亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

長期以來,隨著數據處理系統的復雜性不斷增加,系統設計者一直在想象能夠根據環境線索進行自我配置和適應的系統(如數據庫、調度程序)。在這種情況下,強化學習(RL)方法從一開始就吸引了系統開發人員。他們承諾從原始反饋信號中獲取復雜的決策策略。盡管RL方法在概念上很流行,但在現實世界的數據處理系統中卻很少見到。最近,由于利用大型神經網絡(深度強化學習)取得了引人注目的成功,RL受到了爆炸性增長的關注。新興的機器學習框架和強大的硬件加速器催生了大量新的潛在應用。在本文中,我首先提出,為了高效地設計和執行深度RL算法,需要新穎的軟件抽象來適應通信密集和快速進化算法的獨特計算模式。我提出了一種將邏輯算法構造與本地和分布式執行語義解耦的體系結構。我將進一步介紹RLgraph,這是我對這個體系結構的概念驗證實現。在RLgraph中,算法開發人員可以通過組合邏輯組件構建高級數據流圖來探索新的設計。此數據流圖獨立于特定的后端框架或執行概念,只在以后通過分階段構建過程映射到執行語義。RLgraph支持高性能算法實現,同時保持快速原型的靈活性。

//www.repository.cam.ac.uk/handle/1810/304385

其次,我研究了系統本身中RL應用程序稀缺的原因。我認為,由于缺乏用于任務模型設計的工具來彌合系統和算法之間的差距,以及缺乏評估模型能力的共同標準,應用RL的進展受到了阻礙。在本文中,我介紹了應用RL中第一個用于增量模型設計的工具——Wield。Wield 提供了一小組原語,將系統接口和特定于部署的配置從表示中分離出來。運用的核心是一種新的指導性實驗協議,稱為漸進隨機化,它幫助從業者逐步評估非確定性的不同維度。我演示了如何使用和漸進的隨機化可以用來再現和評估之前的工作,并指導新RL應用程序的實現。

付費5元查看完整內容

相關內容

博士論文是由攻讀博士學位的研究生所撰寫的學術論文。它要求作者在博士生導師的指導下,選擇自己能夠把握和駕馭的潛在的研究方向,開辟新的研究領域。由此可見,這就對作者提出了較高要求,它要求作者必須在本學科的專業領域具備大量的理論知識,并對所學專業的理論知識有相當深入的理解和思考,同時還要具有相當水平的獨立科學研究能力,能夠為在學科領域提出獨創性的見解和有價值的科研成果。因而,較之學士論文、碩士論文,博士論文具有更高的學術價值,對學科的發展具有重要的推動作用。

在本文中,我們的目標是改進深度強化學習中的泛化。對任何類型的學習來說,泛化都是一項基本挑戰,它決定了如何將已獲得的知識轉移到新的、以前從未見過的情況中。本文專注于強化學習,這是一個描述人工智能體如何學習與環境交互以實現目標的框架。近年來,利用神經網絡表示智能體取得了顯著的成功,并極大地擴展了其可能的應用范圍。本文的目標是通過允許這些智能體更快地學習,學習更好的解決方案,并對以前未見過的情況做出魯棒的反應,從而提高它們的性能。在這個探索中,我們探索了一系列不同的方法和途徑。我們專注于將額外的結構,也稱為歸納偏差,納入主體。專注于特定的,但廣泛適用的問題領域,我們可以開發專門的架構,從而大大提高性能。在第3章中,我們關注的是部分可觀察環境,在這種環境中,智能體每時每刻都不能完全訪問所有與任務相關的信息。在第4章中,我們將注意力轉向多任務和遷移學習,并設計了一種新的訓練方法,允許訓練分層結構的智能體。我們的方法優化了單個解決方案的可重用性,大大提高了傳輸設置中的性能。

//ora.ox.ac.uk/objects/uuid:9fdfadb0-e527-4421-9a22-8466c9fed9c8 在本文的第二部分中,我們將注意力轉向正則化,這是另一種形式的歸納偏差,作為提高深度智能體泛化的方法。在第五章中,我們首先探討了強化學習(RL)中的隨機正則化。雖然這些技術已被證明在監督學習中非常有效,但我們強調并克服了將它們直接應用到在線RL算法中的困難,這是RL中最強大和應用最廣泛的學習類型之一。在第6章中,我們通過探索訓練數據中的瞬態非平穩性如何干擾神經網絡的隨機梯度訓練,并使其偏向較差的解,在更基本的水平上研究了深度rl中的泛化。許多先進的RL算法將這些類型的非平穩性引入到訓練中,甚至在平穩環境中,通過使用持續改進的數據收集策略。我們提出了一個新的框架,以減少經過訓練的策略所經歷的非平穩性,從而允許改進的泛化。

付費5元查看完整內容

深度學習推動了應用的爆炸式增長,然而訓練深度神經網絡通常需要昂貴的人工注釋。在這篇論文中,我們探索了在訓練深度神經網絡時避免大量依賴人工注釋示例的替代方案。具體來說,要么采用自監督方法來自動糾正自由獲得的數據標簽,要么完全放棄使用人工標簽,而是利用音頻和視覺信息的自然共生來學習視頻中的對象表示。越來越多的數字數據通常會提供噪聲標簽,這些標簽可以用來監督學習過程。傳統的數據預處理包括在訓練識別模型之前糾正/清理數據,但這可能需要大量的人工工作。我們考慮自動更正注釋噪聲,從而避免了昂貴的手動注釋的需要。我們構建和擴展了最近的突破,使用一致性損失(consistency loss)和空間記憶映射(space memory map)來提供靈活的實例級注冊,從而實現更大的泛化。進一步探索了多模態感覺流,利用模態冗余,即模態之間的重疊信息,為模型提供自監督。表示是通過利用不同的模式來學習的,而不使用任何人類注釋的標簽。我們將使用三個不同的應用程序演示此技術

首先,我們自動管理一個大型音頻數據集VGG-Sound,使用視覺引導收集了超過200k的視頻,并在此基礎上進行訓練,生成最先進的音頻識別模型。其次,我們提出了一種改進和擴展最近聲源定位技術的方法,通過引入一種機制來挖掘硬樣本并自動將其添加到對比學習公式中。最后,與在一個特定領域執行的現有視聽同步任務不同,我們建議通過探索使用幾種基于transformer的體系結構來解決開放世界設置中的同步問題。通過這些模型,我們在具有挑戰性的語音數據集中獲得了最先進的結果,并在一般聲音數據集中顯示了出色的泛化效果。

付費5元查看完整內容

現代深度強化學習(RL)算法,盡管處于人工智能能力的最前沿,但通常需要大量的訓練樣本才能達到與人類相當的性能水平。這種嚴重的數據效率低下是深度RL實際應用的主要障礙:在沒有模擬器的情況下,深度RL幾乎不可能應用于任何領域。為了解決這種關鍵數據效率低下的問題,在本論文中,我們致力于設計能夠快速適應新環境的元學習智能體。與標準的強化學習相比,元學習在特定的環境分布上進行學習,從這些環境中采樣特定的任務,并直接優化元學習器,以提高策略改進的速度。通過利用與感興趣任務具有共同子結構的任務分布,元學習器可以調整自己的歸納偏見,使其能夠在測試時快速適應。

本論文的重點是設計元學習算法,利用記憶作為驅動快速適應新環境的主要機制。具有情景間記憶的元學習是一類元學習方法,利用基于特定環境的整個交互歷史的記憶架構來產生策略。因此,在特定任務中驅動策略改進的學習動態被包含在序列模型的計算過程中,本質上把學習算法的設計交給了體系結構。雖然概念簡單,但使用情景間記憶的元學習非常有效,仍然是最先進的方法。我們提出并討論了幾種通過記憶進行元學習的技術。

論文的第一部分集中在“具身”類環境,其中一個主體在一個類似自然世界的環境中有物理表現。我們利用這種高度結構化的環境集來設計具有快速記憶、規劃和狀態推斷能力的整體嵌入式代理體系結構。在論文的第二部分,我們將重點放在沒有強公共子結構的一般環境中應用的方法。首先,我們重新檢查元學習代理與環境的交互模式:提出用一個并行執行框架來取代典型的順序處理交互歷史,其中多個智能體并行地在環境中行動。接下來,我們討論了一個通用的和強大的序列模型的使用片段間存儲器,門控transformer,展示了性能和數據效率的巨大改進。最后,我們開發了一種方法,可以顯著降低(元)強化學習設置中transformer模型的訓練成本和作用延遲,目的是(1)使它們在研究社區中更廣泛地使用,(2)解鎖它們在實時和延遲受限的應用中使用,如機器人。

//www.ml.cmu.edu/research/phd-dissertation-pdfs/eparisot_phd_mld_2021.pdf

付費5元查看完整內容

本書分為三個部分。第一部分介紹了分布式強化學習的構建模塊。我們首先介紹了我們的基本研究對象,收益分布和分布Bellman方程(第二章)。第三章介紹了分類時間差分學習,一種簡單的學習收益分布的算法。在第三章結束時,讀者應該理解分布式強化學習的基本原則,并且應該能夠在簡單的實際設置中使用它。

第二部分是對分布式強化學習理論的發展。第4章介紹了一種用于測量返回分布之間距離的語言,以及與這些分布交互的操作符。第5章介紹了實現分布式強化學習所需的概率表示的概念;在此基礎上,研究了用這種表示來計算和近似收益分布的問題,并引入了分布動態規劃的框架。第6章研究了如何從樣本中以增量的方式學習返回分布,給出了類別時間差分學習的正式結構,以及其他算法,如分位數時間差異學習。第7章將這些思想擴展到最優決策的設置(也稱為控制設置)。最后,第8章介紹了基于統計泛函概念的分布強化學習的不同視角。在第二部分結束時,讀者應該理解在設計分布式強化學習算法時出現的挑戰,以及解決這些挑戰的可用工具。

第三部分和最后一部分為實際場景ios開發了分布式強化學習。第九章回顧了線性值函數逼近的原理,并將這些思想推廣到分布環境中。第10章討論了如何將分布方法與深度神經網絡相結合來獲得深度強化學習的算法,并提出了一個模型來研究這種結合所產生的現象。第11章討論了分布式強化學習在兩個進一步研究領域(多主體學習和神經科學)的新興應用,并得出結論。

//www.distributional-rl.org/

付費5元查看完整內容

盡管現代深度強化學習(RL)算法處于人工智能能力的前沿,但通常需要大量的訓練樣本才能達到與人類相當的性能水平。這種嚴重的數據效率低下是深度RL實際應用的主要障礙: 在沒有模擬器的情況下,幾乎不可能將深度RL應用到任何領域。為了解決這一關鍵的數據低效問題,在本文中,我們致力于設計能夠快速適應新環境的元學習智能體。與標準的強化學習相比,元學習在環境分布上進行學習,從環境中抽樣特定任務,并直接優化元學習者,以提高策略改進的速度。通過利用與感興趣任務共享子結構的任務分布,元學習者可以調整自己的歸納偏差,從而在測試時快速適應。本文主要研究元學習算法的設計,該算法利用記憶作為驅動在新環境中快速適應的主要機制。情景間記憶的元學習是一種利用基于特定環境的整個互動歷史的記憶架構來產生策略的元學習方法。因此,在特定任務中的學習動態驅動策略改進被包含在序列模型的計算過程中,本質上把學習算法的設計交給了體系結構。雖然概念上簡單明了,但使用情景間記憶的元學習非常有效,仍然是一種最先進的方法。我們提出并討論了一些通過記憶進行元學習的技巧。論文的第一部分集中在“具身”環境類,其中智能體人在一個類似于自然世界的環境中有一個物理表現。我們利用這種高度結構化的環境集,致力于設計具有快速記憶、規劃和狀態推斷能力的單片嵌入式代理體系結構。在論文的第二部分,我們將重點放在那些沒有強公共子結構的一般環境中應用的方法。首先,我們重新研究了元學習主體與環境的交互模式:提出用并發執行框架取代傳統的順序處理交互歷史,其中多個主體在環境中并行操作。接下來,我們將討論一種通用且功能強大的跨情景記憶序列模型——門控transformer的使用,它在性能和數據效率方面有了很大的改進。最后,我們開發一種方法,顯著降低訓練成本和代理延遲transformer 模型(元)強化學習設置,目的是對(1)在研究社區,使其使用更加廣泛,(2)解鎖使用實時和latency-constrained應用,如機器人。

//www.ml.cmu.edu/research/phd-dissertation-pdfs/eparisot_phd_mld_2021.pdf

付費5元查看完整內容

強化學習是一種學習范式,它關注的是如何控制一個系統,從而最大化一個表示長期目標的數值性能度量。強化學習與監督學習的區別在于,對于學習器的預測,只會給予部分反饋。此外,這些預測可能通過影響被控制系統的未來狀態而產生長期影響。因此,時間扮演著特殊的角色。強化學習的目標是發展有效的學習算法,以及了解算法的優點和局限性。強化學習之所以引起人們極大的興趣,是因為它可以用于解決大量的實際應用,從人工智能到運籌學或控制工程的問題。在這本書中,我們專注于那些建立在強大的動態規劃理論基礎上的強化學習算法。我們給出了一個相當全面的學習問題的目錄,描述了核心思想,關注大量的最先進的算法,然后討論了它們的理論性質和局限性。

//sites.ualberta.ca/~szepesva/rlbook.html

付費5元查看完整內容

強化學習(RL)智能體需要探索他們的環境,以便通過試錯學習最優策略。然而,當獎勵信號稀疏,或當安全是一個關鍵問題和某些錯誤是不可接受的時候,探索是具有挑戰性的。在本論文中,我們通過修改智能體解決的潛在優化問題,激勵它們以更安全或更有效的方式探索,來解決深度強化學習設置中的這些挑戰。

在這篇論文的第一部分,我們提出了內在動機的方法,在獎勵稀少或缺乏的問題上取得進展。我們的第一種方法使用內在獎勵來激勵智能體訪問在學習動力學模型下被認為是令人驚訝的狀態,并且我們證明了這種技術比單純探索更好。我們的第二種方法使用基于變分推理的目標,賦予個體不同的多種技能,而不使用特定任務的獎勵。我們證明了這種方法,我們稱為變分選擇發現,可以用來學習運動行為的模擬機器人環境。

在論文的第二部分,我們重點研究了安全勘探中存在的問題。在廣泛的安全強化學習研究的基礎上,我們提出將約束的RL標準化為安全探索的主要形式; 然后,我們繼續開發約束RL的算法和基準。我們的材料展示按時間順序講述了一個故事:我們首先介紹約束策略優化(Constrained Policy Optimization, CPO),這是約束深度RL的第一個算法,在每次迭代時都保證接近約束的滿足。接下來,我們開發了安全健身基準,它讓我們找到CPO的極限,并激勵我們向不同的方向前進。最后,我們發展了PID拉格朗日方法,其中我們發現對拉格朗日原-對偶梯度基線方法進行小的修改,可以顯著改善求解Safety Gym中約束RL任務的穩定性和魯棒性。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-34.html

付費5元查看完整內容

機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。

本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習

第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。

第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。

//www.ri.cmu.edu/publications/robot-deep-reinforcement-learning-tensor-state-action-spaces-and-auxiliary-task-learning-with-multiple-state-representations/

付費5元查看完整內容
北京阿比特科技有限公司