域的快速發展。包括機器人技術和游戲,遷移學習是通過利用和遷移外部專業知識來促進學習過程來幫助RL的一項重要技術。在這篇綜述中,我們回顧了在RL領域中遷移學習的中心問題,提供了一個最先進技術的系統分類。我們分析他們的目標,方法,應用,以及在RL框架下這些遷移學習技術將是可接近的。本文從RL的角度探討了遷移學習與其他相關話題的關系,并探討了RL遷移學習的潛在挑戰和未來發展方向。

關鍵詞:遷移學習,強化學習,綜述,機器學習

介紹

強化學習(RL)被認為是解決連續決策任務的一種有效方法,在這種方法中,學習主體通過與環境相互作用,通過[1]來提高其性能。源于控制論并在計算機科學領域蓬勃發展的RL已被廣泛應用于學術界和工業界,以解決以前難以解決的任務。此外,隨著深度學習的快速發展,應用深度學習服務于學習任務的集成框架在近年來得到了廣泛的研究和發展。DL和RL的組合結構稱為深度強化學習[2](Deep Reinforcement Learning, DRL)。

DRL在機器人控制[3]、[4]、玩[5]游戲等領域取得了巨大的成功。在醫療保健系統[6]、電網[7]、智能交通系統[8]、[9]等領域也具有廣闊的應用前景。

在這些快速發展的同時,DRL也面臨著挑戰。在許多強化學習應用中,環境模型通常是未知的,只有收集到足夠的交互經驗,agent才能利用其對環境的知識來改進其性能。由于環境反饋的部分可觀察性、稀疏性或延遲性以及高維觀察和/或行動空間等問題,學習主體在沒有利用任何先驗知識的情況下尋找好的策略是非常耗時的。因此,遷移學習作為一種利用外部專業知識來加速學習過程的技術,在強化學習中成為一個重要的課題。

在監督學習(SL)領域[10]中,TL得到了廣泛的研究。與SL場景相比,由于MDP環境中涉及的組件更多,RL中的TL(尤其是DRL中的TL)通常更復雜。MDP的組件(知識來自何處)可能與知識轉移到何處不同。此外,專家知識也可以采取不同的形式,以不同的方式轉移,特別是在深度神經網絡的幫助下。隨著DRL的快速發展,以前總結用于RL的TL方法的努力沒有包括DRL的最新發展。注意到所有這些不同的角度和可能性,我們全面總結了在深度強化學習(TL in DRL)領域遷移學習的最新進展。我們將把它們分成不同的子主題,回顧每個主題的理論和應用,并找出它們之間的聯系。

本綜述的其余部分組織如下:在第2節中,我們介紹了強化學習的背景,關鍵的DRL算法,并帶來了這篇綜述中使用的重要術語。我們還簡要介紹了與TL不同但又緊密相關的相關研究領域(第2.3節)。

在第3節中,我們采用多種視角來評價TL方法,提供了對這些方法進行分類的不同方法(第3.1節),討論了遷移源和目標之間的潛在差異(第3.2節),并總結了評價TL有效性的常用指標(第3.3節)。

第4節詳細說明了DRL領域中最新的TL方法。特別是,所討論的內容主要是按照遷移知識的形式組織的,如成型的獎勵(4.1節)、先前的演示(4.2節)、專家策略(4.3節),或者按照轉移發生的方式組織的,如任務間映射(4.4節)、學習可轉移表示(4.5節和4.6節)等。我們在第5節討論了TL在DRL中的應用,并在第6節提供了一些值得研究的未來展望。

付費5元查看完整內容

本教程對基于模型的強化學習(MBRL)領域進行了廣泛的概述,特別強調了深度方法。MBRL方法利用環境模型來進行決策——而不是將環境視為一個黑箱——并且提供了超越無模型RL的獨特機會和挑戰。我們將討論學習過渡和獎勵模式的方法,如何有效地使用這些模式來做出更好的決策,以及規劃和學習之間的關系。我們還強調了在典型的RL設置之外利用世界模型的方式,以及在設計未來的MBRL系統時,從人類認知中可以得到什么啟示。

//sites.google.com/view/mbrl-tutorial

近年來,強化學習領域取得了令人印象深刻的成果,但主要集中在無模型方法上。然而,社區認識到純無模型方法的局限性,從高樣本復雜性、需要對不安全的結果進行抽樣,到穩定性和再現性問題。相比之下,盡管基于模型的方法在機器人、工程、認知和神經科學等領域具有很大的影響力,但在機器學習社區中,這些方法的開發還不夠充分(但發展迅速)。它們提供了一系列獨特的優勢和挑戰,以及互補的數學工具。本教程的目的是使基于模型的方法更被機器學習社區所認可和接受。鑒于最近基于模型的規劃的成功應用,如AlphaGo,我們認為對這一主題的全面理解是非常及時的需求。在教程結束時,觀眾應該獲得:

  • 數學背景,閱讀并跟進相關文獻。
  • 對所涉及的算法有直觀的理解(并能夠訪問他們可以使用和試驗的輕量級示例代碼)。
  • 在應用基于模型的方法時所涉及到的權衡和挑戰。
  • 對可以應用基于模型的推理的問題的多樣性的認識。
  • 理解這些方法如何適應更廣泛的強化學習和決策理論,以及與無模型方法的關系。
付費5元查看完整內容

盡管在深度學習方面取得了最近的進展,但大多數方法仍然采用類似“筒倉”的解決方案,專注于孤立地學習每個任務:為每個單獨的任務訓練一個單獨的神經網絡。然而,許多現實問題需要多模態方法,因此需要多任務模型。多任務學習(MTL)旨在利用跨任務的有用信息來提高模型的泛化能力。在這個綜述中,我們提供了一個最先進的在深度神經網絡的背景下MTL技術的全面觀點。我們的貢獻涉及以下方面。首先,我們從網絡架構的角度來考慮MTL。我們包括了一個廣泛的概述,并討論了最近流行的MTL模型的優缺點。其次,我們研究了解決多任務聯合學習的各種優化方法。我們總結了這些工作的定性要素,并探討了它們的共性和差異。最后,我們在各種數據集上提供了廣泛的實驗評估,以檢查不同方法的優缺點,包括基于架構和優化的策略。

//arxiv.org/abs/2004.13379

概述

在過去的十年中,神經網絡在許多任務中都顯示了令人印象深刻的結果,例如語義分割[1],實例分割[2]和單目深度估計[3]。傳統上,這些任務是單獨處理的,即為每個任務訓練一個單獨的神經網絡。然而,許多現實世界的問題本質上是多模態的。例如,一輛自動駕駛汽車應該能夠檢測場景中的所有物體,定位它們,了解它們是什么,估計它們的距離和軌跡,等等,以便在它的周圍安全導航。同樣的,一個智能廣告系統應該能夠在它的視點上檢測到人們的存在,了解他們的性別和年齡,分析他們的外貌,跟蹤他們正在看的地方,等等,從而提供個性化的內容。與此同時,人類非常擅長同時解決許多任務。生物數據處理似乎也遵循多任務處理策略: 不同的處理過程似乎共享大腦中相同的早期處理層,而不是將任務分開單獨處理。上述觀察結果促使研究人員開發了多任務學習(MTL)模型,即給定一個輸入圖像可以推斷出所有所需的任務輸出。

在深度學習時代之前,MTL工作試圖對任務之間的共同信息進行建模,希望通過聯合任務學習獲得更好的泛化性能。為了實現這一點,他們在任務參數空間上放置了假設,例如:任務參數應該彼此靠近w.r.t.一些距離度量[5],[6],[16]0,[16]2,共享一個共同的概率先驗[16]1,[10],[11],[12],[13],或駐留在一個低維子空間[14],[15],[16]或流形[17]。當所有任務都是相關的[5]、[14]、[18]、[19]時,這些假設可以很好地工作,但是如果在不相關的任務之間發生信息共享,則可能導致性能下降。后者是MTL中已知的問題,稱為負轉移。為了緩解這一問題,其中一些研究人員選擇根據先前對任務的相似性或相關性的認識將任務分組。

在深度學習時代,MTL轉化為能夠從多任務監控信號中學習共享表示的網絡設計。與單任務情況下,每個單獨的任務由自己的網絡單獨解決相比,這種多任務網絡理論上給表帶來了幾個優點。首先,由于它們固有的層共享,結果內存占用大大減少。其次,由于他們明確地避免重復計算共享層中的特征,每次都要計算一次,因此他們的推理速度有所提高。最重要的是,如果相關的任務能夠分享互補的信息,或者互相調節,它們就有可能提高績效。對于前者,文獻已經為某些對任務提供了證據,如檢測和分類[20],[21],檢測和分割[2],[22],分割和深度估計[23],[24],而對于后者,最近的努力指向了那個方向[25]。這些工作導致了第一個深度多任務網絡的發展,歷史上分為軟或硬參數共享技術。

在本文中,我們回顧了在深度神經網絡范圍內的MTL的最新方法。首先,我們對MTL基于架構和優化的策略進行了廣泛的概述。對于每種方法,我們描述了其關鍵方面,討論了與相關工作的共性和差異,并提出了可能的優點或缺點。最后,我們對所描述的方法進行了廣泛的實驗分析,得出了幾個關鍵的發現。我們在下面總結了我們的一些結論,并提出了未來工作的一些可能性。

  • 首先,MTL的性能在很大程度上取決于任務字典。它的大小、任務類型、標簽源等等,都影響最終的結果。因此,最好根據每個案例選擇合適的架構和優化策略。盡管我們提供了具體的觀察結果,說明為什么某些方法在特定設置中工作得更好,但是MTL通常可以從更深的理論理解中獲益,從而在每種情況下最大化預期收益。例如,這些收益似乎取決于多種因素,例如數據量、任務關系、噪音等。未來的工作應該嘗試分離和分析這些不同因素的影響。

  • 其次,當使用單一MTL模型處理多個密集預測任務時,基于解碼器的架構目前在多任務性能方面提供了更多優勢,與基于編碼器的架構相比,其計算開銷有限。如前所述,這是由于基于解碼器的體系結構促進了常見的跨任務模式的對齊,這自然很適合密集的預測任務。基于編碼器的架構在密集預測任務設置中仍然具有一定的優勢,但其固有的層共享似乎更適合處理多個分類任務。

  • 最后,我們分析了多種任務均衡策略,并分離出對任務均衡學習最有效的要素,如降低噪聲任務的權重、平衡任務梯度等。然而,許多優化方面仍然缺乏了解。與最近的研究相反,我們的分析表明避免任務之間的梯度競爭會損害性能。此外,我們的研究顯示,一些任務平衡策略仍然存在不足,突出了現有方法之間的一些差異。我們希望這項工作能促進對這一問題的進一步研究。

付費5元查看完整內容

【簡介】隨著深度表示學習的發展,強化學習(RL)已經成為了一個強大的學習框架,其可以在高維度空間中學習復雜的規則。這篇綜述總結了深度強化學習(DRL)算法,提供了采用強化學習的自動駕駛任務的分類方法,重點介紹了算法上的關鍵挑戰和在現實世界中將強化學習部署在自動駕駛方面的作用,以及最終評估,測試和加強強化學習和模仿學習健壯性的現有解決方案。

論文鏈接: //arxiv.org/abs/2002.00444

介紹:

自動駕駛(AD)系統由多個感知級任務組成,由于采用了深度學習架構,這些任務現在已經達到了很高的精度。除了感知任務之外,自主駕駛系統還包含多個其他任務,傳統的監督學習方法已經不再適用。首先,當對agent行為的預測發生變化時,從自動駕駛agent所處的環境中接收到的未來傳感器觀察到的結果,例如獲取市區最佳駕駛速度的任務。其次,監督信號(如碰撞時間(TTC),相對于agent最佳軌跡的側向誤差)表示agent的動態變化以及環境中的不確定性。這些問題都需要定義隨機損失函數來使其最大化。最后,agent需要學習當前環境新的配置參數,預測其所處的環境中每一時刻的最優決策。這表明在觀察agent和其所處環境的情況下,一個高維度的空間能夠給出大量唯一的配置參數。在這些場景中,我們的目標是解決一個連續決策的問題。在這篇綜述中,我們將介紹強化學習的概念,強化學習是一種很有前景的解決方案和任務分類方法,特別是在驅動策略、預測感知、路徑規劃以及低層控制器設計等領域。我們還重點回顧了強化學習在自動駕駛領域當中各種現實的應用。最后,我們通過闡述應用當前諸如模仿學習和Q學習等強化學習算法時所面臨的算力挑戰和風險來激勵使用者對強化學習作出改進。

章節目錄:

section2: 介紹一個典型的自動駕駛系統及其各個組件。

section3: 對深度強化學習進行介紹,并簡要討論關鍵概念。

section4: 探討在強化學習基本框架上對其進行更深層次,更加復雜的擴展。

section5: 對強化學習用于自動駕駛領域的所面臨的問題提供一個概述。

section6: 介紹將強化學習部署到真實世界自動駕駛系統中所面臨的挑戰。

section7: 總結

付費5元查看完整內容

題目: A Survey and Critique of Multiagent Deep Reinforcement Learning

簡介: 近年來,深度強化學習(RL)取得了出色的成績。這使得應用程序和方法的數量急劇增加。最近的工作探索了單智能體深度強化之外的學習,并考慮了多智能體深度強化學習的場景。初步結果顯示在復雜的多智能體領域中的成功,盡管有許多挑戰需要解決。本文的主要目的是提供有關當前多智能體深度強化學習(MDRL)文獻的概述。此外,我們通過更廣泛的分析對概述進行補充:(i)我們回顧了以前RL中介紹的基礎內容,并強調了它們如何適應多智能深度強化學習設置。 (ii)我們為該領域的新開業者提供一般指導:描述從MDRL工作中汲取的經驗教訓,指出最新的基準并概述研究途徑。 (iii)我們提出了MDRL的實際挑戰(例如,實施和計算需求)。

作者介紹: Pablo Hernandez-Leal,Borealis AI的研究員,在此之前,曾與Michael Kaisers一起參與過阿姆斯特丹CWI的智能和自治系統。研究方向:單智能體環境開發的算法以及多智能體。計劃開發一種算法,該算法使用博弈論,貝葉斯推理和強化學習中的模型和概念在戰略交互中得到使用。

付費5元查看完整內容
北京阿比特科技有限公司